1
|
Imran M, Altamimi ASA, Afzal M, Babu MA, Goyal K, Ballal S, Sharma P, Alanazi FJ, Alruwaili AN, Aldhafeeri NA, Ali H. Targeting senescence and GATA4 in age-related cardiovascular disease: a comprehensive approach. Biogerontology 2025; 26:45. [PMID: 39831933 DOI: 10.1007/s10522-025-10189-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/03/2025] [Indexed: 01/22/2025]
Abstract
The growing prevalence of age-related cardiovascular diseases (CVDs) poses significant health challenges, necessitating the formulation of novel treatment approaches. GATA4, a vital transcription factor identified for modulating cardiovascular biology and cellular senescence, is recognized for its critical involvement in CVD pathogenesis. This review collected relevant studies from PubMed, Google Scholar, and Science Direct using search terms like 'GATA4,' 'cellular senescence,' 'coronary artery diseases,' 'hypertension,' 'heart failure,' 'arrhythmias,' 'congenital heart diseases,' 'cardiomyopathy,' and 'cardiovascular disease.' Additionally, studies investigating the molecular mechanisms underlying GATA4-mediated regulation of GATA4 and senescence in CVDs were analyzed to provide comprehensive insights into this critical aspect of potential treatment targeting. Dysregulation of GATA4 is involved in a variety of CVDs, as demonstrated by both experimental and clinical research, comprising CAD, hypertension, congenital heart diseases, cardiomyopathy, arrhythmias, and cardiac insufficiency. Furthermore, cellular senescence enhances the advancement of age-related CVDs. These observations suggested that therapies targeting GATA4, senescence pathways, or both as necessary may be an effective intervention in CVD progression and prognosis. Addressing age-related CVDs by targeting GATA4 and senescence is a broad mechanism approach. It implies further investigation of the molecular nature of these processes and elaboration of an effective therapeutic strategy. This review highlights the importance of GATA4 and senescence in CVD pathogenesis, emphasizing their potential as therapeutic targets for age-related CVDs.
Collapse
Affiliation(s)
- Mohd Imran
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha, 91911, Saudi Arabia.
- Center for Health Research, Northern Border University, Arar, Saudi Arabia.
| | - Abdulmalik S A Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - M Arockia Babu
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, UP, India
| | - Kavita Goyal
- Department of Biotechnology, Graphic Era (Deemed to be University), Clement Town, Dehradun 248002, India
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Pawan Sharma
- Department of Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Fadiyah Jadid Alanazi
- Center for Health Research, Northern Border University, Arar, Saudi Arabia
- Public Health Nursing Department, College of Nursing, Northern Border University, Arar, Saudi Arabia
| | - Abeer Nuwayfi Alruwaili
- Department of Nursing Administration and Education, College of Nursing, Jouf University, Sakaka 72388, Saudi Arabia
| | - Nouf Afit Aldhafeeri
- College of Nursing, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Haider Ali
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| |
Collapse
|
2
|
Stopper D, Buntrock S, Tan K, de Carvalho LP, Schäker-Hübner L, Held J, Kassack MU, Hansen FK. Multicomponent syntheses enable the discovery of novel quisinostat-derived chemotypes as histone deacetylase inhibitors. Eur J Med Chem 2025; 281:117045. [PMID: 39549507 DOI: 10.1016/j.ejmech.2024.117045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/07/2024] [Accepted: 11/07/2024] [Indexed: 11/18/2024]
Abstract
In this study, we synthesized and evaluated novel histone deacetylase (HDAC) inhibitors derived from the clinical candidate quisinostat. A library of 16 compounds categorized in three novel chemotypes was rapidly generated using multicomponent reactions (MCRs), enabling efficient structure-activity relationship studies. First, the compounds were evaluated for their activity against the Plasmodium falciparum strains 3D7 and Dd2, the main malaria-causing parasite, identifying compound 18b of the type C series as the most potent. It demonstrated low nanomolar IC50 values (IC50 (3D7) = 0.023 μM; IC50 (Dd2) = 0.047 μM) and high parasite selectivity (SIMRC-5/Pf3D7 > 2174). HDAC inhibition assays confirmed substantial inhibition of the P. falciparum enzyme PfHDAC1 (IC50 = 0.037 μM) as well as of human HDAC1 (IC50 = 0.021 μM) and HDAC6 (IC50 = 0.25 μM). Docking studies suggested distinct binding modes of 18b in P. falciparum and human HDAC1. Additionally, the in vitro anticancer activity was evaluated in Cal27 (head-neck carcinoma), HepG2 (hepatocellular carcinoma), A2780 (ovarian carcinoma), and U87 (glioblastoma) cell lines. Compounds 9b, 9d, and 13f showed potent antiproliferative activity and caspase 3/7 activation, in contrast to 18b. Furthermore, these compounds caused hyperacetylation of histone H3 and α-tubulin, indicating robust cellular target engagement. Overall, in this work we have identified the HDAC inhibitor 18b with selective antiplasmodial and 9b, 9d, and 13f with selective anticancer activities, providing valuable hits for further drug development efforts aimed at creating derivatives with reduced cytotoxicity against non-cancer cells compared to quisinostat.
Collapse
Affiliation(s)
- Daniel Stopper
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, 53121, Bonn, Germany
| | - Susanna Buntrock
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany
| | - Kathrin Tan
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, 53121, Bonn, Germany
| | | | - Linda Schäker-Hübner
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, 53121, Bonn, Germany
| | - Jana Held
- Institute of Tropical Medicine, University of Tübingen, 72074, Tübingen, Germany; German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany; Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | - Matthias U Kassack
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany.
| | - Finn K Hansen
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, 53121, Bonn, Germany.
| |
Collapse
|
3
|
Stopper D, de Carvalho LP, de Souza ML, Kponomaizoun CE, Winzeler EA, Held J, Hansen FK. Development of peptoid-based heteroaryl-decorated histone deacetylase (HDAC) inhibitors with dual-stage antiplasmodial activity. Eur J Med Chem 2024; 277:116782. [PMID: 39208744 DOI: 10.1016/j.ejmech.2024.116782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/09/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
Dynamics of epigenetic modifications such as acetylation and deacetylation of histone proteins have been shown to be crucial for the life cycle development and survival of Plasmodium falciparum, the deadliest malaria parasite. In this study, we present a novel series of peptoid-based histone deacetylase (HDAC) inhibitors incorporating nitrogen-containing bicyclic heteroaryl residues as a new generation of antiplasmodial peptoid-based HDAC inhibitors. We synthesized the HDAC inhibitors by an efficient multicomponent protocol based on the Ugi four-component reaction. The subsequent screening of 16 compounds from our mini-library identified 6i as the most promising candidate, demonstrating potent activity against asexual blood-stage parasites (IC50Pf3D7 = 30 nM; IC50PfDd2 = 98 nM), low submicromolar activity against liver-stage parasites (IC50PbEEF = 0.25 μM), excellent microsomal stability (t1/2 > 60 min), and low cytotoxicity to HEK293 cells (IC50 = 136 μM).
Collapse
Affiliation(s)
- Daniel Stopper
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, 53121, Bonn, Germany
| | | | - Mariana Laureano de Souza
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA 92093, United States
| | - Cindy-Esther Kponomaizoun
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, 53121, Bonn, Germany
| | - Elizabeth A Winzeler
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA 92093, United States
| | - Jana Held
- Institute of Tropical Medicine, University of Tübingen, 72074, Tübingen, Germany; German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany; Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | - Finn K Hansen
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, 53121, Bonn, Germany.
| |
Collapse
|
4
|
Schwarzer E, Skorokhod O. Post-Translational Modifications of Proteins of Malaria Parasites during the Life Cycle. Int J Mol Sci 2024; 25:6145. [PMID: 38892332 PMCID: PMC11173270 DOI: 10.3390/ijms25116145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Post-translational modifications (PTMs) are essential for regulating protein functions, influencing various fundamental processes in eukaryotes. These include, but are not limited to, cell signaling, protein trafficking, the epigenetic control of gene expression, and control of the cell cycle, as well as cell proliferation, differentiation, and interactions between cells. In this review, we discuss protein PTMs that play a key role in the malaria parasite biology and its pathogenesis. Phosphorylation, acetylation, methylation, lipidation and lipoxidation, glycosylation, ubiquitination and sumoylation, nitrosylation and glutathionylation, all of which occur in malarial parasites, are reviewed. We provide information regarding the biological significance of these modifications along all phases of the complex life cycle of Plasmodium spp. Importantly, not only the parasite, but also the host and vector protein PTMs are often crucial for parasite growth and development. In addition to metabolic regulations, protein PTMs can result in epitopes that are able to elicit both innate and adaptive immune responses of the host or vector. We discuss some existing and prospective results from antimalarial drug discovery trials that target various PTM-related processes in the parasite or host.
Collapse
Affiliation(s)
- Evelin Schwarzer
- Department of Oncology, University of Turin, Via Santena 5 bis, 10126 Turin, Italy;
| | - Oleksii Skorokhod
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina, 13, 10123 Turin, Italy
| |
Collapse
|
5
|
Lappalainen R, Kumar M, Duraisingh MT. Hungry for control: metabolite signaling to chromatin in Plasmodium falciparum. Curr Opin Microbiol 2024; 78:102430. [PMID: 38306915 PMCID: PMC11157454 DOI: 10.1016/j.mib.2024.102430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 12/18/2023] [Accepted: 01/08/2024] [Indexed: 02/04/2024]
Abstract
The human malaria parasite Plasmodium falciparum undergoes a complex life cycle in two hosts, mammalian and mosquito, where it is constantly subjected to environmental changes in nutrients. Epigenetic mechanisms govern transcriptional switches and are essential for parasite persistence and proliferation. Parasites infecting red blood cells are auxotrophic for several nutrients, and mounting evidence suggests that various metabolites act as direct substrates for epigenetic modifications, with their abundance directly relating to changes in parasite gene expression. Here, we review the latest understanding of metabolic changes that alter the histone code resulting in changes to transcriptional programmes in malaria parasites.
Collapse
Affiliation(s)
- Ruth Lappalainen
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston 02115, USA
| | - Manish Kumar
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston 02115, USA
| | - Manoj T Duraisingh
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston 02115, USA.
| |
Collapse
|
6
|
Reyser T, Paloque L, Augereau JM, Di Stefano L, Benoit-Vical F. Epigenetic regulation as a therapeutic target in the malaria parasite Plasmodium falciparum. Malar J 2024; 23:44. [PMID: 38347549 PMCID: PMC10863139 DOI: 10.1186/s12936-024-04855-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 01/18/2024] [Indexed: 02/15/2024] Open
Abstract
Over the past thirty years, epigenetic regulation of gene expression has gained increasing interest as it was shown to be implicated in illnesses ranging from cancers to parasitic diseases. In the malaria parasite, epigenetics was shown to be involved in several key steps of the complex life cycle of Plasmodium, among which asexual development and sexual commitment, but also in major biological processes like immune evasion, response to environmental changes or DNA repair. Because epigenetics plays such paramount roles in the Plasmodium parasite, enzymes involved in these regulating pathways represent a reservoir of potential therapeutic targets. This review focuses on epigenetic regulatory processes and their effectors in the malaria parasite, as well as the inhibitors of epigenetic pathways and their potential as new anti-malarial drugs. Such types of drugs could be formidable tools that may contribute to malaria eradication in a context of widespread resistance to conventional anti-malarials.
Collapse
Affiliation(s)
- Thibaud Reyser
- LCC-CNRS, Laboratoire de Chimie de Coordination, CNRS, Université de Toulouse, Toulouse, France
- MAAP, Inserm ERL 1289, Team "New Antiplasmodial Molecules and Pharmacological Approaches", Toulouse, France
- Institut de Pharmacologie et de Biologie Structurale, IPBS, CNRS, UPS, Université de Toulouse, Toulouse, France
| | - Lucie Paloque
- LCC-CNRS, Laboratoire de Chimie de Coordination, CNRS, Université de Toulouse, Toulouse, France
- MAAP, Inserm ERL 1289, Team "New Antiplasmodial Molecules and Pharmacological Approaches", Toulouse, France
- Institut de Pharmacologie et de Biologie Structurale, IPBS, CNRS, UPS, Université de Toulouse, Toulouse, France
| | - Jean-Michel Augereau
- LCC-CNRS, Laboratoire de Chimie de Coordination, CNRS, Université de Toulouse, Toulouse, France
- MAAP, Inserm ERL 1289, Team "New Antiplasmodial Molecules and Pharmacological Approaches", Toulouse, France
- Institut de Pharmacologie et de Biologie Structurale, IPBS, CNRS, UPS, Université de Toulouse, Toulouse, France
| | - Luisa Di Stefano
- MCD, Centre de Biologie Intégrative (CBI), CNRS, UPS, Université de Toulouse, Toulouse, France
| | - Françoise Benoit-Vical
- LCC-CNRS, Laboratoire de Chimie de Coordination, CNRS, Université de Toulouse, Toulouse, France.
- MAAP, Inserm ERL 1289, Team "New Antiplasmodial Molecules and Pharmacological Approaches", Toulouse, France.
- Institut de Pharmacologie et de Biologie Structurale, IPBS, CNRS, UPS, Université de Toulouse, Toulouse, France.
| |
Collapse
|
7
|
Tavares MT, Krüger A, Yan SLR, Waitman KB, Gomes VM, de Oliveira DS, Paz F, Hilscher S, Schutkowski M, Sippl W, Ruiz C, Toledo MFZJ, Hassimotto NMA, Machado-Neto JA, Poso A, Cameron MD, Bannister TD, Palmisano G, Wrenger C, Kronenberger T, Parise-Filho R. 1,3-Diphenylureido hydroxamate as a promising scaffold for generation of potent antimalarial histone deacetylase inhibitors. Sci Rep 2023; 13:21006. [PMID: 38030668 PMCID: PMC10687260 DOI: 10.1038/s41598-023-47959-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/20/2023] [Indexed: 12/01/2023] Open
Abstract
We report a series of 1,3-diphenylureido hydroxamate HDAC inhibitors evaluated against sensitive and drug-resistant P. falciparum strains. Compounds 8a-d show potent antiplasmodial activity, indicating that a phenyl spacer allows improved potency relative to cinnamyl and di-hydrocinnamyl linkers. In vitro, mechanistic studies demonstrated target activity for PfHDAC1 on a recombinant level, which agreed with cell quantification of the acetylated histone levels. Compounds 6c, 7c, and 8c, identified as the most active in phenotypic assays and PfHDAC1 enzymatic inhibition. Compound 8c stands out as a remarkable inhibitor, displaying an impressive 85% inhibition of PfHDAC1, with an IC50 value of 0.74 µM in the phenotypic screening on Pf3D7 and 0.8 µM against multidrug-resistant PfDd2 parasites. Despite its potent inhibition of PfHDAC1, 8c remains the least active on human HDAC1, displaying remarkable selectivity. In silico studies suggest that the phenyl linker has an ideal length in the series for permitting effective interactions of the hydroxamate with PfHDAC1 and that this compound series could bind as well as in HsHDAC1. Taken together, these results highlight the potential of diphenylurea hydroxamates as a privileged scaffold for the generation of potent antimalarial HDAC inhibitors with improved selectivity over human HDACs.
Collapse
Affiliation(s)
- Maurício T Tavares
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Arne Krüger
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 1374, São Paulo, 05508-900, Brazil
| | - Sun L Rei Yan
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 1374, São Paulo, 05508-900, Brazil
| | - Karoline B Waitman
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 580, São Paulo, 05508-000, Brazil
| | - Vinícius M Gomes
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, Australia
| | - Daffiny Sumam de Oliveira
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 1374, São Paulo, 05508-900, Brazil
| | - Franciarli Paz
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 1374, São Paulo, 05508-900, Brazil
| | - Sebastian Hilscher
- Faculty of Biosciences, Martin-Luther-University of Halle-Wittenberg, 06120, Halle/Saale, Germany
| | - Mike Schutkowski
- Faculty of Biosciences, Martin-Luther-University of Halle-Wittenberg, 06120, Halle/Saale, Germany
| | - Wolfgang Sippl
- Faculty of Biosciences, Martin-Luther-University of Halle-Wittenberg, 06120, Halle/Saale, Germany
| | - Claudia Ruiz
- Department of Molecular Medicine, The Herbert Wertheim Institute for Biomedical Innovation and Technology, Jupiter, FL, 33458, USA
| | - Mônica F Z J Toledo
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 580, São Paulo, 05508-000, Brazil
| | - Neuza M A Hassimotto
- Food Research Center-(FoRC-CEPID) and Department of Food Science and Nutrition, Faculty of Pharmaceutical Science, University of São Paulo, São Paulo, SP, Brazil
| | - João A Machado-Neto
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Antti Poso
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard-Karls-Universität, Tuebingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany
- Tuebingen Center for Academic Drug Discovery & Development (TüCAD2), 72076, Tübingen, Germany
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
| | - Michael D Cameron
- Department of Molecular Medicine, The Herbert Wertheim Institute for Biomedical Innovation and Technology, Jupiter, FL, 33458, USA
| | - Thomas D Bannister
- Department of Molecular Medicine, The Herbert Wertheim Institute for Biomedical Innovation and Technology, Jupiter, FL, 33458, USA
| | - Giuseppe Palmisano
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, Australia
| | - Carsten Wrenger
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 1374, São Paulo, 05508-900, Brazil.
| | - Thales Kronenberger
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard-Karls-Universität, Tuebingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany.
- Tuebingen Center for Academic Drug Discovery & Development (TüCAD2), 72076, Tübingen, Germany.
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| | - Roberto Parise-Filho
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 580, São Paulo, 05508-000, Brazil.
| |
Collapse
|
8
|
An X, Lan X, Feng Z, Li X, Su Q. Histone modification: Biomarkers and potential therapies in colorectal cancer. Ann Hum Genet 2023; 87:274-284. [PMID: 37712180 DOI: 10.1111/ahg.12528] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/16/2023]
Abstract
The complex mechanism of colorectal cancer development is closely associated with epigenetic modifications and is caused by overexpression and/or inactivation of oncogenes. Histone modifying enzymes catalyze histone modifications to alter gene expression, which plays a crucial role in the development and progression of colorectal cancer. Currently, there is more frequent study on histone acetylation, methylation, and phosphorylation, and their mechanisms in colorectal cancer development are clearer. This article elaborates on the role of histone modification in epigenetics in colorectal cancer development and discusses recent advances in using it as biomarkers and therapeutic targets for the treatment of colorectal cancer. The review aims to demonstrate the significant role of histone modification as a new therapeutic target in colorectal cancer and provides insights into the novel diagnostic and therapeutic options it offers.
Collapse
Affiliation(s)
- Xin An
- First College for Clinical Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaohua Lan
- School of Basic Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Zizhen Feng
- School of Basic Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaohong Li
- Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Department of Clinical Laboratory, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Qisheng Su
- Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Department of Clinical Laboratory, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
9
|
Abstract
Plasmodium falciparum, the human malaria parasite, infects two hosts and various cell types, inducing distinct morphological and physiological changes in the parasite in response to different environmental conditions. These variations required the parasite to adapt and develop elaborate molecular mechanisms to ensure its spread and transmission. Recent findings have significantly improved our understanding of the regulation of gene expression in P. falciparum. Here, we provide an up-to-date overview of technologies used to highlight the transcriptomic adjustments occurring in the parasite throughout its life cycle. We also emphasize the complementary and complex epigenetic mechanisms regulating gene expression in malaria parasites. This review concludes with an outlook on the chromatin architecture, the remodeling systems, and how this 3D genome organization is critical in various biological processes.
Collapse
Affiliation(s)
- Thomas Hollin
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, California, USA;
| | - Zeinab Chahine
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, California, USA;
| | - Karine G Le Roch
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, California, USA;
| |
Collapse
|
10
|
Ouologuem DT, Dara A, Kone A, Ouattara A, Djimde AA. Plasmodium falciparum Development from Gametocyte to Oocyst: Insight from Functional Studies. Microorganisms 2023; 11:1966. [PMID: 37630530 PMCID: PMC10460021 DOI: 10.3390/microorganisms11081966] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/06/2023] [Accepted: 07/14/2023] [Indexed: 08/27/2023] Open
Abstract
Malaria elimination may never succeed without the implementation of transmission-blocking strategies. The transmission of Plasmodium spp. parasites from the human host to the mosquito vector depends on circulating gametocytes in the peripheral blood of the vertebrate host. Once ingested by the mosquito during blood meals, these sexual forms undergo a series of radical morphological and metabolic changes to survive and progress from the gut to the salivary glands, where they will be waiting to be injected into the vertebrate host. The design of effective transmission-blocking strategies requires a thorough understanding of all the mechanisms that drive the development of gametocytes, gametes, sexual reproduction, and subsequent differentiation within the mosquito. The drastic changes in Plasmodium falciparum shape and function throughout its life cycle rely on the tight regulation of stage-specific gene expression. This review outlines the mechanisms involved in Plasmodium falciparum sexual stage development in both the human and mosquito vector, and zygote to oocyst differentiation. Functional studies unravel mechanisms employed by P. falciparum to orchestrate the expression of stage-specific functional products required to succeed in its complex life cycle, thus providing us with potential targets for developing new therapeutics. These mechanisms are based on studies conducted with various Plasmodium species, including predominantly P. falciparum and the rodent malaria parasites P. berghei. However, the great potential of epigenetics, genomics, transcriptomics, proteomics, and functional genetic studies to improve the understanding of malaria as a disease remains partly untapped because of limitations in studies using human malaria parasites and field isolates.
Collapse
Affiliation(s)
- Dinkorma T. Ouologuem
- Malaria Research and Training Center, Faculty of Pharmacy, Faculty of Medicine and Dentistry, University of Sciences, Techniques, and Technologies of Bamako, Bamako 1805, Mali
| | - Antoine Dara
- Malaria Research and Training Center, Faculty of Pharmacy, Faculty of Medicine and Dentistry, University of Sciences, Techniques, and Technologies of Bamako, Bamako 1805, Mali
| | - Aminatou Kone
- Malaria Research and Training Center, Faculty of Pharmacy, Faculty of Medicine and Dentistry, University of Sciences, Techniques, and Technologies of Bamako, Bamako 1805, Mali
| | - Amed Ouattara
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Abdoulaye A. Djimde
- Malaria Research and Training Center, Faculty of Pharmacy, Faculty of Medicine and Dentistry, University of Sciences, Techniques, and Technologies of Bamako, Bamako 1805, Mali
| |
Collapse
|
11
|
Sah RK, Anand S, Dar W, Jain R, Kumari G, Madan E, Saini M, Gupta A, Joshi N, Hada RS, Gupta N, Pati S, Singh S. Host-Erythrocytic Sphingosine-1-Phosphate Regulates Plasmodium Histone Deacetylase Activity and Exhibits Epigenetic Control over Cell Death and Differentiation. Microbiol Spectr 2023; 11:e0276622. [PMID: 36744922 PMCID: PMC10100792 DOI: 10.1128/spectrum.02766-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 01/08/2023] [Indexed: 02/07/2023] Open
Abstract
The evolution of resistance to practically all antimalarial drugs poses a challenge to the current malaria elimination and eradication efforts. Given that the epigenome of Plasmodium falciparum governs several crucial parasite functions, pharmaceutical interventions with transmission-blocking potential that target epigenetic molecular markers and regulatory mechanisms are likely to encounter drug resistance. In the malaria parasite, histone deacetylases (HDACs) are essential epigenetic modulators that regulate cellular transcriptional rearrangements, notably the molecular mechanisms underlying parasite proliferation and differentiation. We establish "lipid sequestration" as a mechanism by which sphingolipids, specifically Sphingosine-1-Phosphate (S1P) (a metabolic product of Sphingosine Kinase 1 [SphK-1]), regulate epigenetic reprogramming in the parasite by interacting with, and modulating, the histone-deacetylation activity of PfHDAC-1, thereby regulating Plasmodium pathogenesis. Furthermore, we demonstrate that altering host S1P levels with PF-543, a potent and selective Sphk-1 inhibitor, dysregulates PfHDAC-1 activity, resulting in a significant increase in the global histone acetylation signals and, consequently, transcriptional modulation of genes associated with gametocytogenesis, virulence, and proliferation. Our findings point to a hitherto unrecognized functional role for host S1P-mediated sphingolipid signaling in modulating PfHDAC-1's enzymatic activity and, as a result, the parasite's dynamic genome-wide transcriptional patterns. The epigenetic regulation of parasite proliferation and sexual differentiation offers a novel approach for developing host-targeted therapeutics to combat malaria resistance to conventional regimens. IMPORTANCE Sphingolipid is an 18-carbon amino-alcohol-containing lipid with a sphingosine backbone, which when phosphorylated by sphingosine kinase 1 (SphK-1), generates sphingosine-1-phosphate (S1P), an essential lipid signaling molecule. Dysregulation of S1P function has been observed in a variety of pathologies, including severe malaria. The malaria parasite Plasmodium acquires a host S1P pool for its growth and survival. Here, we describe the molecular attuning of histone deacetylase-1 (PfHDAC-1), a crucial epigenetic modulator that contributes to the establishment of epigenetic chromatin states and parasite survival, in response to S1P binding. Our findings highlight the host lipid-mediated epigenetic regulation of malaria parasite key genes.
Collapse
Affiliation(s)
- Raj Kumar Sah
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Sakshi Anand
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Waseem Dar
- School of Natural Sciences, Department of Life Sciences, Shiv Nadar University, Greater Noida, India
| | - Ravi Jain
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Geeta Kumari
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Evanka Madan
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Monika Saini
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
- School of Natural Sciences, Department of Life Sciences, Shiv Nadar University, Greater Noida, India
| | - Aashima Gupta
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Nishant Joshi
- School of Natural Sciences, Department of Life Sciences, Shiv Nadar University, Greater Noida, India
| | - Rahul Singh Hada
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
- School of Natural Sciences, Department of Life Sciences, Shiv Nadar University, Greater Noida, India
| | - Nutan Gupta
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Soumya Pati
- School of Natural Sciences, Department of Life Sciences, Shiv Nadar University, Greater Noida, India
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
12
|
Merrick CJ. Histone lactylation: a new epigenetic axis for host-parasite signalling in malaria? Trends Parasitol 2023; 39:12-16. [PMID: 36357308 DOI: 10.1016/j.pt.2022.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/21/2022] [Accepted: 10/21/2022] [Indexed: 11/09/2022]
Abstract
Epigenetic modifications play important roles in the biology of malaria parasites. The new epigenetic mark histone lactylation, discovered only recently in humans, is also present in malaria parasites. It may have important functions as a key player in the epigenetic repertoire of Plasmodium.
Collapse
Affiliation(s)
- Catherine J Merrick
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK.
| |
Collapse
|
13
|
Tateing S, Suree N. Decoding molecular recognition of inhibitors targeting HDAC2 via molecular dynamics simulations and configurational entropy estimation. PLoS One 2022; 17:e0273265. [PMID: 35981056 PMCID: PMC9387782 DOI: 10.1371/journal.pone.0273265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 08/05/2022] [Indexed: 11/18/2022] Open
Abstract
Molecular recognition by enzymes is a complicated process involving thermodynamic energies governing protein-ligand interactions. In order to aid the estimation of inhibitory activity of compounds targeting an enzyme, several computational methods can be employed to dissect this intermolecular contact. Herein, we report a structural dynamics investigation of an epigenetic enzyme HDAC2 in differentiating its binding to various inhibitors within the sub-sites of its active site. Molecular dynamics (MD) simulation was employed to elucidate the intermolecular interactions as well as the dynamics behavior of ligand binding. MD trajectories of five distinct HDAC2-inhibitor complexes reveal that compounds lacking adequate contacts with the opening rim of the active site possess high fluctuation along the cap portion, thus weakening the overall affinity. Key intermolecular interactions determining the effective binding of inhibitors include hydrogen bonds with Gly154, Asp181, and Tyr308; hydrophobic interactions between Phe155/Phe210 and the linker region; and a pi-stacking with Arg39 at the foot pocket. Decomposition of the binding free energy calculated per-residue by MM/PBSA also indicates that the interactions within the internal foot pocket, especially with residues Met35, Leu144, Gly305, and Gly306, can contribute significantly to the ligand binding. Additionally, configurational entropy of the binding was estimated and compared to the scale of the binding free energy in order to assess its contribution to the binding and to differentiate various ligand partners. It was found that the levels of entropic contribution are comparable among a set of structurally similar carbamide ligands, while it is greatly different for the set of unrelated ligands, ranging from 2.75 to 16.38 kcal/mol for the five inhibitors examined. These findings exemplify the importance of assessing molecular dynamics as well as estimating the entropic contribution in evaluating the ligand binding mechanism.
Collapse
Affiliation(s)
- Suriya Tateing
- Interdisciplinary Program in Biotechnology, Graduate School, Chiang Mai University, Chiang Mai, Thailand
- Division of Biochemistry and Biochemical Innovation, Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Nuttee Suree
- Division of Biochemistry and Biochemical Innovation, Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Materials Science and Technology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- * E-mail:
| |
Collapse
|
14
|
Genome-Wide Identification and Spatial Expression Analysis of Histone Modification Gene Families in the Rubber Dandelion Taraxacum kok-saghyz. PLANTS 2022; 11:plants11162077. [PMID: 36015381 PMCID: PMC9415798 DOI: 10.3390/plants11162077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/29/2022] [Accepted: 08/04/2022] [Indexed: 11/17/2022]
Abstract
Taraxacum kok-saghyz (Tks), also known as the Russian dandelion, is a recognized alternative source of natural rubber quite comparable, for quality and use, to the one obtained from the so-called rubber tree, Hevea brasiliensis. In addition to that, Tks roots produce several other compounds, including inulin, whose use in pharmaceutical and dietary products is quite extensive. Histone-modifying genes (HMGs) catalyze a series of post-translational modifications that affect chromatin organization and conformation, which, in turn, regulate many downstream processes, including gene expression. In this study, we present the first analysis of HMGs in Tks. Altogether, we identified 154 putative Tks homologs: 60 HMTs, 34 HDMs, 42 HATs, and 18 HDACs. Interestingly, whilst most of the classes showed similar numbers in other plant species, including M. truncatula and A. thaliana, HATs and HMT-PRMTs were indeed more abundant in Tks. Composition and structure analysis of Tks HMG proteins showed, for some classes, the presence of novel domains, suggesting a divergence from the canonical HMG model. The analysis of publicly available transcriptome datasets, combined with spatial expression of different developmental tissues, allowed us to identify several HMGs with a putative role in metabolite biosynthesis. Overall, our work describes HMG genomic organization and sets the premises for the functional characterization of epigenetic modifications in rubber-producing plants.
Collapse
|
15
|
Connacher J, von Grüning H, Birkholtz L. Histone Modification Landscapes as a Roadmap for Malaria Parasite Development. Front Cell Dev Biol 2022; 10:848797. [PMID: 35433676 PMCID: PMC9010790 DOI: 10.3389/fcell.2022.848797] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/04/2022] [Indexed: 12/26/2022] Open
Abstract
Plasmodium falciparum remains the deadliest parasite species in the world, responsible for 229 million cases of human malaria in 2019. The ability of the P. falciparum parasite to progress through multiple life cycle stages and thrive in diverse host and vector species hinges on sophisticated mechanisms of epigenetic regulation of gene expression. Emerging evidence indicates such epigenetic control exists in concentric layers, revolving around core histone post-translational modification (PTM) landscapes. Here, we provide a necessary update of recent epigenome research in malaria parasites, focusing specifically on the ability of dynamic histone PTM landscapes to orchestrate the divergent development and differentiation pathways in P. falciparum parasites. In addition to individual histone PTMs, we discuss recent findings that imply functional importance for combinatorial PTMs in P. falciparum parasites, representing an operational histone code. Finally, this review highlights the remaining gaps and provides strategies to address these to obtain a more thorough understanding of the histone modification landscapes that are at the center of epigenetic regulation in human malaria parasites.
Collapse
|
16
|
Wang M, Tang T, Li R, Huang Z, Ling D, Zheng L, Ding Y, Liu T, Xu W, Zhu F, Min H, Boonhok R, Mao F, Zhu J, Li X, Jiang L, Li J. Drug Repurposing of Quisinostat to Discover Novel Plasmodium falciparum HDAC1 Inhibitors with Enhanced Triple-Stage Antimalarial Activity and Improved Safety. J Med Chem 2022; 65:4156-4181. [PMID: 35175762 DOI: 10.1021/acs.jmedchem.1c01993] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Our previous work found that the clinical histone deacetylase (HDAC) inhibitor quisinostat exhibited a significant antimalarial effect but with severe toxicity. In this work, 35 novel derivatives were designed and synthesized based on quisinostat as the lead compound, and their in vitro antimalarial activities and cytotoxicities were systematically evaluated. Among them, JX35 showed potent inhibition against both wild-type and multidrug-resistant parasite strains and displayed a significant in vivo killing effect against all life cycles of parasites, including the blood stage, liver stage, and gametocyte stage, indicating its potential for the simultaneous treatment, chemoprevention, and blockage of malaria transmission. Compared with quisinostat, JX35 exhibited stronger antimalarial efficacy, more adequate safety, and good pharmacokinetic properties. Additionally, mechanistic studies via molecular docking studies, induced PfHDAC1/2 knockdown assays, and PfHDAC1 enzyme inhibition assays jointly indicated that the antimalarial target of JX35 was PfHDAC1. In summary, we discovered the promising candidate PfHDAC1 inhibitor JX35, which showed stronger triple-stage antimalarial effects and lower toxicity than quisinostat.
Collapse
Affiliation(s)
- Manjiong Wang
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Tongke Tang
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, P.R. China
| | - Ruoxi Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zhenghui Huang
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Dazheng Ling
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Lulu Zheng
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yan Ding
- Department of Pathogenic Biology, Army Medical University, Chongqing 400038, China
| | - Taiping Liu
- Department of Pathogenic Biology, Army Medical University, Chongqing 400038, China
| | - Wenyue Xu
- Department of Pathogenic Biology, Army Medical University, Chongqing 400038, China
| | - Feng Zhu
- Division of Infectious Diseases and International Medicine, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - Hui Min
- Division of Infectious Diseases and International Medicine, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - Rachasak Boonhok
- Division of Infectious Diseases and International Medicine, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - Fei Mao
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jin Zhu
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaokang Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Lubin Jiang
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, P.R. China
| | - Jian Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.,College of Pharmacy and Chemistry, Dali University, 5 Xue Ren Road, Dali 671000, China.,Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| |
Collapse
|
17
|
Hesping E, Chua MJ, Pflieger M, Qian Y, Dong L, Bachu P, Liu L, Kurz T, Fisher GM, Skinner-Adams TS, Reid RC, Fairlie DP, Andrews KT, Gorse ADJ. QSAR Classification Models for Prediction of Hydroxamate Histone Deacetylase Inhibitor Activity against Malaria Parasites. ACS Infect Dis 2022; 8:106-117. [PMID: 34985259 DOI: 10.1021/acsinfecdis.1c00355] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Malaria, caused by Plasmodium parasites, results in >400,000 deaths annually. There is no effective vaccine, and new drugs with novel modes of action are needed because of increasing parasite resistance to current antimalarials. Histone deacetylases (HDACs) are epigenetic regulatory enzymes that catalyze post-translational protein deacetylation and are promising malaria drug targets. Here, we describe quantitative structure-activity relationship models to predict the antiplasmodial activity of hydroxamate-based HDAC inhibitors. The models incorporate P. falciparum in vitro activity data for 385 compounds containing a hydroxamic acid and were subject to internal and external validation. When used to screen 22 new hydroxamate-based HDAC inhibitors for antiplasmodial activity, model A7 (external accuracy 91%) identified three hits that were subsequently verified as having potent in vitro activity against P. falciparum parasites (IC50 = 6, 71, and 84 nM), with 8 to 51-fold selectivity for P. falciparum versus human cells.
Collapse
Affiliation(s)
- Eva Hesping
- Griffith Institute for Drug Discovery, Griffith University, Nathan 4111, Australia
| | - Ming Jang Chua
- Griffith Institute for Drug Discovery, Griffith University, Nathan 4111, Australia
| | - Marc Pflieger
- Institut für pharmazeutische und medizinische Chemie, Heinrich-Heine Universität, Dusseldorf 40225, Germany
| | - Yunan Qian
- Griffith Institute for Drug Discovery, Griffith University, Nathan 4111, Australia
| | - Lilong Dong
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, University of Queensland, Brisbane 4072, Australia
| | - Prabhakar Bachu
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, University of Queensland, Brisbane 4072, Australia
| | - Ligong Liu
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, University of Queensland, Brisbane 4072, Australia
| | - Thomas Kurz
- Institut für pharmazeutische und medizinische Chemie, Heinrich-Heine Universität, Dusseldorf 40225, Germany
| | - Gillian M. Fisher
- Griffith Institute for Drug Discovery, Griffith University, Nathan 4111, Australia
| | | | - Robert C. Reid
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, University of Queensland, Brisbane 4072, Australia
| | - David P. Fairlie
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, University of Queensland, Brisbane 4072, Australia
| | - Katherine T. Andrews
- Griffith Institute for Drug Discovery, Griffith University, Nathan 4111, Australia
| | - Alain-Dominique J.P. Gorse
- QCIF Bioinformatics, Institute for Molecular Bioscience, University of Queensland, Saint Lucia 4072, Australia
| |
Collapse
|
18
|
Collins JE, Lee JW, Bohmer MJ, Welden JD, Arshadi AK, Du L, Cichewicz RH, Chakrabarti D. Cyclic Tetrapeptide HDAC Inhibitors with Improved Plasmodium falciparum Selectivity and Killing Profile. ACS Infect Dis 2021; 7:2889-2903. [PMID: 34491031 DOI: 10.1021/acsinfecdis.1c00341] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cyclic tetrapeptide histone deacetylase inhibitors represent a promising class of antiplasmodial agents that epigenetically disrupt a wide range of cellular processes in Plasmodium falciparum. Unfortunately, certain limitations, including reversible killing effects and host cell toxicity, prevented these inhibitors from further development and clinical use as antimalarials. In this study, we present a series of cyclic tetrapeptide analogues derived primarily from the fungus Wardomyces dimerus that inhibit P. falciparum with low nanomolar potency and high selectivity. This cyclic tetrapeptide scaffold was diversified further via semisynthesis, leading to the identification of several key structural changes that positively impacted the selectivity, potency, and in vitro killing profiles of these compounds. We confirmed their effectiveness as HDAC inhibitors through the inhibition of PfHDAC1 catalytic activity, in silico modeling, and the hyperacetylation of histone H4. Additional analysis revealed the in vitro inhibition of the most active epoxide-containing analogue was plasmodistatic, exhibiting reversible inhibitory effects upon compound withdrawal after 24 or 48 h. In contrast, one of the new diacetyloxy semisynthetic analogues, CTP-NPDG 19, displayed a rapid and irreversible action against the parasite following compound exposure for 24 h.
Collapse
Affiliation(s)
- Jennifer E. Collins
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, University of Central Florida, 12722 Research Parkway, Orlando, Florida 32826, United States
| | - Jin Woo Lee
- Department of Chemistry and Biochemistry, Institute for Natural Products Applications & Research Technologies, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Monica J. Bohmer
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, University of Central Florida, 12722 Research Parkway, Orlando, Florida 32826, United States
| | - Joshua D. Welden
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, University of Central Florida, 12722 Research Parkway, Orlando, Florida 32826, United States
| | - Arash K. Arshadi
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, University of Central Florida, 12722 Research Parkway, Orlando, Florida 32826, United States
| | - Lin Du
- Department of Chemistry and Biochemistry, Institute for Natural Products Applications & Research Technologies, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Robert H. Cichewicz
- Department of Chemistry and Biochemistry, Institute for Natural Products Applications & Research Technologies, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Debopam Chakrabarti
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, University of Central Florida, 12722 Research Parkway, Orlando, Florida 32826, United States
| |
Collapse
|
19
|
Tajiri M. Phage Display Screening for Alba Superfamily Proteins from the Human Malaria Parasite, Plasmodium falciparum Reveals a High Level of Association with Protein Modification Pathways and Hints at New Drug Targets. Acta Parasitol 2021; 66:844-850. [PMID: 33559027 DOI: 10.1007/s11686-021-00339-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 01/19/2021] [Indexed: 11/25/2022]
Abstract
PURPOSE A 2016 study estimated that over 3 billion people are currently at risk of contracting malaria. Although a wide variety of medications are available to treat malaria, the parasites have started to exhibit resistance to many commonly used therapeutics necessitating a push for new investigations to identify novel drug targets. METHODS In this study, nucleic acid-binding Alba superfamily proteins of the human malaria parasite, Plasmodium falciparum were investigated to identify interacting protein motifs. A high-throughput molecular screening technique, phage display, coupled with next-generation sequencing was applied to assess large data sets. RESULTS Four P. falciparum Alba proteins were used for screening which appear to have distinct roles in parasite biology based on the results of this work. The majority of the peptide motifs identified from phage display were involved in post-translational modification pathways, thus suggesting that parasite-specific gene regulatory mechanisms are involved which could serve as drug targets for novel therapeutics. CONCLUSION This study found 18 peptide motifs which potentially have strong interactions with one or more of the Alba superfamily proteins from P. falciparum. Considering the large fraction of post-translational modification-related peptide motifs identified from this work, one or more of the protein modification pathways could serve as a good target for malaria treatment.
Collapse
Affiliation(s)
- Momoko Tajiri
- Department of Chemistry, Michigan Technological University, Houghton, MI, 49931-1295, USA.
| |
Collapse
|
20
|
Chua MJ, Tng J, Hesping E, Fisher GM, Goodman CD, Skinner-Adams T, Do D, Lucke AJ, Reid RC, Fairlie DP, Andrews KT. Histone deacetylase inhibitor AR-42 and achiral analogues kill malaria parasites in vitro and in mice. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2021; 17:118-127. [PMID: 34560571 PMCID: PMC8463797 DOI: 10.1016/j.ijpddr.2021.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 11/29/2022]
Abstract
Malaria is caused by infection with Plasmodium parasites and results in significant health and economic impacts. Malaria eradication is hampered by parasite resistance to current drugs and the lack of a widely effective vaccine. Compounds that target epigenetic regulatory proteins, such as histone deacetylases (HDACs), may lead to new therapeutic agents with a different mechanism of action, thereby avoiding resistance mechanisms to current antimalarial drugs. The anticancer HDAC inhibitor AR-42, as its racemate (rac-AR-42), and 36 analogues were investigated for in vitro activity against P. falciparum. Rac-AR-42 and selected compounds were assessed for cytotoxicity against human cells, histone hyperacetylation, human HDAC1 inhibition and oral activity in a murine malaria model. Rac-AR-42 was tested for ex vivo asexual and in vitro exoerythrocytic stage activity against P. berghei murine malaria parasites. Rac-AR-42 and 13 achiral analogues were potent inhibitors of asexual intraerythrocytic stage P. falciparum 3D7 growth in vitro (IC50 5–50 nM), with four of these compounds having >50-fold selectivity for P. falciparum versus human cells (selectivity index 56–118). Rac-AR-42 induced in situ hyperacetylation of P. falciparum histone H4, consistent with PfHDAC(s) inhibition. Furthermore, rac-AR-42 potently inhibited P. berghei infected erythrocyte growth ex vivo (IC50 40 nM) and P. berghei exoerythrocytic forms in hepatocytes (IC50 1 nM). Oral administration of rac-AR-42 and two achiral analogues inhibited P. berghei growth in mice, with rac-AR-42 (50 mg/kg/day single dose for four days) curing all infections. These findings demonstrate curative properties for HDAC inhibitors in the oral treatment of experimental mouse malaria. HDAC inhibitors rac-AR-42 and 13 analogues inhibit P. falciparum growth in vitro. Rac-AR-42 inhibits P. berghei exoerythrocytic forms in hepatocytes (IC50 1 nM). Rac-AR-42 causes in situ hyperacetylation of P. falciparum histone H4. Rac-AR-42 cures P. berghei infected mice with oral dosing.
Collapse
Affiliation(s)
- Ming Jang Chua
- Griffith Institute for Drug Discovery, Griffith University, Queensland, 4111, Australia
| | - Jiahui Tng
- Institute for Molecular Bioscience, The University of Queensland, Queensland, 4072, Australia
| | - Eva Hesping
- Griffith Institute for Drug Discovery, Griffith University, Queensland, 4111, Australia
| | - Gillian M Fisher
- Griffith Institute for Drug Discovery, Griffith University, Queensland, 4111, Australia
| | | | - Tina Skinner-Adams
- Griffith Institute for Drug Discovery, Griffith University, Queensland, 4111, Australia
| | - Darren Do
- Institute for Molecular Bioscience, The University of Queensland, Queensland, 4072, Australia
| | - Andrew J Lucke
- Institute for Molecular Bioscience, The University of Queensland, Queensland, 4072, Australia
| | - Robert C Reid
- Institute for Molecular Bioscience, The University of Queensland, Queensland, 4072, Australia
| | - David P Fairlie
- Institute for Molecular Bioscience, The University of Queensland, Queensland, 4072, Australia.
| | - Katherine T Andrews
- Griffith Institute for Drug Discovery, Griffith University, Queensland, 4111, Australia.
| |
Collapse
|
21
|
Nardella F, Halby L, Dobrescu I, Viluma J, Bon C, Claes A, Cadet-Daniel V, Tafit A, Roesch C, Hammam E, Erdmann D, Mairet-Khedim M, Peronet R, Mecheri S, Witkowski B, Scherf A, Arimondo PB. Procainamide-SAHA Fused Inhibitors of hHDAC6 Tackle Multidrug-Resistant Malaria Parasites. J Med Chem 2021; 64:10403-10417. [PMID: 34185525 DOI: 10.1021/acs.jmedchem.1c00821] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Epigenetic post-translational modifications are essential for human malaria parasite survival and progression through its life cycle. Here, we present new functionalized suberoylanilide hydroxamic acid (SAHA) derivatives that chemically combine the pan-histone deacetylase inhibitor SAHA with the DNA methyltransferase inhibitor procainamide. A three- or four-step chemical synthesis was designed starting from cheap raw materials. Compared to the single drugs, the combined molecules showed a superior activity in Plasmodium and a potent inhibition against human HDAC6, exerting no cytotoxicity in human cell lines. These new compounds are fully active in multidrug-resistant Plasmodium falciparum Cambodian isolates. They target transmission of the parasite by inducing irreversible morphological changes in gametocytes and inhibiting exflagellation. The compounds are slow-acting and have an additive antimalarial effect in combination with fast-acting epidrugs and dihydroartemisinin. The lead compound decreases parasitemia in mice in a severe malaria model. Taken together, this novel fused molecule offers an affordable alternative to current failing antimalarial therapy.
Collapse
Affiliation(s)
- Flore Nardella
- Unité Biologie des Interactions Hôte-Parasite, Département de Parasites et Insectes Vecteurs, Institut Pasteur, CNRS ERL 9195, INSERM Unit U1201, 25-28 Rue du Dr Roux, Paris 75015, France
| | - Ludovic Halby
- Epigenetic Chemical Biology, Department of Structural Biology and Chemistry, Institut Pasteur, UMR n°3523, CNRS, 28 Rue du Dr Roux, Paris 75015, France
| | - Irina Dobrescu
- Unité Biologie des Interactions Hôte-Parasite, Département de Parasites et Insectes Vecteurs, Institut Pasteur, CNRS ERL 9195, INSERM Unit U1201, 25-28 Rue du Dr Roux, Paris 75015, France
| | - Johanna Viluma
- Epigenetic Chemical Biology, Department of Structural Biology and Chemistry, Institut Pasteur, UMR n°3523, CNRS, 28 Rue du Dr Roux, Paris 75015, France
| | - Corentin Bon
- Epigenetic Chemical Biology, Department of Structural Biology and Chemistry, Institut Pasteur, UMR n°3523, CNRS, 28 Rue du Dr Roux, Paris 75015, France.,Ecole Doctorale MTCI ED563, Université de Paris, Sorbonne Paris Cité, Paris 75270, France
| | - Aurélie Claes
- Unité Biologie des Interactions Hôte-Parasite, Département de Parasites et Insectes Vecteurs, Institut Pasteur, CNRS ERL 9195, INSERM Unit U1201, 25-28 Rue du Dr Roux, Paris 75015, France
| | - Véronique Cadet-Daniel
- Epigenetic Chemical Biology, Department of Structural Biology and Chemistry, Institut Pasteur, UMR n°3523, CNRS, 28 Rue du Dr Roux, Paris 75015, France
| | - Ambre Tafit
- Epigenetic Chemical Biology, Department of Structural Biology and Chemistry, Institut Pasteur, UMR n°3523, CNRS, 28 Rue du Dr Roux, Paris 75015, France
| | - Camille Roesch
- Malaria Molecular Epidemiology Unit, Pasteur Institute in Cambodia, Phnom Penh 12201, Cambodia
| | - Elie Hammam
- Unité Biologie des Interactions Hôte-Parasite, Département de Parasites et Insectes Vecteurs, Institut Pasteur, CNRS ERL 9195, INSERM Unit U1201, 25-28 Rue du Dr Roux, Paris 75015, France
| | - Diane Erdmann
- Epigenetic Chemical Biology, Department of Structural Biology and Chemistry, Institut Pasteur, UMR n°3523, CNRS, 28 Rue du Dr Roux, Paris 75015, France.,Ecole Doctorale MTCI ED563, Université de Paris, Sorbonne Paris Cité, Paris 75270, France
| | - Melissa Mairet-Khedim
- Malaria Molecular Epidemiology Unit, Pasteur Institute in Cambodia, Phnom Penh 12201, Cambodia
| | - Roger Peronet
- Unité Biologie des Interactions Hôte-Parasite, Département de Parasites et Insectes Vecteurs, Institut Pasteur, CNRS ERL 9195, INSERM Unit U1201, 25-28 Rue du Dr Roux, Paris 75015, France
| | - Salah Mecheri
- Unité Biologie des Interactions Hôte-Parasite, Département de Parasites et Insectes Vecteurs, Institut Pasteur, CNRS ERL 9195, INSERM Unit U1201, 25-28 Rue du Dr Roux, Paris 75015, France
| | - Benoit Witkowski
- Malaria Molecular Epidemiology Unit, Pasteur Institute in Cambodia, Phnom Penh 12201, Cambodia
| | - Artur Scherf
- Unité Biologie des Interactions Hôte-Parasite, Département de Parasites et Insectes Vecteurs, Institut Pasteur, CNRS ERL 9195, INSERM Unit U1201, 25-28 Rue du Dr Roux, Paris 75015, France
| | - Paola B Arimondo
- Epigenetic Chemical Biology, Department of Structural Biology and Chemistry, Institut Pasteur, UMR n°3523, CNRS, 28 Rue du Dr Roux, Paris 75015, France
| |
Collapse
|
22
|
Liu YR, Wang JQ, Huang ZG, Chen RN, Cao X, Zhu DC, Yu HX, Wang XR, Zhou HY, Xia Q, Li J. Histone deacetylase‑2: A potential regulator and therapeutic target in liver disease (Review). Int J Mol Med 2021; 48:131. [PMID: 34013366 PMCID: PMC8136123 DOI: 10.3892/ijmm.2021.4964] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 04/12/2021] [Indexed: 12/12/2022] Open
Abstract
Histone acetyltransferases are responsible for histone acetylation, while histone deacetylases (HDACs) counteract histone acetylation. An unbalanced dynamic between histone acetylation and deacetylation may lead to aberrant chromatin landscape and chromosomal function. HDAC2, a member of class I HDAC family, serves a crucial role in the modulation of cell signaling, immune response and gene expression. HDAC2 has emerged as a promising therapeutic target for liver disease by regulating gene transcription, chromatin remodeling, signal transduction and nuclear reprogramming, thus receiving attention from researchers and clinicians. The present review introduces biological information of HDAC2 and its physiological and biochemical functions. Secondly, the functional roles of HDAC2 in liver disease are discussed in terms of hepatocyte apoptosis and proliferation, liver regeneration, hepatocellular carcinoma, liver fibrosis and non-alcoholic steatohepatitis. Moreover, abnormal expression of HDAC2 may be involved in the pathogenesis of liver disease, and its expression levels and pharmacological activity may represent potential biomarkers of liver disease. Finally, research on selective HDAC2 inhibitors and non-coding RNAs relevant to HDAC2 expression in liver disease is also reviewed. The aim of the present review was to improve understanding of the multifunctional role and potential regulatory mechanism of HDAC2 in liver disease.
Collapse
Affiliation(s)
- Ya-Ru Liu
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Jie-Quan Wang
- Department of Pharmacy, Affiliated Psychological Hospital of Anhui Medical University, Hefei, Anhui 230000, P.R. China
| | - Zhao-Gang Huang
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Ruo-Nan Chen
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Xi Cao
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Dong-Chun Zhu
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Hai-Xia Yu
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Xiu-Rong Wang
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Hai-Yun Zhou
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Quan Xia
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Jun Li
- The Key Laboratory of Anti‑inflammatory Immune Medicines, School of Pharmacy, Anhui Medical University, Ministry of Education, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
23
|
Inhibition of PfMYST Histone Acetyltransferase Activity Blocks Plasmodium falciparum Growth and Survival. Antimicrob Agents Chemother 2020; 65:AAC.00953-20. [PMID: 33046499 DOI: 10.1128/aac.00953-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 10/01/2020] [Indexed: 12/25/2022] Open
Abstract
One of the major barriers in the prevention and control of malaria programs worldwide is the growing emergence of multidrug resistance in Plasmodium parasites, and this necessitates continued efforts to discover and develop effective drug molecules targeting novel proteins essential for parasite survival. In recent years, epigenetic regulators have evolved as an attractive drug target option owing to their crucial role in survival and development of Plasmodium at different stages of its life cycle. PfMYST, a histone acetyltransferase protein, is known to regulate key cellular processes, such as cell cycle progression, DNA damage repair, and antigenic variation, that facilitate parasite growth, adaptation, and survival inside its host. With the aim of assessing the therapeutic potential of PfMYST as a novel drug target, we examined the effect of NU9056 (an HsTIP60 inhibitor) on the rate of parasite growth and survival. In the present study, by using a yeast complementation assay, we established that PfMYST is a true homolog of TIP60 and showed that NU9056 can inhibit PfMYST catalytic activity and kill P. falciparum parasites in culture. Inhibiting the catalytic activity of PfMYST arrests the parasite in the trophozoite stage and inhibits its further transition to the schizont stage, eventually leading to its death. Overall, our study provides proof of concept that PfMYST catalytic activity is essential for parasite growth and survival and that PfMYST can be a potential target for antimalarial therapy.
Collapse
|
24
|
Huang Z, Li R, Tang T, Ling D, Wang M, Xu D, Sun M, Zheng L, Zhu F, Min H, Boonhok R, Ding Y, Wen Y, Chen Y, Li X, Chen Y, Liu T, Han J, Miao J, Fang Q, Cao Y, Tang Y, Cui J, Xu W, Cui L, Zhu J, Wong G, Li J, Jiang L. A novel multistage antiplasmodial inhibitor targeting Plasmodium falciparum histone deacetylase 1. Cell Discov 2020; 6:93. [PMID: 33311461 PMCID: PMC7733455 DOI: 10.1038/s41421-020-00215-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 09/09/2020] [Indexed: 01/07/2023] Open
Abstract
Although artemisinin combination therapies have succeeded in reducing the global burden of malaria, multidrug resistance of the deadliest malaria parasite, Plasmodium falciparum, is emerging worldwide. Innovative antimalarial drugs that kill all life-cycle stages of malaria parasites are urgently needed. Here, we report the discovery of the compound JX21108 with broad antiplasmodial activity against multiple life-cycle stages of malaria parasites. JX21108 was developed from chemical optimization of quisinostat, a histone deacetylase inhibitor. We identified P. falciparum histone deacetylase 1 (PfHDAC1), an epigenetic regulator essential for parasite growth and invasion, as a molecular target of JX21108. PfHDAC1 knockdown leads to the downregulation of essential parasite genes, which is highly consistent with the transcriptomic changes induced by JX21108 treatment. Collectively, our data support that PfHDAC1 is a potential drug target for overcoming multidrug resistance and that JX21108 treats malaria and blocks parasite transmission simultaneously.
Collapse
Affiliation(s)
- Zhenghui Huang
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Ruoxi Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Tongke Tang
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Dazheng Ling
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Manjiong Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Dandan Xu
- Department of Microbiology and Parasitology, Bengbu Medical College, and Anhui Key Laboratory of Infection and Immunity, Bengbu, Anhui 233030, China
| | - Maoxin Sun
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Lulu Zheng
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Feng Zhu
- Division of Infectious Diseases and International Medicine, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Hui Min
- Division of Infectious Diseases and International Medicine, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Rachasak Boonhok
- Division of Infectious Diseases and International Medicine, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Yan Ding
- Department of Pathogenic Biology, Army Medical University, Chongqing 400038, China
| | - Yuhao Wen
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yicong Chen
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaokang Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Yuxi Chen
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110122, China
| | - Taiping Liu
- Department of Pathogenic Biology, Army Medical University, Chongqing 400038, China
| | - Jiping Han
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jun Miao
- Division of Infectious Diseases and International Medicine, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Qiang Fang
- Department of Microbiology and Parasitology, Bengbu Medical College, and Anhui Key Laboratory of Infection and Immunity, Bengbu, Anhui 233030, China
| | - Yaming Cao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110122, China
| | - Yun Tang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Jie Cui
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Wenyue Xu
- Department of Pathogenic Biology, Army Medical University, Chongqing 400038, China
| | - Liwang Cui
- Division of Infectious Diseases and International Medicine, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Jin Zhu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Gary Wong
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jian Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China.
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China.
| | - Lubin Jiang
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
25
|
Mackwitz MKW, Hesping E, Eribez K, Schöler A, Antonova-Koch Y, Held J, Winzeler EA, Andrews KT, Hansen FK. Investigation of the in vitro and in vivo efficacy of peptoid-based HDAC inhibitors with dual-stage antiplasmodial activity. Eur J Med Chem 2020; 211:113065. [PMID: 33360801 DOI: 10.1016/j.ejmech.2020.113065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/20/2020] [Accepted: 11/27/2020] [Indexed: 12/20/2022]
Abstract
Histone deacetylases (HDACs) have been identified as emerging antiplasmodial drug targets. In this work, we report on the synthesis, structure-activity relationships, metabolic stability and in vivo efficacy of new peptoid-based HDAC inhibitors with dual-stage antiplasmodial activity. A mini library of HDAC inhibitors was synthesized using a one-pot, multi-component protocol or submonomer pathways. The screening of the target compounds for their activity against asexual blood stage parasites, human cell cytotoxicity, liver stage parasites, and selected human HDAC isoforms provided important structure-activity relationship data. The most promising HDAC inhibitor from this series, compound 3n, demonstrated potent activity against drug-sensitive and drug-resistant asexual stage P. falciparum parasites and was selective for the parasite versus human cells (Pf3D7 IC50 0.016 μM; SIHepG2/Pf3D7 573; PfDd2 IC50 0.002 μM; SIHepG2/PfDd2 4580) combined with activity against P. berghei exoerythrocytic liver stages (PbEEF IC50 0.48 μM). While compound 3n displayed high stability in human (Clint 5 μL/min/mg) and mouse (Clint 6 μL/min/mg) liver microsomes, only modest oral in vivo efficacy was observed in P. berghei infected mice. Together these data provide a foundation for future work to improve the properties of these dual-stage inhibitors as drug leads for malaria.
Collapse
Affiliation(s)
- Marcel K W Mackwitz
- Institute for Drug Discovery, Medical Faculty, Leipzig University, Brüderstraße 34, 04103, Leipzig, Germany
| | - Eva Hesping
- Griffith Institute for Drug Discovery, 46 Don Young Road, Nathan Campus, Griffith University, QLD, 4111, Australia
| | - Korina Eribez
- Department of Pediatrics, School of Medicine, University of California, San Diego, 9500 Gilman Drive 0741, La Jolla, CA, 92093, United States
| | - Andrea Schöler
- Institute for Drug Discovery, Medical Faculty, Leipzig University, Brüderstraße 34, 04103, Leipzig, Germany
| | - Yevgeniya Antonova-Koch
- Department of Pediatrics, School of Medicine, University of California, San Diego, 9500 Gilman Drive 0741, La Jolla, CA, 92093, United States
| | - Jana Held
- Institut für Tropenmedizin, Eberhard Karls Universität Tübingen, Wilhelmstr. 27, 72074, Tübingen, Germany
| | - Elizabeth A Winzeler
- Department of Pediatrics, School of Medicine, University of California, San Diego, 9500 Gilman Drive 0741, La Jolla, CA, 92093, United States
| | - Katherine T Andrews
- Griffith Institute for Drug Discovery, 46 Don Young Road, Nathan Campus, Griffith University, QLD, 4111, Australia.
| | - Finn K Hansen
- Institute for Drug Discovery, Medical Faculty, Leipzig University, Brüderstraße 34, 04103, Leipzig, Germany; Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany.
| |
Collapse
|
26
|
An ELISA method to assess HDAC inhibitor-induced alterations to P. falciparum histone lysine acetylation. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2020; 14:249-256. [PMID: 33279862 PMCID: PMC7724001 DOI: 10.1016/j.ijpddr.2020.10.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/11/2022]
Abstract
The prevention and treatment of malaria requires a multi-pronged approach, including the development of drugs that have novel modes of action. Histone deacetylases (HDACs), enzymes involved in post-translational protein modification, are potential new drug targets for malaria. However, the lack of recombinant P. falciparum HDACs and suitable activity assays, has made the investigation of compounds designed to target these enzymes challenging. Current approaches are indirect and include assessing total deacetylase activity and protein hyperacetylation via Western blot. These approaches either do not allow differential compound effects to be determined or suffer from low throughput. Here we investigated dot blot and ELISA methods as new, higher throughput assays to detect histone lysine acetylation changes in P. falciparum parasites. As the ELISA method was found to be superior to the dot blot assay using the control HDAC inhibitor vorinostat, it was used to evaluate the histone H3 and H4 lysine acetylation changes mediated by a panel of six HDAC inhibitors that were shown to inhibit P. falciparum deacetylase activity. Vorinostat, panobinostat, trichostatin A, romidepsin and entinostat all caused an ~3-fold increase in histone H4 acetylation using a tetra-acetyl lysine antibody. Tubastatin A, the only human HDAC6-specific inhibitor tested, also caused H4 hyperacetylation, but to a lesser extent than the other compounds. Further investigation revealed that all compounds, except tubastatin A, caused hyperacetylation of the individual N-terminal H4 lysines 5, 8, 12 and 16. These data indicate that tubastatin A impacts P. falciparum H4 acetylation differently to the other HDAC inhibitors tested. In contrast, all compounds caused hyperacetylation of histone H3. In summary, the ELISA developed in this study provides a higher throughput approach to assessing differential effects of antiplasmodial compounds on histone acetylation levels and is therefore a useful new tool in the investigation of HDAC inhibitors for malaria. P. falciparum histone lysine acetylation was compared using dot blot and ELISA. ELISA was more reproducible than dot blot in acetylation assays. ELISA was used to assess acetylation changes induced by anti-cancer HDAC inhibitors. Tubastatin A showed a different histone H4 acetylation profile to other compounds. This new method will facilitate the study of HDAC inhibitors for malaria.
Collapse
|
27
|
Dynamic Chromatin Structure and Epigenetics Control the Fate of Malaria Parasites. Trends Genet 2020; 37:73-85. [PMID: 32988634 DOI: 10.1016/j.tig.2020.09.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/27/2020] [Accepted: 09/02/2020] [Indexed: 12/11/2022]
Abstract
Multiple hosts and various life cycle stages prompt the human malaria parasite, Plasmodium falciparum, to acquire sophisticated molecular mechanisms to ensure its survival, spread, and transmission to its next host. To face these environmental challenges, increasing evidence suggests that the parasite has developed complex and complementary layers of regulatory mechanisms controlling gene expression. Here, we discuss the recent developments in the discovery of molecular components that contribute to cell replication and differentiation and highlight the major contributions of epigenetics, transcription factors, and nuclear architecture in controlling gene regulation and life cycle progression in Plasmodium spp.
Collapse
|
28
|
Targeting histone acetylation/deacetylation in parasites: an update (2017–2020). Curr Opin Chem Biol 2020; 57:65-74. [DOI: 10.1016/j.cbpa.2020.05.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 05/21/2020] [Accepted: 05/27/2020] [Indexed: 12/22/2022]
|
29
|
Hoeijmakers WAM, Miao J, Schmidt S, Toenhake CG, Shrestha S, Venhuizen J, Henderson R, Birnbaum J, Ghidelli-Disse S, Drewes G, Cui L, Stunnenberg HG, Spielmann T, Bártfai R. Epigenetic reader complexes of the human malaria parasite, Plasmodium falciparum. Nucleic Acids Res 2020; 47:11574-11588. [PMID: 31728527 PMCID: PMC7145593 DOI: 10.1093/nar/gkz1044] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 10/09/2019] [Accepted: 10/22/2019] [Indexed: 12/16/2022] Open
Abstract
Epigenetic regulatory mechanisms are central to the development and survival of all eukaryotic organisms. These mechanisms critically depend on the marking of chromatin domains with distinctive histone tail modifications (PTMs) and their recognition by effector protein complexes. Here we used quantitative proteomic approaches to unveil interactions between PTMs and associated reader protein complexes of Plasmodium falciparum, a unicellular parasite causing malaria. Histone peptide pull-downs with the most prominent and/or parasite-specific PTMs revealed the binding preference for 14 putative and novel reader proteins. Amongst others, they highlighted the acetylation-level-dependent recruitment of the BDP1/BDP2 complex and identified an PhD-finger protein (PHD 1, PF3D7_1008100) that could mediate a cross-talk between H3K4me2/3 and H3K9ac marks. Tagging and interaction proteomics of 12 identified proteins unveiled the composition of 5 major epigenetic complexes, including the elusive TBP-associated-factor complex as well as two distinct GCN5/ADA2 complexes. Furthermore, it has highlighted a remarkable degree of interaction between these five (sub)complexes. Collectively, this study provides an extensive inventory of PTM-reader interactions and composition of epigenetic complexes. It will not only fuel further explorations of gene regulation amongst ancient eukaryotes, but also provides a stepping stone for exploration of PTM-reader interactions for antimalarial drug development.
Collapse
Affiliation(s)
| | - Jun Miao
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.,Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA
| | - Sabine Schmidt
- Molecular Biology and Immunology Section, Bernhard Nocht Institute for Tropical Medicine, Hamburg D-20359, Germany
| | | | - Sony Shrestha
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA
| | - Jeron Venhuizen
- Department of Molecular Biology, Radboud University, Nijmegen 6525 GA, the Netherlands
| | - Rob Henderson
- Department of Molecular Biology, Radboud University, Nijmegen 6525 GA, the Netherlands.,TropIQ Health Sciences, Nijmegen 6534 AT, the Netherlands
| | - Jakob Birnbaum
- Molecular Biology and Immunology Section, Bernhard Nocht Institute for Tropical Medicine, Hamburg D-20359, Germany
| | | | - Gerard Drewes
- Cellzome GmbH, a GlaxoSmithKline Company, Heidelberg 69117, Germany
| | - Liwang Cui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.,Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA
| | - Hendrik Gerard Stunnenberg
- Department of Molecular Biology, Radboud University, Nijmegen 6525 GA, the Netherlands.,Princess Maxima Center for Pediatric Oncology, Utrecht 3584CS, the Netherlands
| | - Tobias Spielmann
- Molecular Biology and Immunology Section, Bernhard Nocht Institute for Tropical Medicine, Hamburg D-20359, Germany
| | - Richárd Bártfai
- Department of Molecular Biology, Radboud University, Nijmegen 6525 GA, the Netherlands
| |
Collapse
|
30
|
|
31
|
Histone deacetylase inhibitors with high in vitro activities against Plasmodium falciparum isolates collected from Gabonese children and adults. Sci Rep 2019; 9:17336. [PMID: 31758015 PMCID: PMC6874535 DOI: 10.1038/s41598-019-53912-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 11/04/2019] [Indexed: 01/25/2023] Open
Abstract
Histone deacetylase (HDAC) enzymes are targets for the development of antimalarial drugs with a different mode of action to established antimalarials. Broad-spectrum HDAC-inhibitors show high potency against Plasmodium falciparum, but displayed some toxicity towards human cells. Inhibitors of human HDAC6 are new drug candidates with supposed reduced toxicity to human cells and favorable activities against laboratory P. falciparum strains. We investigated the potency of 12 peptoid-based HDAC-inhibitors against asexual stages of P. falciparum clinical isolates. Parasites representing different genetic backgrounds were isolated from adults and children with uncomplicated malaria in Gabon. Clinical studies on (non-HDAC-inhibitors) antimalarials, moreover, found lower drug efficacy in children, mainly attributed to acquired immunity with age in endemic areas. Therefore, we compared the in vitro sensitivity profiles of adult- and child-derived isolates to antimalarials (HDAC and standard drugs). All HDAC-inhibitors showed 50% inhibitory concentrations at nanomolar ranges with higher activities than the FDA approved reference HDAC-inhibitor SAHA. We propose peptoid-based HDAC6-inhibitors to be lead structures for further development as antimalarial chemotherapeutics. Our results further suggest no differences in activity of the tested antimalarials between P. falciparum parasites isolated from children and adults.
Collapse
|
32
|
Mackwitz MKW, Hesping E, Antonova-Koch Y, Diedrich D, Woldearegai TG, Skinner-Adams T, Clarke M, Schöler A, Limbach L, Kurz T, Winzeler EA, Held J, Andrews KT, Hansen FK. Structure-Activity and Structure-Toxicity Relationships of Peptoid-Based Histone Deacetylase Inhibitors with Dual-Stage Antiplasmodial Activity. ChemMedChem 2019; 14:912-926. [PMID: 30664827 PMCID: PMC6502651 DOI: 10.1002/cmdc.201800808] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Indexed: 12/17/2022]
Abstract
Novel malaria intervention strategies are of great importance, given the development of drug resistance in malaria-endemic countries. In this regard, histone deacetylases (HDACs) have emerged as new and promising malaria drug targets. In this work, we present the design, synthesis, and biological evaluation of 20 novel HDAC inhibitors with antiplasmodial activity. Based on a previously discovered peptoid-based hit compound, we modified all regions of the peptoid scaffold by using a one-pot multicomponent pathway and submonomer routes to gain a deeper understanding of the structure-activity and structure-toxicity relationships. Most compounds displayed potent activity against asexual blood-stage P. falciparum parasites, with IC50 values in the range of 0.0052-0.25 μm and promising selectivity over mammalian cells (SIPf3D7/HepG2 : 170-1483). In addition, several compounds showed encouraging sub-micromolar activity against P. berghei exo-erythrocytic forms (PbEEF). Our study led to the discovery of the hit compound N-(2-(benzylamino)-2-oxoethyl)-N-(4-(hydroxycarbamoyl)benzyl)-4-isopropylbenzamide (2 h) as a potent and parasite-specific dual-stage antiplasmodial HDAC inhibitor (IC50 Pf3D7=0.0052 μm, IC50 PbEEF=0.016 μm).
Collapse
Affiliation(s)
- Marcel K W Mackwitz
- Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Medical Faculty, Leipzig University, Brüderstraße 34, 04103, Leipzig, Germany
| | - Eva Hesping
- Griffith Institute for Drug Discovery, Griffith University, Don Young Road, Nathan, QLD, 4111, Australia
| | - Yevgeniya Antonova-Koch
- Department of Pediatrics, School of Medicine, University of California, San Diego, 9500 Gilman Drive 0741, La Jolla, CA, 92093, USA
| | - Daniela Diedrich
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
| | - Tamirat Gebru Woldearegai
- Institut für Tropenmedizin, Eberhard Karls Universität Tübingen, Wilhelmstraße 27, 72074, Tübingen, Germany
| | - Tina Skinner-Adams
- Griffith Institute for Drug Discovery, Griffith University, Don Young Road, Nathan, QLD, 4111, Australia
| | - Mary Clarke
- Griffith Institute for Drug Discovery, Griffith University, Don Young Road, Nathan, QLD, 4111, Australia
| | - Andrea Schöler
- Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Medical Faculty, Leipzig University, Brüderstraße 34, 04103, Leipzig, Germany
| | - Laura Limbach
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
| | - Thomas Kurz
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
| | - Elizabeth A Winzeler
- Department of Pediatrics, School of Medicine, University of California, San Diego, 9500 Gilman Drive 0741, La Jolla, CA, 92093, USA
| | - Jana Held
- Institut für Tropenmedizin, Eberhard Karls Universität Tübingen, Wilhelmstraße 27, 72074, Tübingen, Germany
| | - Katherine T Andrews
- Griffith Institute for Drug Discovery, Griffith University, Don Young Road, Nathan, QLD, 4111, Australia
| | - Finn K Hansen
- Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Medical Faculty, Leipzig University, Brüderstraße 34, 04103, Leipzig, Germany
| |
Collapse
|
33
|
Abstract
Eukaryotic pathogens must survive in different hosts, respond to changing environments, and exploit specialized niches to propagate. Plasmodium parasites cause human malaria during bloodstream infections, where they must persist long enough to be transmitted. Parasites have evolved diverse strategies of variant gene expression that control critical biological processes of blood-stage infections, including antigenic variation, erythrocyte invasion, innate immune evasion, and nutrient acquisition, as well as life-cycle transitions. Epigenetic mechanisms within the parasite are being elucidated, with discovery of epigenomic marks associated with gene silencing and activation, and the identification of epigenetic regulators and chromatin proteins that are required for the switching and maintenance of gene expression. Here, we review the key epigenetic processes that facilitate transition through the parasite life cycle and epigenetic regulatory mechanisms utilized by Plasmodium parasites to survive changing environments and consider epigenetic switching in the context of the outcome of human infections.
Collapse
Affiliation(s)
- Manoj T Duraisingh
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA; ,
| | - Kristen M Skillman
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA; ,
| |
Collapse
|