1
|
Jin F, Wei X, Liu Y, Tang L, Ren J, Yang J, Lin C, Hu J, Sun M, Li G, Yuan Z, Zhao W, Wang X, Yang Z, Zhang L. Engineered cell membrane vesicles loaded with lysosomophilic drug for acute myeloid leukemia therapy via organ-cell-organelle cascade-targeting. Biomaterials 2025; 317:123091. [PMID: 39778270 DOI: 10.1016/j.biomaterials.2025.123091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 12/07/2024] [Accepted: 01/02/2025] [Indexed: 01/11/2025]
Abstract
Acute myeloid leukemia (AML) presents significant treatment challenges due to the severe toxicities and limited efficacy of conventional therapies, highlighting the urgency for innovative approaches. Organelle-targeting therapies offer a promising avenue to enhance therapeutic outcomes while minimizing adverse effects. Herein, inspired that primary AML cells are enriched with lysosomes and sensitive to lysosomophilic drugs (e.g., LLOMe), we developed a smart nanodrug (Cas-CMV@LM) including the engineered cell membrane vesicles (CMVs) nanocarrier and the encapsulated drug cargo LLOMe (LM). Briefly, the nanodrug with organ-cell-organelle cascade-targeting function could firstly home to the bone marrow guided by CMVs derived from CXCR4-overexpressing bone marrow mesenchymal stem cells (BMSC), subsequently target leukemia cells via CD33 and CD123 aptamers anchored on the vesicles, eventually precisely attack the lysosomes of leukemia cells. Consequently, Cas-CMV@LM specifically inhibited leukemia cell proliferation and triggered necroptosis in vitro. Importantly, the cascade-targeting nanodrug displayed high biosafety and significantly impeded leukemia progression in AML patient-derived xenograft (PDX) model. Collectively, this study provides a paradigm for precision leukemia treatment from the perspective of targeting organelle-lysosome.
Collapse
Affiliation(s)
- Fangfang Jin
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Xingyu Wei
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Yongcan Liu
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Lisha Tang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Jun Ren
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Jing Yang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Can Lin
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Jiayuan Hu
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Minghui Sun
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Genyou Li
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Zihao Yuan
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Wen Zhao
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Xiaozhong Wang
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Zesong Yang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Ling Zhang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
2
|
Zein L, Dietrich M, Balta D, Bader V, Scheuer C, Zellner S, Weinelt N, Vandrey J, Mari MC, Behrends C, Zunke F, Winklhofer KF, Van Wijk SJL. Linear ubiquitination at damaged lysosomes induces local NFKB activation and controls cell survival. Autophagy 2025; 21:1075-1095. [PMID: 39744815 PMCID: PMC12013452 DOI: 10.1080/15548627.2024.2443945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/13/2024] [Accepted: 12/15/2024] [Indexed: 01/21/2025] Open
Abstract
Lysosomes are the major cellular organelles responsible for nutrient recycling and degradation of cellular material. Maintenance of lysosomal integrity is essential for cellular homeostasis and lysosomal membrane permeabilization (LMP) sensitizes toward cell death. Damaged lysosomes are repaired or degraded via lysophagy, during which glycans, exposed on ruptured lysosomal membranes, are recognized by galectins leading to K48- and K63-linked poly-ubiquitination (poly-Ub) of lysosomal proteins followed by recruitment of the macroautophagic/autophagic machinery and degradation. Linear (M1) poly-Ub, catalyzed by the linear ubiquitin chain assembly complex (LUBAC) E3 ligase and removed by OTULIN (OTU deubiquitinase with linear linkage specificity) exerts important functions in immune signaling and cell survival, but the role of M1 poly-Ub in lysosomal homeostasis remains unexplored. Here, we demonstrate that L-leucyl-leucine methyl ester (LLOMe)-damaged lysosomes accumulate M1 poly-Ub in an OTULIN- and K63 Ub-dependent manner. LMP-induced M1 poly-Ub at damaged lysosomes contributes to lysosome degradation, recruits the NFKB (nuclear factor kappa B) modulator IKBKG/NEMO and locally activates the inhibitor of NFKB kinase (IKK) complex to trigger NFKB activation. Inhibition of lysosomal degradation enhances LMP- and OTULIN-regulated cell death, indicating pro-survival functions of M1 poly-Ub during LMP and potentially lysophagy. Finally, we demonstrate that M1 poly-Ub also occurs at damaged lysosomes in primary mouse neurons and induced pluripotent stem cell-derived primary human dopaminergic neurons. Our results reveal novel functions of M1 poly-Ub during lysosomal homeostasis, LMP and degradation of damaged lysosomes, with important implications for NFKB signaling, inflammation and cell death.Abbreviation: ATG: autophagy related; BafA1: bafilomycin A1; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; CRISPR: clustered regularly interspaced short palindromic repeats; CHUK/IKKA: component of inhibitor of nuclear factor kappa B kinase complex; CUL4A-DDB1-WDFY1: cullin 4A-damage specific DNA binding protein 1-WD repeat and FYVE domain containing 1; DGCs: degradative compartments; DIV: days in vitro; DUB: deubiquitinase/deubiquitinating enzyme; ELDR: endo-lysosomal damage response; ESCRT: endosomal sorting complex required for transport; FBXO27: F-box protein 27; GBM: glioblastoma multiforme; IKBKB/IKKB: inhibitor of nuclear factor kappa B kinase subunit beta; IKBKG/NEMO: inhibitor of nuclear factor kappa B kinase regulatory subunit gamma; IKK: inhibitor of NFKB kinase; iPSC: induced pluripotent stem cell; KBTBD7: kelch repeat and BTB domain containing 7; KO: knockout; LAMP1: lysosomal associated membrane protein 1; LCD: lysosomal cell death; LGALS: galectin; LMP: lysosomal membrane permeabilization; LLOMe: L-leucyl-leucine methyl ester; LOP: loperamide; LUBAC: linear ubiquitin chain assembly complex; LRSAM1: leucine rich repeat and sterile alpha motif containing 1; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MTOR: mechanistic target of rapamycin kinase; MTORC1: MTOR complex 1; NBR1: NBR1 autophagy cargo receptor; NFKB/NF-κB: nuclear factor kappa B; NFKBIA/IĸBα: nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor alpha; OPTN: optineurin; ORAS: OTULIN-related autoinflammatory syndrome; OTULIN: OTU deubiquitinase with linear linkage specificity; RING: really interesting new gene; RBR: RING-in-between-RING; PLAA: phospholipase A2 activating protein; RBCK1/HOIL-1: RANBP2-type and C3HC4-type zinc finger containing 1; RNF31/HOIP: ring finger protein 31; SHARPIN: SHANK associated RH domain interactor; SQSTM1/p62: sequestosome 1; SR-SIM: super-resolution-structured illumination microscopy; TAX1BP1: Tax1 binding protein 1; TBK1: TANK binding kinase 1; TH: tyrosine hydroxylase; TNF/TNFα: tumor necrosis factor; TNFRSF1A/TNFR1-SC: TNF receptor superfamily member 1A signaling complex; TRIM16: tripartite motif containing 16; Ub: ubiquitin; UBE2QL1: ubiquitin conjugating enzyme E2 QL1; UBXN6/UBXD1: UBX domain protein 6; VCP/p97: valosin containing protein; WIPI2: WD repeat domain, phosphoinositide interacting 2; YOD1: YOD1 deubiquitinase.
Collapse
Affiliation(s)
- Laura Zein
- Institute for Experimental Pediatric Hematology and Oncology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Marvin Dietrich
- Institute for Experimental Pediatric Hematology and Oncology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Denise Balta
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Verian Bader
- Department of Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Christoph Scheuer
- Institute for Experimental Pediatric Hematology and Oncology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Suzanne Zellner
- Munich Cluster for Systems Neurology (SyNergy), Faculty of Medicine, LMU Munich, München, Germany
| | - Nadine Weinelt
- Institute for Experimental Pediatric Hematology and Oncology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Julia Vandrey
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Muriel C. Mari
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Christian Behrends
- Munich Cluster for Systems Neurology (SyNergy), Faculty of Medicine, LMU Munich, München, Germany
| | - Friederike Zunke
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Konstanze F. Winklhofer
- Department of Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
- Cluster of Excellence RESOLV, Bochum, Germany
| | - Sjoerd J. L. Van Wijk
- Institute for Experimental Pediatric Hematology and Oncology, Goethe University Frankfurt, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK) partner site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany
- University Cancer Centre Frankfurt (UCT), University Hospital Frankfurt, Goethe-University Frankfurt, Frankfurt, Germany
| |
Collapse
|
3
|
Nehme J, Maassen S, Bravaccini S, Zanoni M, Gianni C, De Giorgi U, Soto-Gamez A, Altulea A, Gheorghe T, Wang B, Demaria M. Pharmacological CDK4/6 inhibition promotes vulnerability to lysosomotropic agents in breast cancer. EMBO J 2025; 44:1921-1942. [PMID: 39930269 PMCID: PMC11961731 DOI: 10.1038/s44318-025-00371-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 02/26/2025] Open
Abstract
Breast cancer is a leading cause of mortality worldwide. Pharmacological inhibitors of cyclin-dependent kinases (CDK) 4 and 6 (CDK4/6i) inhibit breast cancer growth by inducing a senescent-like state. However, the long-term treatment efficacy remains limited by the development of drug resistance, so clearance of senescent-like cancer cells may extend the durability of treatment. However, we show here that while CDK4/6i-treated breast cancer cells exhibit various senescence-associated phenotypes, they remain insensitive to common senolytic compounds. By searching for novel vulnerabilities, we identify a significantly increased lysosomal mass and altered lysosomal structure across various breast cancer cell types upon exposure to CDK4/6i in preclinical systems and clinical specimens. We demonstrate that these CDK4/6i-induced lysosomal alterations render breast cancer cells sensitive to lysosomotropic agents, such as L-leucyl-L-leucine methyl ester (LLOMe) and salinomycin. Importantly, sequential treatment with CDK4/6i and lysosomotropic agents effectively reduces the growth of both hormone receptor-positive (HR+) and subsets of triple-negative breast cancer (TNBC) cells in vivo. This sequential therapeutic strategy offers a promising approach to eliminate CDK4/6i-induced senescent(-like) cells, potentially reducing tumor recurrence and enhancing the overall efficacy of breast cancer therapy.
Collapse
Affiliation(s)
- Jamil Nehme
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), University of Groningen (RUG), Groningen, The Netherlands
| | - Sjors Maassen
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), University of Groningen (RUG), Groningen, The Netherlands
| | - Sara Bravaccini
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Michele Zanoni
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Caterina Gianni
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Ugo De Giorgi
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Abel Soto-Gamez
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), University of Groningen (RUG), Groningen, The Netherlands
| | - Abdullah Altulea
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), University of Groningen (RUG), Groningen, The Netherlands
| | - Teodora Gheorghe
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), University of Groningen (RUG), Groningen, The Netherlands
| | - Boshi Wang
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), University of Groningen (RUG), Groningen, The Netherlands.
| | - Marco Demaria
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), University of Groningen (RUG), Groningen, The Netherlands.
| |
Collapse
|
4
|
Rekha RS, Padhi A, Frengen N, Hauenstein J, Végvári Á, Agerberth B, Månsson R, Guðmundsson GH, Bergman P. The di-leucine motif in the host defense peptide LL-37 is essential for initiation of autophagy in human macrophages. Cell Rep 2025; 44:115031. [PMID: 39708316 DOI: 10.1016/j.celrep.2024.115031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 09/16/2024] [Accepted: 11/13/2024] [Indexed: 12/23/2024] Open
Abstract
The human cathelicidin peptide LL-37 induces autophagy in human macrophages. Different post-translational modifications (PTMs) such as citrullination, acetylation, and formylation impact LL-37, yet their effect on autophagy remains unknown. Thus, we set out to study how the cellular source could impact PTM of LL-37 and subsequent effects on autophagy initiation. Neutrophil-released LL-37 failed to induce autophagy, unlike macrophage-released LL-37. Mass spectrometry analysis revealed modifications on neutrophil-derived LL-37, especially at the N terminus, while macrophage-derived LL-37 remained mostly native. Native LL-37 initiated autophagy, while formylated and acetylated versions did not. Truncated peptides lacking the N-terminal di-leucine motif or substituted with di-alanine did not initiate autophagy. Native LL-37 failed to initiate autophagy in macrophages with genetic inactivation of dipeptidyl peptidase-1. An intact N-terminal di-leucine motif in LL-37 was crucial for autophagy initiation, and modifications abrogated the effects. This pathway presents a novel way to regulate the effects of LL-37 in infection or inflammation.
Collapse
Affiliation(s)
- Rokeya Sultana Rekha
- Department of Laboratory Medicine, Division of Clinical Immunology, Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Avinash Padhi
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet, Stockholm, Sweden
| | - Nicolai Frengen
- Department of Laboratory Medicine, Division of Clinical Immunology, Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Julia Hauenstein
- Department of Laboratory Medicine, Division of Clinical Immunology, Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Ákos Végvári
- Division of Chemistry I, Department of Medical Biochemistry & Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Birgitta Agerberth
- Department of Laboratory Medicine, Division of Clinical Immunology, Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Robert Månsson
- Department of Laboratory Medicine, Division of Clinical Immunology, Karolinska Institutet, Huddinge, Stockholm, Sweden; Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden; Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Guðmundur H Guðmundsson
- Department of Laboratory Medicine, Division of Clinical Immunology, Karolinska Institutet, Huddinge, Stockholm, Sweden; Biomedical Center, University of Iceland, Reykjavik, Iceland
| | - Peter Bergman
- Department of Laboratory Medicine, Division of Clinical Immunology, Karolinska Institutet, Huddinge, Stockholm, Sweden; Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
5
|
Rot AE, Hrovatin M, Bokalj B, Lavrih E, Turk B. Cysteine cathepsins: From diagnosis to targeted therapy of cancer. Biochimie 2024; 226:10-28. [PMID: 39245316 DOI: 10.1016/j.biochi.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 08/23/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024]
Abstract
Cysteine cathepsins are a fascinating group of proteolytic enzymes that play diverse and crucial roles in numerous biological processes, both in health and disease. Understanding these proteases is essential for uncovering novel insights into the underlying mechanisms of a wide range of disorders, such as cancer. Cysteine cathepsins influence cancer biology by participating in processes such as extracellular matrix degradation, angiogenesis, immune evasion, and apoptosis. In this comprehensive review, we explore foundational research that illuminates the diverse and intricate roles of cysteine cathepsins as diagnostic markers and therapeutic targets for cancer. This review aims to provide valuable insights into the clinical relevance of cysteine cathepsins and explore their capacity to advance personalised and targeted medical interventions in oncology.
Collapse
Affiliation(s)
- Ana Ercegovič Rot
- Jožef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Matija Hrovatin
- Jožef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Bor Bokalj
- Jožef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Ernestina Lavrih
- Jožef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Boris Turk
- Jožef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000, Ljubljana, Slovenia.
| |
Collapse
|
6
|
Zierke L, John D, Gischke M, Tran QT, Sendler M, Weiss FU, Bornscheuer UT, Ritter C, Lerch MM, Aghdassi AA. Initiation of acute pancreatitis in mice is independent of fusion between lysosomes and zymogen granules. Cell Mol Life Sci 2024; 81:207. [PMID: 38709385 DOI: 10.1007/s00018-024-05247-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/05/2024] [Accepted: 04/20/2024] [Indexed: 05/07/2024]
Abstract
The co-localization of the lysosomal protease cathepsin B (CTSB) and the digestive zymogen trypsinogen is a prerequisite for the initiation of acute pancreatitis. However, the exact molecular mechanisms of co-localization are not fully understood. In this study, we investigated the role of lysosomes in the onset of acute pancreatitis by using two different experimental approaches. Using an acinar cell-specific genetic deletion of the ras-related protein Rab7, important for intracellular vesicle trafficking and fusion, we analyzed the subcellular distribution of lysosomal enzymes and the severity of pancreatitis in vivo and ex vivo. Lysosomal permeabilization was performed by the lysosomotropic agent Glycyl-L-phenylalanine 2-naphthylamide (GPN). Acinar cell-specific deletion of Rab7 increased endogenous CTSB activity and despite the lack of re-distribution of CTSB from lysosomes to the secretory vesicles, the activation of CTSB localized in the zymogen compartment still took place leading to trypsinogen activation and pancreatic injury. Disease severity was comparable to controls during the early phase but more severe at later time points. Similarly, GPN did not prevent CTSB activation inside the secretory compartment upon caerulein stimulation, while lysosomal CTSB shifted to the cytosol. Intracellular trypsinogen activation was maintained leading to acute pancreatitis similar to controls. Our results indicate that initiation of acute pancreatitis seems to be independent of the presence of lysosomes and that fusion of lysosomes and zymogen granules is dispensable for the disease onset. Intact lysosomes rather appear to have protective effects at later disease stages.
Collapse
Affiliation(s)
- Lukas Zierke
- Department of Medicine A, University Medicine Greifswald, Ferdinand-Sauerbruch Str, 17475, Greifswald, Germany
| | - Daniel John
- Department of Medicine A, University Medicine Greifswald, Ferdinand-Sauerbruch Str, 17475, Greifswald, Germany
| | - Marcel Gischke
- Department of Medicine A, University Medicine Greifswald, Ferdinand-Sauerbruch Str, 17475, Greifswald, Germany
| | - Quang Trung Tran
- Department of Medicine A, University Medicine Greifswald, Ferdinand-Sauerbruch Str, 17475, Greifswald, Germany
- Department of Internal Medicine, Hue University, Hue, Vietnam
| | - Matthias Sendler
- Department of Medicine A, University Medicine Greifswald, Ferdinand-Sauerbruch Str, 17475, Greifswald, Germany
| | - Frank Ulrich Weiss
- Department of Medicine A, University Medicine Greifswald, Ferdinand-Sauerbruch Str, 17475, Greifswald, Germany
| | - Uwe T Bornscheuer
- Institute of Biochemistry, Department of Biotechnology & Enzyme Catalysis, University of Greifswald, Greifswald, Germany
| | - Christoph Ritter
- Department of Pharmacy, University of Greifswald, Greifswald, Germany
| | | | - Ali A Aghdassi
- Department of Medicine A, University Medicine Greifswald, Ferdinand-Sauerbruch Str, 17475, Greifswald, Germany.
| |
Collapse
|
7
|
Theodore CJ, Wagner LH, Campellone KG. Autophagosome turnover requires Arp2/3 complex-mediated maintenance of lysosomal integrity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.12.584718. [PMID: 38559247 PMCID: PMC10980047 DOI: 10.1101/2024.03.12.584718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Autophagy is an intracellular degradation process that maintains homeostasis, responds to stress, and plays key roles in the prevention of aging and disease. Autophagosome biogenesis, vesicle rocketing, and autolysosome tubulation are controlled by multiple actin nucleation factors, but the impact of actin assembly on completion of the autophagic pathway is not well understood. Here we studied autophagosome and lysosome remodeling in fibroblasts harboring an inducible knockout (iKO) of the Arp2/3 complex, an essential actin nucleator. Arp2/3 complex ablation resulted in increased basal levels of autophagy receptors and lipidated membrane proteins from the LC3 and GABARAP families. Under both steady-state and starvation conditions, Arp2/3 iKO cells accumulated abnormally high numbers of autolysosomes, suggesting a defect in autophagic flux. The inability of Arp2/3 complex-deficient cells to complete autolysosome degradation and turnover is explained by the presence of damaged, leaky lysosomes. In cells treated with an acute lysosomal membrane-damaging agent, the Arp2/3-activating protein WHAMM is recruited to lysosomes, where Arp2/3 complex-dependent actin assembly is crucial for restoring intact lysosomal structure. These results establish the Arp2/3 complex as a central player late in the canonical autophagy pathway and reveal a new role for the actin nucleation machinery in maintaining lysosomal integrity.
Collapse
Affiliation(s)
- Corey J. Theodore
- Department of Molecular and Cell Biology; University of Connecticut, Storrs CT, USA
- Institute for Systems Genomics; University of Connecticut, Storrs CT, USA
| | - Lianna H. Wagner
- Department of Molecular and Cell Biology; University of Connecticut, Storrs CT, USA
- Institute for Systems Genomics; University of Connecticut, Storrs CT, USA
| | - Kenneth G. Campellone
- Department of Molecular and Cell Biology; University of Connecticut, Storrs CT, USA
- Institute for Systems Genomics; University of Connecticut, Storrs CT, USA
- Center on Aging, UConn Health; University of Connecticut, Storrs CT, USA
| |
Collapse
|
8
|
Tu Z, Zhong J, Li H, Sun L, Huang Y, Yang S, Lu Y, Cai S. Characterization and function analysis of cathepsin C in Marsupenaeusjaponicus. FISH & SHELLFISH IMMUNOLOGY 2024; 146:109379. [PMID: 38242264 DOI: 10.1016/j.fsi.2024.109379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/31/2023] [Accepted: 01/14/2024] [Indexed: 01/21/2024]
Abstract
Cathepsin C is a cysteine protease widely found in invertebrates and vertebrates, and has the important physiological role participating in proteolysis in vivo and activating various functional proteases in immune/inflammatory cells in the animals. In order to study the role of cathepsin C in the disease resistance of shrimp, we cloned cathepsin C gene (MjcathC) from Marsupenaeus japonicus, analyzed its expression patterns in various tissues, performed MjcathC-knockdown, and finally challenged experimental shrimps with Vibrio alginolyticus and WSSV. The results have shown the full length of MjcathC is 1782 bp, containing an open reading frame of 1350 bp encoding 449 amino acids. Homology analysis revealed that the predicted amino acid sequence of MjcathC shared respectively 88.42 %, 87.36 % and 87.58 % similarity with Penaeus monodon, Fenneropenaeus penicillatus and Litopenaeus vannamei. The expression levels of MjcathC in various tissues of healthy M. japonicus are the highest in the liver, followed by the gills and heart, and the lowest in the stomach. The expression levels of MjcathC were significantly up-regulated in all examined tissues of shrimp challenged with WSSV or V. alginolyticus. After knockdown-MjcathC using RNAi technology in M. japonicus, the expression levels of lectin and heat shock protein 70 in MjcathC-knockdown shrimp were significantly down-regulated, and the mortality of MjcathC-knockdown shrimp challenged by WSSV and V. alginolyticus significantly increased. Knockdown of the MjcathC reduced the resistance of M. japonicus to WSSV and V. alginolyticus. The above results have indicated that cathepsin C may play an important role in the antibacterial and antiviral innate immunity of M. japonicus.
Collapse
Affiliation(s)
- Zuhao Tu
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, China
| | | | | | | | - Yucong Huang
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Institute of Guangdong Ocean University, Shenzhen, China
| | - Shiping Yang
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Institute of Guangdong Ocean University, Shenzhen, China
| | - Yishan Lu
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Institute of Guangdong Ocean University, Shenzhen, China
| | - Shuanghu Cai
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Institute of Guangdong Ocean University, Shenzhen, China.
| |
Collapse
|
9
|
Chen Y, Zhu S, Liao T, Wang C, Han J, Yang Z, Lu X, Hu Z, Hu J, Wang X, Gu M, Gao R, Liu K, Liu X, Ding C, Hu S, Liu X. The HN protein of Newcastle disease virus induces cell apoptosis through the induction of lysosomal membrane permeabilization. PLoS Pathog 2024; 20:e1011981. [PMID: 38354122 PMCID: PMC10866534 DOI: 10.1371/journal.ppat.1011981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 01/17/2024] [Indexed: 02/16/2024] Open
Abstract
Lysosomes are acidic organelles that mediate the degradation and recycling of cellular waste materials. Damage to lysosomes can cause lysosomal membrane permeabilization (LMP) and trigger different types of cell death, including apoptosis. Newcastle disease virus (NDV) can naturally infect most birds. Additionally, it serves as a promising oncolytic virus known for its effective infection of tumor cells and induction of intensive apoptotic responses. However, the involvement of lysosomes in NDV-induced apoptosis remains poorly understood. Here, we demonstrate that NDV infection profoundly triggers LMP, leading to the translocation of cathepsin B and D and subsequent mitochondria-dependent apoptosis in various tumor and avian cells. Notably, the released cathepsin B and D exacerbate NDV-induced LMP by inducing the generation of reactive oxygen species. Additionally, we uncover that the viral Hemagglutinin neuraminidase (HN) protein induces the deglycosylation and degradation of lysosome-associated membrane protein 1 (LAMP1) and LAMP2 dependent on its sialidase activity, which finally contributes to NDV-induced LMP and cellular apoptosis. Overall, our findings elucidate the role of LMP in NDV-induced cell apoptosis and provide novel insights into the function of HN during NDV-induced LMP, which provide innovative approaches for the development of NDV-based oncolytic agents.
Collapse
Affiliation(s)
- Yu Chen
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University; Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Shanshan Zhu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University; Yangzhou, Jiangsu, China
| | - Tianxing Liao
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University; Yangzhou, Jiangsu, China
| | - Chunxuan Wang
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University; Yangzhou, Jiangsu, China
| | - Jiajun Han
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University; Yangzhou, Jiangsu, China
| | - Zhenyu Yang
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University; Yangzhou, Jiangsu, China
| | - Xiaolong Lu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University; Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Zenglei Hu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Jiao Hu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University; Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Xiaoquan Wang
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University; Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Min Gu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University; Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Ruyi Gao
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University; Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Kaituo Liu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Xiaowen Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University; Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Chan Ding
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Shunlin Hu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University; Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University; Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| |
Collapse
|
10
|
Zhang Z, Pi R, Jiang Y, Ahmad M, Luo H, Luo J, Yang J, Sun B. Cathepsin B mediates the lysosomal-mitochondrial apoptosis pathway in arsenic-induced microglial cell injury. Hum Exp Toxicol 2023; 42:9603271231172724. [PMID: 37154515 DOI: 10.1177/09603271231172724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Arsenic is a prevalent environmental pollutant that targets the nervous system of living beings. Recent studies indicated that microglial injury could contribute to neuroinflammation and is associated with neuronal damage. Nevertheless, the neurotoxic mechanism underlying the arsenic-induced microglial injury requires additional research. This study explores whether cathepsin B promotes microglia cell damage caused by NaAsO2. Through CCK-8 assay and Annexin V-FITC and PI staining, we discovered that NaAsO2 induced apoptosis in BV2 cells (a microglia cell line). NaAsO2 was verified to increase mitochondrial membrane permeabilization (MMP) and promote the generation of reactive oxygen species (ROS) through JC-1 staining and DCFDA assay, respectively. Mechanically, NaAsO2 was indicated to increase the expression of cathepsin B, which could stimulate pro-apoptotic molecule Bid into the activated form, tBid, and increase lysosomal membrane permeabilization by Immunofluorescence and Western blot assessment. Subsequently, apoptotic signaling downstream of increased mitochondrial membrane permeabilization was activated, promoting caspase activation and microglial apoptosis. Cathepsin B inhibitor CA074-Me could mitigate the damage of microglial. In general, we found that NaAsO2 induced microglia apoptosis and depended on the role of the cathepsin B-mediated lysosomal-mitochondrial apoptosis pathway. Our findings provided new insight into NaAsO2-induced neurological damage.
Collapse
Affiliation(s)
- Zheyu Zhang
- College of Basic Medical, Guizhou Medical University, Guiyang, China
| | - Ruozheng Pi
- College of Basic Medical, Guizhou Medical University, Guiyang, China
| | - Yuheng Jiang
- College of Basic Medical, Guizhou Medical University, Guiyang, China
| | - Mashaal Ahmad
- College of Basic Medical, Guizhou Medical University, Guiyang, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
| | - Heng Luo
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
| | - Jieya Luo
- College of Basic Medical, Guizhou Medical University, Guiyang, China
| | - Jie Yang
- College of Basic Medical, Guizhou Medical University, Guiyang, China
| | - Baofei Sun
- College of Basic Medical, Guizhou Medical University, Guiyang, China
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
| |
Collapse
|
11
|
The Key Role of Lysosomal Protease Cathepsins in Viral Infections. Int J Mol Sci 2022; 23:ijms23169089. [PMID: 36012353 PMCID: PMC9409221 DOI: 10.3390/ijms23169089] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
Cathepsins encompass a family of lysosomal proteases that mediate protein degradation and turnover. Although mainly localized in the endolysosomal compartment, cathepsins are also found in the cytoplasm, nucleus, and extracellular space, where they are involved in cell signaling, extracellular matrix assembly/disassembly, and protein processing and trafficking through the plasma and nuclear membrane and between intracellular organelles. Ubiquitously expressed in the body, cathepsins play regulatory roles in a wide range of physiological processes including coagulation, hormone secretion, immune responses, and others. A dysregulation of cathepsin expression and/or activity has been associated with many human diseases, including cancer, diabetes, obesity, cardiovascular and inflammatory diseases, kidney dysfunctions, and neurodegenerative disorders, as well as infectious diseases. In viral infections, cathepsins may promote (1) activation of the viral attachment glycoproteins and entry of the virus into target cells; (2) antigen processing and presentation, enabling the virus to replicate in infected cells; (3) up-regulation and processing of heparanase that facilitates the release of viral progeny and the spread of infection; and (4) activation of cell death that may either favor viral clearance or assist viral propagation. In this review, we report the most relevant findings on the molecular mechanisms underlying cathepsin involvement in viral infection physiopathology, and we discuss the potential of cathepsin inhibitors for therapeutical applications in viral infectious diseases.
Collapse
|
12
|
Jain V, Bose S, Arya AK, Arif T. Lysosomes in Stem Cell Quiescence: A Potential Therapeutic Target in Acute Myeloid Leukemia. Cancers (Basel) 2022; 14:1618. [PMID: 35406389 PMCID: PMC8996909 DOI: 10.3390/cancers14071618] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/19/2022] [Accepted: 03/21/2022] [Indexed: 12/12/2022] Open
Abstract
Lysosomes are cellular organelles that regulate essential biological processes such as cellular homeostasis, development, and aging. They are primarily connected to the degradation/recycling of cellular macromolecules and participate in cellular trafficking, nutritional signaling, energy metabolism, and immune regulation. Therefore, lysosomes connect cellular metabolism and signaling pathways. Lysosome's involvement in the critical biological processes has rekindled clinical interest towards this organelle for treating various diseases, including cancer. Recent research advancements have demonstrated that lysosomes also regulate the maintenance and hemostasis of hematopoietic stem cells (HSCs), which play a critical role in the progression of acute myeloid leukemia (AML) and other types of cancer. Lysosomes regulate both HSCs' metabolic networks and identity transition. AML is a lethal type of blood cancer with a poor prognosis that is particularly associated with aging. Although the genetic landscape of AML has been extensively described, only a few targeted therapies have been produced, warranting the need for further research. This review summarizes the functions and importance of targeting lysosomes in AML, while highlighting the significance of lysosomes in HSCs maintenance.
Collapse
Affiliation(s)
- Vaibhav Jain
- Abramson Cancer Center, Department of Medicine, 421 Curie Blvd., Philadelphia, PA 19104, USA;
| | - Swaroop Bose
- Department of Dermatology, Mount Sinai Icahn School of Medicine, New York, NY 10029, USA;
| | - Awadhesh K. Arya
- Department of Anesthesiology, Shock, Trauma and Anesthesiology Research Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Tasleem Arif
- Department of Cell, Developmental, and Regenerative Biology, Mount Sinai Icahn School of Medicine, New York, NY 10029, USA
| |
Collapse
|
13
|
Reinheckel T, Tholen M. Low level lysosomal membrane permeabilization for limited release and sub-lethal functions of cathepsin proteases in the cytosol and nucleus. FEBS Open Bio 2022; 12:694-707. [PMID: 35203107 PMCID: PMC8972055 DOI: 10.1002/2211-5463.13385] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/21/2022] [Accepted: 02/15/2022] [Indexed: 11/12/2022] Open
Abstract
For a long time, lysosomes were purely seen as organelles in charge of garbage disposal within the cell. They destroy any cargo delivered into their lumen with a plethora of highly potent hydrolytic enzymes, including various proteases. In case of damage to their limiting membranes, the lysosomes release their soluble content with detrimental outcomes for the cell. In recent years however, this view of the lysosome changed towards acknowledging it as a platform for integration of manifold intra- and extracellular signals. Even impaired lysosomal membrane integrity is no longer considered to be a one-way street to cell death. Increasing evidence suggests that lysosomal enzymes, mainly cathepsin proteases, can be released in a spatially and temporarily restricted manner that is compatible with cellular survival. This way, cathepsins can act in the cytosol and the nucleus, where they affect important cellular processes such as cell division. Here, we review this evidence and discuss the routes and molecular mechanisms by which the cathepsins may reach their unusual destination.
Collapse
Affiliation(s)
- Thomas Reinheckel
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, Albert Ludwigs University, Freiburg, Germany.,German Cancer Consortium (DKTK) Partner Site Freiburg, Freiburg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Center for Biological Signaling Studies BIOSS, Albert Ludwigs University, Freiburg, Germany
| | - Martina Tholen
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, Albert Ludwigs University, Freiburg, Germany
| |
Collapse
|
14
|
Lu F, Gong H, Lei H, Li J. Downregulation of cathepsin C alleviates endothelial cell dysfunction by suppressing p38 MAPK/NF-κB pathway in preeclampsia. Bioengineered 2022; 13:3019-3028. [PMID: 35037834 PMCID: PMC8974117 DOI: 10.1080/21655979.2021.2023994] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Endothelial cell dysfunction is an essential pathophysiological feature of preeclampsia (PE). It has been reported that cathepsin C is upregulated in the maternal vascular endothelium of PE patients. The excessive activation of p38 MAPK leads to various diseases, including PE. NF-κB pathway can promote uteroplacental dysfunction, endothelial stress and development of PE. Moreover, it has been verified that cathepsin C can activate p38 MAPK/NF-κB pathway. In the present work, hypoxia/reoxygenation (H/R) injury model of HUVECs was established to discuss the biological functions of cathepsin C in endothelial cell dysfunction and to elucidate the underlying molecular mechanism. The correlation between cathepsin C and p38 MAPK/NF-κB pathway in H/R-stimulated HUVECs as well as the effects of cathepsin C and p38 MAPK/NF-κB pathway on viability, apoptosis, invasion, in vitro angiogenesis of HUVECs and oxidative stress were assessed. The results revealed that H/R injury elevated cathepsin C expression and activated p38 MAPK/NF-κB pathway in HUVECs and cathepsin C knockdown inhibited the activity of p38 MAPK/NF-κB pathway in H/R-stimulated HUVECs. Downregulation of cathepsin C improved viability, inhibited apoptosis and enhanced invasion of H/R-stimulated HUVECs. In addition, downregulation of cathepsin C alleviated oxidative stress and induced stronger HUVEC angiogenesis in vitro. Furthermore, the protective effects of cathepsin C knockdown against endothelial cell dysfunction were reversed by p38 MAPK activator anisomycin. In other words, downregulation of cathepsin C could improve HUVEC viability and enhance anti-apoptotic capacity, anti-oxidative capability, invasive ability, as well as angiogenic potential of H/R-stimulated HUVECs by repressing p38 MAPK/NF-κB pathway.
Collapse
Affiliation(s)
- Fan Lu
- Department of Obstetrics, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Han Gong
- Department of Obstetrics, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Houkang Lei
- Department of Obstetrics, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Juan Li
- Department of Obstetrics, The Third People's Hospital of Yunnan Province, Kunming, Yunnan, Province, China
| |
Collapse
|
15
|
Knani I, Singh P, Gross-Cohen M, Aviram S, Ilan N, Sanderson RD, Aronheim A, Vlodavsky I. Induction of heparanase 2 (Hpa2) expression by stress is mediated by ATF3. Matrix Biol 2022; 105:17-30. [PMID: 34808335 PMCID: PMC8821145 DOI: 10.1016/j.matbio.2021.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/10/2021] [Accepted: 11/14/2021] [Indexed: 01/03/2023]
Abstract
Activity of heparanase, endoglycosidase that cleaves heparan sulfate side chains in heparan sulfate proteoglycans, is highly implicated in tumor progression and metastasis. Heparanase inhibitors are therefore being evaluated clinically as anti-cancer therapeutics. Heparanase 2 (Hpa2) is a close homolog of heparanase that lacks HS-degrading activity and functions as an endogenous inhibitor of heparanase. As a result, Hpa2 appears to attenuate tumor growth but mechanisms that regulate Hpa2 expression and determine the ratio between heparanase and Hpa2 are largely unknown. We have recently reported that the expression of Hpa2 is induced by endoplasmic reticulum (ER) and proteotoxic stresses, but the mechanism(s) underlying Hpa2 gene regulation was obscure. Here we expand the notion that Hpa2 is regulated by conditions of stress. We report that while ER and hypoxia, each alone, resulted in a 3-7 fold increase in Hpa2 expression, combining ER stress and hypoxia resulted in a noticeable, over 40-fold increase in Hpa2 expression. A prominent induction of Hpa2 expression was also quantified in cells exposed to heat shock, proteotoxic stress, lysosomal stress, and chemotherapy (cisplatin), strongly implying that Hpa2 is regulated by conditions of stress. Furthermore, analyses of the Hpa2 gene promoter led to the identification of activating-transcription-factor 3 (ATF3) as a transcription factor that mediates Hpa2 induction by stress, thus revealing, for the first time, a molecular mechanism that underlies Hpa2 gene regulation. Induction of Hpa2 and ATF3 by conditions of stress that often accompany the rapid expansion of tumors is likely translated to improved survival of cancer patients.
Collapse
Affiliation(s)
- Ibrahim Knani
- Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Preeti Singh
- Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Miriam Gross-Cohen
- Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Sharon Aviram
- Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Neta Ilan
- Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Ralph D Sanderson
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ami Aronheim
- Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Israel Vlodavsky
- Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel,Correspondence should be addressed: Israel Vlodavsky, Technion Integrated Cancer Center, Bruce Rappaport Faculty of Medicine; Technion, P. O. Box 9649, Haifa 31096, Israel,
| |
Collapse
|
16
|
Wallin H, Hunaiti S, Abrahamson M. Externally added cystatin C reduces growth of A375 melanoma cells by increasing cell cycle time. FEBS Open Bio 2021; 11:1645-1658. [PMID: 33837649 PMCID: PMC8167853 DOI: 10.1002/2211-5463.13162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/31/2021] [Accepted: 04/08/2021] [Indexed: 12/21/2022] Open
Abstract
Some secreted cysteine protease inhibitors of the cystatin family appear to affect intracellular proteolysis and growth of human cells, as a result of internalization. Here, we studied the effects of external addition of the most abundant human cystatin, cystatin C, on viability and proliferation of cancer cells in culture. A dose‐dependent decrease in viable cells was seen for A375 melanoma, MCF‐7 breast cancer, and PC‐3 prostate cancer cells cultured in 1–5 µm cystatin C after 24 h. Real‐time assessment of growth rates in A375 cell cultures for 48 h by digital holographic microscopy showed an increased doubling time for cells cultured in the presence of 5 µm cystatin C (20.1 h) compared with control cells (14.7 h). A prolonged doubling time was already observed during the first 12 h, indicating a rapid general decrease in cell proliferation at the population level. Tracking of individual cells in phase holographic images showed that dividing cells incubated with 5 µm cystatin C underwent fewer mitoses during 48 h than control cells. In addition, the time between cell divisions was longer, especially for the first cell cycle. Incubation with the variant W106F‐cystatin C (with high cellular uptake rate) resulted in a lower number of viable cells and a prolonged doubling time than when cells were incubated with wild‐type cystatin C, but no effect was observed for (R24A,R25A)‐cystatin C (low cellular uptake). Thus, cystatin C causes prolonged cell division leading to decreased proliferation of melanoma cells, and internalization seems to be a prerequisite for this effect.
Collapse
Affiliation(s)
- Hanna Wallin
- Division of Clinical Chemistry & Pharmacology, Department of Laboratory Medicine, Lund University, Sweden
| | - Samar Hunaiti
- Division of Clinical Chemistry & Pharmacology, Department of Laboratory Medicine, Lund University, Sweden
| | - Magnus Abrahamson
- Division of Clinical Chemistry & Pharmacology, Department of Laboratory Medicine, Lund University, Sweden
| |
Collapse
|
17
|
Rajput SK, Logsdon DM, Kile B, Engelhorn HJ, Goheen B, Khan S, Swain J, McCormick S, Schoolcraft WB, Yuan Y, Krisher RL. Human eggs, zygotes, and embryos express the receptor angiotensin 1-converting enzyme 2 and transmembrane serine protease 2 protein necessary for severe acute respiratory syndrome coronavirus 2 infection. F&S SCIENCE 2021; 2:33-42. [PMID: 33521687 PMCID: PMC7831752 DOI: 10.1016/j.xfss.2020.12.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/01/2020] [Accepted: 12/18/2020] [Indexed: 02/08/2023]
Abstract
OBJECTIVE To study messenger ribonucleic acid (mRNA) and protein expressions of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) entry receptors (angiotensin 1-converting enzyme 2 [ACE2] and CD147) and proteases (transmembrane serine protease 2 [TMPRSS2] and cathepsin L [CTSL]) in human oocytes, embryos, and cumulus (CCs) and granulosa cells (GCs). DESIGN Research study. SETTING Clinical in vitro fertilization (IVF) treatment center. PATIENTS Patients undergoing IVF were treated at the Colorado Center for Reproductive Medicine. INTERVENTIONS Oocytes (germinal vesicle and metaphase II [MII]) and embryos (1-cell [1C] and blastocyst [BL]) were donated for research at the disposition by the patients undergoing IVF. Follicular cells (CC and GC) were collected from women undergoing egg retrieval after ovarian stimulation without an ovulatory trigger for in vitro maturation/IVF treatment cycles. MAIN OUTCOME MEASURES Presence or absence of ACE2, CD147, TMPRSS2, and CTSL mRNAs detected using quantitative reverse transcription polymerase chain reaction and proteins detected using capillary Western blotting in human oocytes, embryos, and ovarian follicular cells. RESULTS The quantitative reverse transcription polymerase chain reaction analysis revealed high abundance of ACE2 gene transcripts in germinal vesicle and MII oocytes than in CC, GC, and BL. ACE2 protein was present only in the MII oocytes, and 1C and BL embryos, but other ACE2 protein variants were observed in all the samples. TMPRSS2 protein was present in all the samples, whereas mRNA was observed only in the BL stage. All the samples were positive for CD147 and CTSL mRNA expressions. However, CCs and GCs were the only samples that showed coexpression of both CD147 and CTSL proteins in low abundance. CONCLUSIONS CCs and GCs are the least susceptible to SARS-CoV-2 infection because of lack of the required combination of receptors and proteases (ACE2/TMPRSS2 or CD147/CTSL) in high abundance. The coexpression of ACE2 and TMPRSS2 proteins in the MII oocytes, zygotes, and BLs demonstrated that these gametes and embryos have the cellular machinery required and, thus, are potentially susceptible to SARS-CoV-2 infection if exposed to the virus. However, we do not know whether the infection occurs in vivo or in vitro in an assisted reproductive technology setting yet.
Collapse
Affiliation(s)
| | | | - Becca Kile
- Colorado Center for Reproductive Medicine, Lone Tree, Colorado
| | | | - Ben Goheen
- Colorado Center for Reproductive Medicine, Lone Tree, Colorado
| | - Shaihla Khan
- Colorado Center for Reproductive Medicine, Lone Tree, Colorado
| | - Jason Swain
- Colorado Center for Reproductive Medicine, Lone Tree, Colorado
| | - Sue McCormick
- Colorado Center for Reproductive Medicine, Lone Tree, Colorado
| | | | - Ye Yuan
- Colorado Center for Reproductive Medicine, Lone Tree, Colorado
| | - Rebecca L Krisher
- Colorado Center for Reproductive Medicine, Lone Tree, Colorado
- Genus PLC, DeForest, Wisconsin
| |
Collapse
|
18
|
Hu M, Carraway KL. Repurposing Cationic Amphiphilic Drugs and Derivatives to Engage Lysosomal Cell Death in Cancer Treatment. Front Oncol 2020; 10:605361. [PMID: 33425762 PMCID: PMC7793984 DOI: 10.3389/fonc.2020.605361] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 11/13/2020] [Indexed: 12/22/2022] Open
Abstract
A major confounding issue in the successful treatment of cancer is the existence of tumor cell populations that resist therapeutic agents and regimens. While tremendous effort has gone into understanding the biochemical mechanisms underlying resistance to each traditional and targeted therapeutic, a broader approach to the problem may emerge from the recognition that existing anti-cancer agents elicit their cytotoxic effects almost exclusively through apoptosis. Considering the myriad mechanisms cancer cells employ to subvert apoptotic death, an attractive alternative approach would leverage programmed necrotic mechanisms to side-step therapeutic resistance to apoptosis-inducing agents. Lysosomal cell death (LCD) is a programmed necrotic cell death mechanism that is engaged upon the compromise of the limiting membrane of the lysosome, a process called lysosomal membrane permeabilization (LMP). The release of lysosomal components into the cytosol upon LMP triggers biochemical cascades that lead to plasma membrane rupture and necrotic cell death. Interestingly, the process of cellular transformation appears to render the limiting lysosomal membranes of tumor cells more fragile than non-transformed cells, offering a potential therapeutic window for drug development. Here we outline the concepts of LMP and LCD, and discuss strategies for the development of agents to engage these processes. Importantly, the potential exists for existing cationic amphiphilic drugs such as antidepressants, antibiotics, antiarrhythmics, and diuretics to be repurposed to engage LCD within therapy-resistant tumor cell populations.
Collapse
Affiliation(s)
- Michelle Hu
- Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, Sacramento, CA, United States
- UC Davis Comprehensive Cancer Center, UC Davis School of Medicine, Sacramento, CA, United States
| | - Kermit L. Carraway
- Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, Sacramento, CA, United States
- UC Davis Comprehensive Cancer Center, UC Davis School of Medicine, Sacramento, CA, United States
| |
Collapse
|