1
|
Feng J, Ye H, Lu C, Pan L, Chen H, Zhu L, Chen X. Application of protein engineering to ene-reductase for the synthesis of chiral compounds through asymmetric reaction. Crit Rev Biotechnol 2025; 45:665-682. [PMID: 39134447 DOI: 10.1080/07388551.2024.2382957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 07/01/2024] [Accepted: 07/09/2024] [Indexed: 04/17/2025]
Abstract
Ene-reductase (ER) has been widely applied for asymmetrical synthesis of chiral intermediates due to its substrate promiscuity, photoexcited reactivity, and excellent property with producing two chiral centers at a time. Natural ERs often exhibit the same stereoselectivity, and they need to be engineered for opposite configuration of chiral compounds. The hydrogenation process toward activated alkenes by ERs is composed of reductive half reaction and oxidative half reaction, which are dependent upon two cofactors NAD(P)H and flavin mononucleotide. The catalytic activity of ERs will be affected by the size of the substrate, the activating strength of the electron-withdrawing groups, redox potential of cofactors, and the loop flexibility around catalytic cavity. Currently, protein engineering to ERs has been successfully employed to enhance various catalytic properties, including photoexcited asymmetric synthesis. This review summarizes the approaches to reverse the stereoselectivity and enhance catalytic activity of ERs and new applications of the engineered ERs in photobiocatalytic asymmetric synthesis, besides the discussion with the existing molecular mechanisms of mutants regarding the improved catalytic performance.
Collapse
Affiliation(s)
- Jiacheng Feng
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou, China
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Huiru Ye
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou, China
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Changxin Lu
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou, China
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Linyan Pan
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou, China
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Hanchi Chen
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou, China
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Linjiang Zhu
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou, China
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Xiaolong Chen
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou, China
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
2
|
Kerschbaumer B, Totaro MG, Friess M, Breinbauer R, Bijelic A, Macheroux P. Loop 6 and the β-hairpin flap are structural hotspots that determine cofactor specificity in the FMN-dependent family of ene-reductases. FEBS J 2024; 291:1560-1574. [PMID: 38263933 DOI: 10.1111/febs.17055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/04/2023] [Accepted: 01/08/2024] [Indexed: 01/25/2024]
Abstract
Flavin mononucleotide (FMN)-dependent ene-reductases constitute a large family of oxidoreductases that catalyze the enantiospecific reduction of carbon-carbon double bonds. The reducing equivalents required for substrate reduction are obtained from reduced nicotinamide by hydride transfer. Most ene-reductases significantly prefer, or exclusively accept, either NADPH or NADH. Despite their usefulness in biocatalytic applications, the structural determinants for cofactor preference remain elusive. We employed the NADPH-preferring 12-oxophytodienoic acid reductase 3 from Solanum lycopersicum (SlOPR3) as a model enzyme of the ene-reductase family and applied computational and structural methods to investigate the binding specificity of the reducing coenzymes. Initial docking results indicated that the arginine triad R283, R343, and R366 residing on and close to a critical loop at the active site (loop 6) are the main contributors to NADPH binding. In contrast, NADH binds unfavorably in the opposite direction toward the β-hairpin flap within a largely hydrophobic region. Notably, the crystal structures of SlOPR3 in complex with either NADPH4 or NADH4 corroborated these different binding modes. Molecular dynamics simulations confirmed NADH binding near the β-hairpin flap and provided structural explanations for the low binding affinity of NADH to SlOPR3. We postulate that cofactor specificity is determined by the arginine triad/loop 6 and the residue(s) controlling access to a hydrophobic cleft formed by the β-hairpin flap. Thus, NADPH preference depends on a properly positioned arginine triad, whereas granting access to the hydrophobic cleft at the β-hairpin flap favors NADH binding.
Collapse
Affiliation(s)
| | - Massimo G Totaro
- Institute of Biochemistry, Graz University of Technology, Austria
| | - Michael Friess
- Institute of Organic Chemistry, Graz University of Technology, Austria
| | - Rolf Breinbauer
- Institute of Organic Chemistry, Graz University of Technology, Austria
| | | | - Peter Macheroux
- Institute of Biochemistry, Graz University of Technology, Austria
| |
Collapse
|
3
|
Libardi SH, Ahmad A, Ferreira FB, Oliveira RJ, Caruso ÍP, Melo FA, de Albuquerque S, Cardoso DR, Burtoloso ACB, Borges JC. Interaction between diterpene icetexanes and old yellow enzymes of Leishmania braziliensis and Trypanosoma cruzi. Int J Biol Macromol 2024; 259:129192. [PMID: 38216013 DOI: 10.1016/j.ijbiomac.2023.129192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 12/21/2023] [Accepted: 12/31/2023] [Indexed: 01/14/2024]
Abstract
Old Yellow Enzymes (OYEs) are flavin-dependent redox enzymes that promote the asymmetric reduction of activated alkenes. Due to the high importance of flavoenzymes in the metabolism of organisms, the interaction between OYEs from the parasites Trypanosoma cruzi and Leishmania braziliensis and three diterpene icetexanes (brussonol and two analogs), were evaluated in the present study, and differences in the binding mechanism and inhibition capacity of these molecules were examined. Although the aforementioned compounds showed poor and negligible activities against T. cruzi and L. braziliensis cells, respectively, the experiments with the purified enzymes indicated that the interaction occurs by divergent mechanisms. Overall, the ligands' inhibitory effect depends on their accessibility to the N5 position of the flavin's isoalloxazine ring. The results also indicated that the OYEs found in both parasites share structural similarities and showed affinities for the diterpene icetexanes in the same range. Nevertheless, the interaction between OYEs and ligands is directed by enthalpy and/or entropy in distinct ways. In conclusion, the binding site of both OYEs exhibits remarkable plasticity, and a large range of different molecules, including that can be substrates and inhibitors, can bind this site. This plasticity should be considered in drug design using OYE as a target.
Collapse
Affiliation(s)
- Silvia H Libardi
- Instituto de Química de São Carlos, Universidade de São Paulo - USP, 13560-970 São Carlos, SP, Brazil
| | - Anees Ahmad
- Instituto de Química de São Carlos, Universidade de São Paulo - USP, 13560-970 São Carlos, SP, Brazil
| | | | - Ronaldo J Oliveira
- Instituto de Ciências Exatas, Naturais e Educação, Universidade Federal do Triângulo Mineiro, 38064-200 Uberaba, MG, Brazil
| | - Ícaro P Caruso
- Instituto de Biociências, Letras e Ciências Exatas (IBILCE) - UNESP, 15054-000 São José do Rio Preto, SP, Brazil; Instituto de Bioquímica Médica Leopoldo de Meis and Centro Nacional para Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Fernando A Melo
- Instituto de Biociências, Letras e Ciências Exatas (IBILCE) - UNESP, 15054-000 São José do Rio Preto, SP, Brazil
| | - Sergio de Albuquerque
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo - USP, Ribeirão Preto, SP CEP 14040-903, Brazil
| | - Daniel R Cardoso
- Instituto de Química de São Carlos, Universidade de São Paulo - USP, 13560-970 São Carlos, SP, Brazil
| | - Antonio C B Burtoloso
- Instituto de Química de São Carlos, Universidade de São Paulo - USP, 13560-970 São Carlos, SP, Brazil
| | - Júlio C Borges
- Instituto de Química de São Carlos, Universidade de São Paulo - USP, 13560-970 São Carlos, SP, Brazil.
| |
Collapse
|
4
|
Ma W, Li F, Li L, Li B, Niu K, Liu Q, Han L, Han L, Fang X. Production of D -tagatose, bioethanol, and microbial protein from the dairy industry by-product whey powder using an integrated bioprocess. Biotechnol J 2024; 19:e2300415. [PMID: 38375553 DOI: 10.1002/biot.202300415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/08/2023] [Accepted: 12/19/2023] [Indexed: 02/21/2024]
Abstract
We designed and constructed a green and sustainable bioprocess to efficiently coproduce D -tagatose, bioethanol, and microbial protein from whey powder. First, a one-pot biosynthesis process involving lactose hydrolysis and D -galactose redox reactions for D -tagatose production was established in vitro via a three-enzyme cascade. Second, a nicotinamide adenine dinucleotide phosphate-dependent galactitol dehydrogenase mutant, D36A/I37R, based on the nicotinamide adenine dinucleotide-dependent polyol dehydrogenase from Paracoccus denitrificans was created through rational design and screening. Moreover, an NADPH recycling module was created in the oxidoreductive pathway, and the tagatose yield increased by 3.35-fold compared with that achieved through the pathway without the cofactor cycle. The reaction process was accelerated using an enzyme assembly with a glycine-serine linker, and the tagatose production rate was 9.28-fold higher than the initial yield. Finally, Saccharomyces cerevisiae was introduced into the reaction solution, and 266.5 g of D -tagatose, 162.6 g of bioethanol, and 215.4 g of dry yeast (including 38% protein) were obtained from 1 kg of whey powder (including 810 g lactose). This study provides a promising sustainable process for functional food (D -tagatose) production. Moreover, this process fully utilized whey powder, demonstrating good atom economy.
Collapse
Affiliation(s)
- Wei Ma
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China
| | - Fengyi Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China
| | - Longyue Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China
| | - Bin Li
- Shandong Henglu Biotechnology Co., Ltd., Jinan, Shandong, China
| | - Kangle Niu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China
| | - Qinghua Liu
- Shandong Henglu Biotechnology Co., Ltd., Jinan, Shandong, China
| | - Laichuang Han
- School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Lijuan Han
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China
| | - Xu Fang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China
- Rongcheng Huihai Chuangda Biotechnology Co., Ltd., Weihai, Shandong, China
| |
Collapse
|
5
|
Long Z, Li K, Xue Y, Sun Y, Li J, Su Z, Sun J, Liu Q, Liu H, Wei T. Purification and biochemical characterization of a novel ene- reductase from Kazachstania exigua HSC6 for dihydro-β-ionone from β-ionone. Biotechnol Lett 2023; 45:499-508. [PMID: 36738355 DOI: 10.1007/s10529-023-03355-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/14/2022] [Accepted: 01/13/2023] [Indexed: 02/05/2023]
Abstract
PURPOSE We purified and characterized a novel ene-reductase (KaDBR1) from Kazachstania exigua HSC6 for the synthesis of dihydro-β-ionone from β-ionone. METHODS KaDBR1 was purified to homogeneity by ammonium sulfate precipitation and phenyl-Sepharose Fast Flow and Q-Sepharose chromatography. The purified enzyme was characterized by measuring the amount of dihydro-β-ionone from β-ionone with LC-MS analysis method. RESULTS The molecular mass of KaDBR1 was estimated to be 45 kDa by SDS-PAGE. The purified KaDBR1 enzyme had optimal activity at 60 °C and pH 6.0. The addition of 5 mM Mg2+, Ca2+, Al3+, Na+, and dithiothreitol increased the activity of KaDBR1 by 25%, 18%, 34%, 20%, and 23%, respectively. KaDBR1 favored NADH over NADPH as a cofactor, and its catalytic efficiency (kcat/Km) toward β-ionone using NADH was 8.1-fold greater than when using NADPH. CONCLUSION Owing to its unique properties, KaDBR1 is a potential candidate for the enzymatic biotransformation of β-ionone to dihydro-β-ionone in biotechnology applications.
Collapse
Affiliation(s)
- Zhangde Long
- China Tobacco Guangxi Industrial Co., Ltd., Nanning, 530001, China
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, 5 Dongfeng Rd, Zhengzhou, 450002, China
| | - Kena Li
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, 5 Dongfeng Rd, Zhengzhou, 450002, China
| | - Yun Xue
- China Tobacco Guangxi Industrial Co., Ltd., Nanning, 530001, China
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, 5 Dongfeng Rd, Zhengzhou, 450002, China
| | - Yongwei Sun
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, 5 Dongfeng Rd, Zhengzhou, 450002, China
| | - Jigang Li
- China Tobacco Guangxi Industrial Co., Ltd., Nanning, 530001, China
| | - Zan Su
- China Tobacco Guangxi Industrial Co., Ltd., Nanning, 530001, China
| | - Jiansheng Sun
- China Tobacco Guangxi Industrial Co., Ltd., Nanning, 530001, China
| | - Qibin Liu
- China Tobacco Guangxi Industrial Co., Ltd., Nanning, 530001, China
| | - Hong Liu
- China Tobacco Guangxi Industrial Co., Ltd., Nanning, 530001, China
| | - Tao Wei
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, 5 Dongfeng Rd, Zhengzhou, 450002, China.
| |
Collapse
|
6
|
Li Y, Luan P, Dong L, Liu J, Jiang L, Bai J, Liu F, Jiang Y. Asymmetric reduction of conjugated C C bonds by immobilized fusion of old yellow enzyme and glucose dehydrogenase. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
7
|
Engineering the Activity of Old Yellow Enzyme NemR-PS for Efficient Reduction of (E/Z)-Citral to (S)-Citronellol. Catalysts 2022. [DOI: 10.3390/catal12060631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The cascade catalysis of old yellow enzyme, alcohol dehydrogenase and glucose dehydrogenase has become a promising approach for one pot, two-step reduction of (E/Z)-citral to (S)-citronellol, serving as a chiral alcohol with rose fragrance. During the multi-enzymatic cascade catalysis, old yellow enzyme is responsible for the reduction of the conjugated C=C and the introduction of the chiral center, requiring high activity and (S)-enantioselectiviy. Herein, to improve the activity of the old yellow enzyme from Providencia stuartii (NemR-PS) with strict (S)-enantioselectivity, the semi-rational design on its substrate binding pocket was performed through a combination of homology modeling, molecular docking analysis, alanine scanning and iterative saturation mutagenesis. The NemR-PS variant D275G/F351A with improved activity was obtained and then purified for characterization, obeying the substrate inhibition kinetics. Compared with the wild type, the parameters Ki and Kcat/Km were increased from 39.79 mM and 2.09 s−1mM−1 to 128.50 mM and 5.01 s−1mM−1, respectively. Moreover, the variant D275G/F351A maintained strict (S)-enantioselectivity, avoiding the trade-off effect between activity and enantioselectivity. Either the enzyme NemR-PS or the variant D275G/F351A was co-expressed with alcohol dehydrogenase from Yokenella sp. WZY002 (YsADH) and glucose dehydrogenase from Bacillus megaterium (BmGDHM6). In contrast to the whole-cell biocatalyst co-expressing NemR-PS, that co-expressing the variant D275G/F351A shortened the reaction time from 36 h to 12 h in the reduction of 400 mM (E/Z)-citral. In the manner of substrate constant feeding, the accumulated product concentration reached up to 500 mM and completely eliminate the residual intermediate and by-product, suggesting the effectiveness of protein engineering and substrate engineering to improve catalytic efficiency.
Collapse
|
8
|
Hollmann F, Opperman DJ, Paul CE. Biocatalytic Reduction Reactions from a Chemist's Perspective. Angew Chem Int Ed Engl 2021; 60:5644-5665. [PMID: 32330347 PMCID: PMC7983917 DOI: 10.1002/anie.202001876] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Indexed: 11/09/2022]
Abstract
Reductions play a key role in organic synthesis, producing chiral products with new functionalities. Enzymes can catalyse such reactions with exquisite stereo-, regio- and chemoselectivity, leading the way to alternative shorter classical synthetic routes towards not only high-added-value compounds but also bulk chemicals. In this review we describe the synthetic state-of-the-art and potential of enzymes that catalyse reductions, ranging from carbonyl, enone and aromatic reductions to reductive aminations.
Collapse
Affiliation(s)
- Frank Hollmann
- Department of BiotechnologyDelft University of TechnologyVan der Maasweg 92629 HZDelftThe Netherlands
- Department of BiotechnologyUniversity of the Free State205 Nelson Mandela DriveBloemfontein9300South Africa
| | - Diederik J. Opperman
- Department of BiotechnologyUniversity of the Free State205 Nelson Mandela DriveBloemfontein9300South Africa
| | - Caroline E. Paul
- Department of BiotechnologyDelft University of TechnologyVan der Maasweg 92629 HZDelftThe Netherlands
| |
Collapse
|
9
|
Hollmann F, Opperman DJ, Paul CE. Biokatalytische Reduktionen aus der Sicht eines Chemikers. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001876] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Frank Hollmann
- Department of Biotechnology Delft University of Technology Van der Maasweg 9 2629 HZ Delft Niederlande
- Department of Biotechnology University of the Free State 205 Nelson Mandela Drive Bloemfontein 9300 Südafrika
| | - Diederik J. Opperman
- Department of Biotechnology University of the Free State 205 Nelson Mandela Drive Bloemfontein 9300 Südafrika
| | - Caroline E. Paul
- Department of Biotechnology Delft University of Technology Van der Maasweg 9 2629 HZ Delft Niederlande
| |
Collapse
|
10
|
Böhmer S, Marx C, Gómez-Baraibar Á, Nowaczyk MM, Tischler D, Hemschemeier A, Happe T. Evolutionary diverse Chlamydomonas reinhardtii Old Yellow Enzymes reveal distinctive catalytic properties and potential for whole-cell biotransformations. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101970] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Hardman SJO, Iorgu AI, Heyes DJ, Scrutton NS, Sazanovich IV, Hay S. Ultrafast Vibrational Energy Transfer between Protein and Cofactor in a Flavoenzyme. J Phys Chem B 2020; 124:5163-5168. [PMID: 32496802 PMCID: PMC7467709 DOI: 10.1021/acs.jpcb.0c04929] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Indexed: 01/19/2023]
Abstract
Protein motions and enzyme catalysis are often linked. It is hypothesized that ultrafast vibrations (femtosecond-picosecond) enhance the rate of hydride transfer catalyzed by members of the old yellow enzyme (OYE) family of ene-reductases. Here, we use time-resolved infrared (TRIR) spectroscopy in combination with stable "heavy" isotopic labeling (2H, 13C, 15N) of protein and/or cofactor to probe the vibrational energy transfer (VET) between pentaerythritol tetranitrate reductase (a member of the OYE family) and its noncovalently bound flavin mononucleotide (FMN) cofactor. We show that when the FMN cofactor is photoexcited with visible light, vibrational energy is transferred from the flavin to the surrounding protein environment on the picosecond timescale. This finding expands the scope of VET investigation in proteins, which are limited by suitable intrinsic probes, and may have implications in the understanding of the mechanism of recently discovered photoactive flavoenzymes.
Collapse
Affiliation(s)
- Samantha J. O. Hardman
- Manchester Institute
of Biotechnology and Department of Chemistry, Faculty of Science and
Engineering, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Andreea I. Iorgu
- Manchester Institute
of Biotechnology and Department of Chemistry, Faculty of Science and
Engineering, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Derren J. Heyes
- Manchester Institute
of Biotechnology and Department of Chemistry, Faculty of Science and
Engineering, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Nigel S. Scrutton
- Manchester Institute
of Biotechnology and Department of Chemistry, Faculty of Science and
Engineering, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Igor V. Sazanovich
- Central Laser Facility, Research Complex
at Harwell, Science and Technology Facilities
Council, Harwell Oxford, Didcot OX11 0QX, United Kingdom
| | - Sam Hay
- Manchester Institute
of Biotechnology and Department of Chemistry, Faculty of Science and
Engineering, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|