1
|
Ito W, Holmes A, Morozov A. Fear Synchrony of Mouse Dyads: Interaction of Sex Composition and Stress. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2025; 5:100484. [PMID: 40290195 PMCID: PMC12032872 DOI: 10.1016/j.bpsgos.2025.100484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 02/21/2025] [Accepted: 03/01/2025] [Indexed: 04/30/2025] Open
Abstract
Background Socially coordinated threat responses support a group's survival. Given the distinct social roles of each sex, social coordination can differ between males and females and mixed-sex groups. We investigated how the sex composition of mouse dyads affected one form of social coordination, the synchronization of conditioned freezing, and assessed how emotional state and social context influenced synchronization by exposure to stress and altering the partner's familiarity, respectively. Methods Mice were fear conditioned individually to an auditory stimulus and tested in same- or opposite-sex dyads with familiar or unfamiliar partners. Independent cohorts were tested after 5 minutes of restraint stress or with prefrontal inactivation by muscimol. Time-series data on freezing bouts were used to compute the synchrony index, freezing properties, and state transitions based on a Markov model. Results In same-sex dyads, males exhibited higher synchrony than females. State transition analysis revealed sex-specific synchronization strategies: Males maintained a congruent freezing state primarily by following their partners' state transitions, whereas females did so by reversing their own. Stress disrupted synchrony in males, which was prevented by prefrontal inactivation, while stress enhanced synchrony in females. Partner's unfamiliarity reduced synchrony in males but had no effect on females. Conversely, opposite-sex dyads exhibited high levels of synchrony and a unique resilience to stress and unfamiliarity without preferred synchronization strategies. Conclusions Mice display sex composition-specific synchronization of threat response and its modulation by stress and social context, providing insights into neuropsychiatric disorders characterized by abnormal threat responses in social contexts with same- and opposite-sex groups.
Collapse
Affiliation(s)
- Wataru Ito
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia
- Fralin Biomedical Research Institute at VTC Center for Neurobiology Research, Roanoke, Virginia
| | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Alexei Morozov
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia
- Fralin Biomedical Research Institute at VTC Center for Neurobiology Research, Roanoke, Virginia
- Department of Psychiatry and Behavioral Medicine, Carilion Clinic, Roanoke, Virginia
| |
Collapse
|
2
|
Tao D, Shi C, Song Z, Wen J, Gao Y, Luo Y, Shi H, Huang S. The ventral hippocampus mediates experience-dependent social modulation of fear in rats. Pharmacol Biochem Behav 2025; 252:174016. [PMID: 40280309 DOI: 10.1016/j.pbb.2025.174016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/11/2025] [Accepted: 04/14/2025] [Indexed: 04/29/2025]
Abstract
Fear Conditioning by Proxy (FCbP) is a form of socially mediated fear learning, in which no-conditioned rodents acquire fear memories through social interactions with fear-conditioned rodents. This study investigates the impact of prior similar experiences on the transmission of contextual fear memories in FCbP and explores the role of the ventral hippocampus (vHPC) in the social transmission of fear. Observers were divided into two groups: those with contextual experience (D/O) and those without contextual experience- naïve (O). These rats were exposed to fear-conditioned demonstrators (D) through social interaction, and their responses to fear contexts were observed. Additionally, the effect of vHPC inactivation on fear memory transmission was examined by injecting lidocaine into the vHPC. Fear was transmitted through social interaction among experienced rats but not among naive rats. Furthermore, lidocaine injection into the vHPC inhibited the social transmission of fear memories among experienced rats. This study demonstrates that contextual fear memories can be transmitted through social interaction among experience-dependent rats but not among naive rats. That inactivation in the vHPC blocks the social transmission of contextual fear memories.
Collapse
Affiliation(s)
- Dan Tao
- School of Medicine, Hunan Normal University, Changsha, China; The First-Affiliated Hospital of Hunan Normal University, Hunan Province People's Hospital, Changsha 410081, China
| | - Cuijie Shi
- College of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, China
| | - Zhihao Song
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Jing Wen
- School of Medicine, Hunan Normal University, Changsha, China; The First-Affiliated Hospital of Hunan Normal University, Hunan Province People's Hospital, Changsha 410081, China
| | - Yujun Gao
- Department of Psychiatry, Wuhan Wuchang Hospital, Wuhan University of Science and Technology, Wuhan 430063, China
| | - Yixiao Luo
- School of Medicine, Hunan Normal University, Changsha, China; The First-Affiliated Hospital of Hunan Normal University, Hunan Province People's Hospital, Changsha 410081, China.
| | - Haishui Shi
- Hebei Key Laboratory of Early Life Health Promotion, Shijiazhuang 050017, China; Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang 050017, China.
| | - Shihao Huang
- Department of Neurobiology, School of Basic Medical Sciences, National Institute on Drug Dependence, Peking University, Beijing, China.
| |
Collapse
|
3
|
Ito W, Morozov A. Sex and stress interactions in fear synchrony of mouse dyads. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.09.598132. [PMID: 38915653 PMCID: PMC11195068 DOI: 10.1101/2024.06.09.598132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Socially coordinated threat responses support the survival of animal groups. Given their distinct social roles, males and females must differ in such coordination. Here, we report such differences during the synchronization of auditory-conditioned freezing in mouse dyads. To study the interaction of emotional states with social cues underlying synchronization, we modulated emotional states with prior stress or modified the social cues by pairing unfamiliar or opposite-sex mice. In same-sex dyads, males exhibited more robust synchrony than females. Stress disrupted male synchrony in a prefrontal cortex-dependent manner but enhanced it in females. Unfamiliarity moderately reduced synchrony in males but not in females. In dyads with opposite-sex partners, fear synchrony was resilient to both stress and unfamiliarity. Decomposing the synchronization process in the same-sex dyads revealed sex-specific behavioral strategies correlated with synchrony magnitude: following partners' state transitions in males and retroacting synchrony-breaking actions in females. Those were altered by stress and unfamiliarity. The opposite-sex dyads exhibited no synchrony-correlated strategy. These findings reveal sex-specific adaptations of socio-emotional integration defining coordinated behavior and suggest that sex-recognition circuits confer resilience to stress and unfamiliarity in opposite-sex dyads.
Collapse
Affiliation(s)
- Wataru Ito
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, USA
| | - Alexei Morozov
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, USA
| |
Collapse
|
4
|
López-Molina L, Sancho-Balsells A, Al-Massadi O, Montalban E, Alberch J, Arranz B, Girault JA, Giralt A. Hippocampal Pyk2 regulates specific social skills: Implications for schizophrenia. Neurobiol Dis 2024; 194:106487. [PMID: 38552722 DOI: 10.1016/j.nbd.2024.106487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/14/2024] [Accepted: 03/25/2024] [Indexed: 04/01/2024] Open
Abstract
Pyk2 has been shown previously to be involved in several psychological and cognitive alterations related to stress, Huntington's disease, and Alzheimer's disease. All these disorders are accompanied by different types of impairments in sociability, which has recently been linked to improper mitochondrial function. We hypothesize that Pyk2, which regulates mitochondria, could be associated with the regulation of mitochondrial dynamics and social skills. In the present manuscript, we report that a reduction of Pyk2 levels in mouse pyramidal neurons of the hippocampus decreased social dominance and aggressivity. Furthermore, social interactions induced robust Pyk2-dependent hippocampal changes in several oxidative phosphorylation complexes. We also observed that Pyk2 levels were increased in the CA1 pyramidal neurons of schizophrenic subjects, occurring alongside changes in different direct and indirect regulators of mitochondrial function including DISC1 and Grp75. Accordingly, overexpressing Pyk2 in hippocampal CA1 pyramidal cells mimicked some specific schizophrenia-like social behaviors in mice. In summary, our results indicate that Pyk2 might play a role in regulating specific social skills likely via mitochondrial dynamics and that there might be a link between Pyk2 levels in hippocampal neurons and social disturbances in schizophrenia.
Collapse
Affiliation(s)
- Laura López-Molina
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| | - Anna Sancho-Balsells
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Omar Al-Massadi
- Inserm UMR-S 1270, 75005 Paris, France; Sorbonne Université, Science and Engineering Faculty, 75005 Paris, France; Institut du Fer a Moulin, 75005 Paris, France; Translational Endocrinology Group, Servicio de Endocrinología, Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (IDIS/CHUS), Santiago de Compostela, Spain; CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Spain
| | - Enrica Montalban
- Inserm UMR-S 1270, 75005 Paris, France; Sorbonne Université, Science and Engineering Faculty, 75005 Paris, France; Institut du Fer a Moulin, 75005 Paris, France; UMR 1286, NutriNeuro - INRAE / Université de Bordeaux / INP 146, rue Léo Saignat, 33076 Brodeaux cedex, France
| | - Jordi Alberch
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Faculty of Medicine and Health Science, Production and Validation Center of Advanced Therapies (Creatio), University of Barcelona, Barcelona, Spain
| | - Belén Arranz
- Parc Sanitari Sant Joan de Déu, CIBERSAM, Barcelona, Spain
| | - Jean-Antoine Girault
- Inserm UMR-S 1270, 75005 Paris, France; Sorbonne Université, Science and Engineering Faculty, 75005 Paris, France; Institut du Fer a Moulin, 75005 Paris, France
| | - Albert Giralt
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Faculty of Medicine and Health Science, Production and Validation Center of Advanced Therapies (Creatio), University of Barcelona, Barcelona, Spain.
| |
Collapse
|
5
|
Farias CP, Leite AKO, Schmidt BE, de Carvalho Myskiw J, Wyse ATS. The 5-HT2A, 5-HT5A, and 5-HT6 serotonergic receptors in the medial prefrontal cortex behave differently in extinction learning: Does social support play a role? Behav Brain Res 2024; 463:114922. [PMID: 38408524 DOI: 10.1016/j.bbr.2024.114922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 02/28/2024]
Abstract
Studies on the social modulation of fear have revealed that in social species, individuals in a distressed state show better recovery from aversive experiences when accompanied - referred to as social buffering. However, the underlying mechanisms remain unknown, hindering the understanding of such an approach. Our previous data showed that the presence of a conspecific during the extinction task inhibited the retrieval of fear memory without affecting the extinction memory in the retention test. Here, we investigate the role of serotonergic receptors (5-HTRs), specifically 5-HT2A, 5-HT5A, and 5-HT6 in the medial prefrontal cortex (mPFC), In the retention of extinction after the extinction task, in the absence or presence of social support. Extinction training was conducted on 60-day-old male Wistar rats either alone or with a conspecific (a familiar cagemate, non-fearful). The antagonists for these receptors were administered directly into the mPFC immediately after the extinction training. The results indicate that blocking 5-HT5A (SB-699551-10 μg/side) and 5-HT6 (SB-271046A - 10 μg/side) receptors in the mPFC impairs the consolidation of CFC in the social support group. Interestingly, blocking 5-HT2A receptors (R65777 - 4 μg/side) in the mPFC led to impaired CFC specifically in the group undergoing extinction training alone. These findings contribute to a better understanding of brain mechanisms and neuromodulation associated with social support during an extinction protocol. They are consistent with previously published research, suggesting that the extinction of contextual fear conditioning with social support involves distinct neuromodulatory processes compared to when extinction training is conducted alone.
Collapse
Affiliation(s)
- Clarissa Penha Farias
- Graduate Program in Translational Neuroscience, PGNET, National Institute of Translational Neuroscience, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil; Neuroprotection and Neurometabolic Diseases Laboratory (Wyse´s Lab), Brazil
| | - Ana Karla Oliveira Leite
- Graduate Program in Translational Neuroscience, PGNET, National Institute of Translational Neuroscience, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil; Neuroprotection and Neurometabolic Diseases Laboratory (Wyse´s Lab), Brazil
| | - Bianca Estefani Schmidt
- Graduate Program in Translational Neuroscience, PGNET, National Institute of Translational Neuroscience, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil; Neuroprotection and Neurometabolic Diseases Laboratory (Wyse´s Lab), Brazil
| | - Jociane de Carvalho Myskiw
- Memory Center, Brain Institute of Rio Grande do Sul, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Brazil
| | - Angela T S Wyse
- Graduate Program in Translational Neuroscience, PGNET, National Institute of Translational Neuroscience, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil; Neuroprotection and Neurometabolic Diseases Laboratory (Wyse´s Lab), Brazil; Graduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| |
Collapse
|
6
|
Zhang Y, Luo W, Heinricher MM, Ryabinin AE. CFA-treated mice induce hyperalgesia in healthy mice via an olfactory mechanism. Eur J Pain 2024; 28:578-598. [PMID: 37985943 PMCID: PMC10947942 DOI: 10.1002/ejp.2201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/04/2023] [Accepted: 10/24/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND Social interactions with subjects experiencing pain can increase nociceptive sensitivity in observers, even without direct physical contact. In previous experiments, extended indirect exposure to soiled bedding from mice with alcohol withdrawal-related hyperalgesia enhanced nociception in their conspecifics. This finding suggested that olfactory cues could be sufficient for nociceptive hypersensitivity in otherwise untreated animals (also known as "bystanders"). AIM The current study addressed this possibility using an inflammation-based hyperalgesia model and long- and short-term exposure paradigms in C57BL/6J mice. MATERIALS & METHOD Adult male and female mice received intraplantar injection of complete Freund's adjuvant (CFA) and were used as stimulus animals to otherwise naïve same-sex bystander mice (BS). Another group of untreated mice (OLF) was simultaneously exposed to the bedding of the stimulus mice. RESULTS In the long-term, 15-day exposure paradigm, the presence of CFA mice or their bedding resulted in reduced von Frey threshold but not Hargreaves paw withdrawal latency in BS or OLF mice. In the short-term paradigm, 1-hr interaction with CFA conspecifics or 1-hr exposure to their bedding induced mechanical hypersensitivity in BS and OLF mice lasting for 3 hrs. Chemical ablation of the main olfactory epithelium prevented bedding-induced and stimulus mice-induced mechanical hypersensitivity. Gas chromatography-mass spectrometry (GC-MS) analysis of the volatile compounds in the bedding of experimental mice revealed that CFA-treated mice released an increased number of compounds indicative of disease states. DISCUSSION AND CONCLUSION These results demonstrate that CFA-induced inflammatory pain can modulate nociception in bystander mice via an olfactory mechanism involving dynamic changes in volatile compounds detectable in the rodent bedding. SIGNIFICANCE Social context can influence nociceptive sensitivity. Recent studies suggested involvement of olfaction in this influence. In agreement with this idea, the present study shows that the presence of mice with inflammatory pain produces nociceptive hypersensitivity in nearby conspecifics. This enhanced nociception occurs via olfactory cues present in the mouse bedding. Analysis of the bedding from mice with inflammatory pain identifies a number of compounds indicative of disease states. These findings demonstrate the importance of olfactory system in influencing pain states.
Collapse
Affiliation(s)
- Yangmiao Zhang
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239
| | - Wentai Luo
- Department of Chemistry, Portland State University, Portland, OR 97207
| | - Mary M. Heinricher
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR 97239
| | - Andrey E. Ryabinin
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239
| |
Collapse
|
7
|
Kitamura T, Ramesh K, Terranova JI. Understanding Others' Distress Through Past Experiences: The Role of Memory Engram Cells in Observational Fear. ADVANCES IN NEUROBIOLOGY 2024; 38:215-234. [PMID: 39008018 DOI: 10.1007/978-3-031-62983-9_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
For individuals to survive and function in society, it is essential that they recognize, interact with, and learn from other conspecifics. Observational fear (OF) is the well-conserved empathic ability of individuals to understand the other's aversive situation. While it is widely known that factors such as prior similar aversive experience and social familiarity with the demonstrator facilitate OF, the neural circuit mechanisms that explicitly regulate experience-dependent OF (Exp OF) were unclear. In this review, we examine the neural circuit mechanisms that regulate OF, with an emphasis on rodent models, and then discuss emerging evidence for the role of fear memory engram cells in the regulation of Exp OF. First, we examine the neural circuit mechanisms that underlie Naive OF, which is when an observer lacks prior experiences relevant to OF. In particular, the anterior cingulate cortex to basolateral amygdala (BLA) neural circuit is essential for Naive OF. Next, we discuss a recent study that developed a behavioral paradigm in mice to examine the neural circuit mechanisms that underlie Exp OF. This study found that fear memory engram cells in the BLA of observers, which form during a prior similar aversive experience with shock, are reactivated by ventral hippocampal neurons in response to shock delivery to the familiar demonstrator to elicit Exp OF. Finally, we discuss the implications of fear memory engram cells in Exp OF and directions of future research that are of both translational and basic interest.
Collapse
Affiliation(s)
- Takashi Kitamura
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Kritika Ramesh
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | |
Collapse
|
8
|
Nogues E, Weary DM, von Keyserlingk MAG. Graduate Student Literature Review: Sociability, fearfulness, and coping style-Impacts on individual variation in the social behavior of dairy cattle. J Dairy Sci 2023; 106:9568-9575. [PMID: 37678797 DOI: 10.3168/jds.2023-23553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/16/2023] [Indexed: 09/09/2023]
Abstract
Dairy cattle typically live in groups, but individuals within these groups vary in their social behavior. An improved understanding of factors affecting the expression of social behavior may help refine management practices on farms to better accommodate the needs of all individuals within the herd. In this paper, we review (1) some examples of how social behavior is expressed in cattle, (2) commonly assessed personality traits in this species (i.e., sociability and fearfulness) as well as coping style, and (3) how these can affect the expression of social behavior of dairy cattle and in turn their welfare. We also identify understudied social behaviors that personality might influence (social learning, social stress, and social buffering of negative emotions), and that could inform how to improve the welfare of intensively housed dairy cattle.
Collapse
Affiliation(s)
- Emeline Nogues
- Animal Welfare Program, Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, Canada V6T 1Z4.
| | - Daniel M Weary
- Animal Welfare Program, Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| | - Marina A G von Keyserlingk
- Animal Welfare Program, Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| |
Collapse
|
9
|
Nett KE, LaLumiere RT. Pair housing does not alter incubation of craving, extinction, and reinstatement after heroin self-administration in female and male rats. Behav Neurosci 2023; 137:111-119. [PMID: 36521141 PMCID: PMC10033383 DOI: 10.1037/bne0000544] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Evidence suggests that single housing in rats acts as a chronic stressor, raising the possibilities that it contributes to measures of heroin craving and that pair housing ameliorates such measures. This study aimed to determine whether pair housing after heroin self-administration reduces the incubation of craving, extinction, and reinstatement of heroin seeking. Single-housed female and male Sprague-Dawley rats underwent daily 6-hr heroin self-administration, wherein active lever presses produced a heroin infusion paired with light/tone cues. One day after self-administration, rats underwent a baseline cued-seeking test wherein active lever presses only produced light/tone cues. Immediately following this cued-seeking test, rats were either pair-housed with weight- and sex-matched naïve rat or remained single-housed for the rest of the study. For 14 days, rats remained in their homecages, after which they underwent a cued-seeking test to assess the incubation of craving compared to their baseline test. Rats then underwent extinction sessions followed by cue-induced and heroin-primed reinstatements. The findings reveal that pair-housed rats did not differ from single-housed rats in terms of the incubation of craving, extinction, or reinstatement of heroin seeking. Additionally, the results did not reveal any evidence of sex-based differences in the study. The present work indicates that pair housing during the forced abstinence period does not alter measures of heroin craving/seeking. These findings suggest that the chronic stress of single housing specifically during forced abstinence does not contribute to the degree of such measures. (PsycInfo Database Record (c) 2023 APA, all rights reserved).
Collapse
Affiliation(s)
- Kelle E. Nett
- Interdisciplinary Neuroscience Program, University of Iowa, Iowa City, IA 52242, United States
| | - Ryan T. LaLumiere
- Interdisciplinary Neuroscience Program, University of Iowa, Iowa City, IA 52242, United States
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, United States
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, United States
| |
Collapse
|
10
|
Ito W, Palmer AJ, Morozov A. Social Synchronization of Conditioned Fear in Mice Requires Ventral Hippocampus Input to the Amygdala. Biol Psychiatry 2023; 93:322-330. [PMID: 36244803 PMCID: PMC10069289 DOI: 10.1016/j.biopsych.2022.07.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 06/17/2022] [Accepted: 07/11/2022] [Indexed: 01/21/2023]
Abstract
BACKGROUND Social organisms synchronize behaviors as an evolutionary-conserved means of thriving. Synchronization under threat, in particular, benefits survival and occurs across species, including humans, but the underlying mechanisms remain unknown because of the scarcity of relevant animal models. Here, we developed a rodent paradigm in which mice synchronized a classically conditioned fear response and identified an underlying neuronal circuit. METHODS Male and female mice were trained individually using auditory fear conditioning and then tested 24 hours later as dyads while allowing unrestricted social interaction during exposure to the conditioned stimulus under visible or infrared illumination to eliminate visual cues. The synchronization of the immobility or freezing bouts was quantified by calculating the effect size Cohen's d for the difference between the actual freezing time overlap and the overlap by chance. The inactivation of the dorsomedial prefrontal cortex, dorsal hippocampus, or ventral hippocampus was achieved by local infusions of muscimol. The chemogenetic disconnection of the hippocampus-amygdala pathway was performed by expressing hM4D(Gi) in the ventral hippocampal neurons and infusing clozapine N-oxide in the amygdala. RESULTS Mice synchronized cued but not contextual fear. It was higher in males than in females and attenuated in the absence of visible light. Inactivation of the ventral but not dorsal hippocampus or dorsomedial prefrontal cortex abolished fear synchronization. Finally, the disconnection of the hippocampus-amygdala pathway diminished fear synchronization. CONCLUSIONS Mice synchronize expression of conditioned fear relying on the ventral hippocampus-amygdala pathway, suggesting that the hippocampus transmits social information to the amygdala to synchronize threat response.
Collapse
Affiliation(s)
- Wataru Ito
- Fralin Biomedical Research Institute at Virginia Tech Carilion Center for Neurobiology Research, Roanoke, Virginia.
| | - Alexander J Palmer
- Fralin Biomedical Research Institute at Virginia Tech Carilion Center for Neurobiology Research, Roanoke, Virginia
| | - Alexei Morozov
- Fralin Biomedical Research Institute at Virginia Tech Carilion Center for Neurobiology Research, Roanoke, Virginia; Carilion Clinic Department of Psychiatry and Behavioral Medicine, Roanoke, Virginia.
| |
Collapse
|
11
|
Jang M, Jung T, Jeong Y, Byun Y, Noh J. Oxytocin modulation in the medial prefrontal cortex of pair-exposed rats during fear conditioning. Psychoneuroendocrinology 2022; 141:105752. [PMID: 35367716 DOI: 10.1016/j.psyneuen.2022.105752] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Social buffering is the phenomenon, in which stress and fear reactions caused by exposure to stressful stimuli when animals are exposed to homogeneous relationships are attenuated. Social buffering reduces fear memory behavior such as escape, avoidance, and freezing behavior in rodents due to social existence. Here, we aimed to determine alterations of fear behavior and neural activity in the medial prefrontal cortex (mPFC) in response to the presence of another rat in fear-exposed conditions and to confirm the role of oxytocin in mPFC in regulating social buffering. METHODS We performed a passive avoidance test and determined positive c-Fos expression in single- and pair-exposed rats. Anisomycin (a protein synthesis inhibitor) and oxytocin receptor regulators (carbetocin; agonist and atosiban; antagonist) were microinjected into the mPFC to clarify the role of oxytocin in the mPFC. RESULTS While single-exposed rats showed a significant increase in both freezing and passive avoidance behaviors compared to control rats, pair-exposed rats showed significantly less fear behavior compared to single-exposed rats. The c-Fos expression in the prelimbic (PL) mPFC was significantly increased in pair-exposed rats compared to that in control and single-exposed rats. The pair-exposed effect was blocked by anisomycin injections into the PL mPFC of pair-exposed rats. Furthermore, when a carbetocin was injected into the PL mPFC in single-exposed rats, fear behavior was decreased, and these changes were blocked by atosiban. DISCUSSION Our findings suggest that reduction of fear-related behavior induced by acute pair-exposure is mediated by oxytocin receptors in the PL mPFC. Pair exposure with conspecifics during fear-inducing situations helps coping with fear by significantly increasing the role of oxytocin in the PL mPFC.
Collapse
Affiliation(s)
- Minji Jang
- Department of Science Education, Dankook University, 152 Jukjeon-ro, Suji-gu, Yongin-si, Gyeonggi-do 16890, Republic of Korea
| | - Taesub Jung
- Department of Science Education, Dankook University, 152 Jukjeon-ro, Suji-gu, Yongin-si, Gyeonggi-do 16890, Republic of Korea
| | - Yujeong Jeong
- Department of Science Education, Dankook University, 152 Jukjeon-ro, Suji-gu, Yongin-si, Gyeonggi-do 16890, Republic of Korea
| | - Younsoo Byun
- Department of Science Education, Dankook University, 152 Jukjeon-ro, Suji-gu, Yongin-si, Gyeonggi-do 16890, Republic of Korea
| | - Jihyun Noh
- Department of Science Education, Dankook University, 152 Jukjeon-ro, Suji-gu, Yongin-si, Gyeonggi-do 16890, Republic of Korea.
| |
Collapse
|
12
|
Denommé MR, Mason GJ. Social Buffering as a Tool for Improving Rodent Welfare. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2022; 61:5-14. [PMID: 34915978 PMCID: PMC8786379 DOI: 10.30802/aalas-jaalas-21-000006] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2023]
Abstract
The presence of a conspecific can be calming to some species of animal during stress, a phenomenon known as social buffering. For rodents, social buffering can reduce the perception of and reaction to aversive experiences. With a companion, animals may be less frightened in conditioned fear paradigms, experience faster wound healing, show reduced corticosterone responses to novelty, and become more resilient to everyday stressors like cage-cleaning. Social buffering works in diverse ways across species and life stages. For example, social buffering may rely on specific bonds and interactions between individuals, whereas in other cases, the mere presence of conspecific cues may reduce isolation stress. Social buffering has diverse practical applications for enhancing rodent wellbeing (some of which can be immediately applied, while others need further development via welfare-oriented research). Appropriate social housing will generally increase rodents' abilities to cope with challenges, with affiliative cage mates being the most effective buffers. Thus, when rodents are scheduled to experience distressing research procedures, ensuring that their home lives supply high degrees of affiliative, low stress social contact can be an effective refinement. Furthermore, social buffering research illustrates the stress of acute isolation: stressors experienced outside the cage may thus be less impactful if a companion is present. If a companion cannot be provided for subjects exposed to out-of-cage stressors, odors from unstressed animals can help ameliorate stress, as can proxies such as pieces of synthetic fur. Finally, in cases involving conditioned fear (the learned expectation of harm), newly providing social contact during exposure to negative conditioned stimuli (CS) can modify the CS such that for research rodents repeatedly exposed to aversive stimuli, adding conspecific contact can reduce their conditioned fear. Ultimately, these benefits of social buffering should inspire the use of creative techniques to reduce the impact of stressful procedures on laboratory rodents, so enhancing their welfare.
Collapse
Affiliation(s)
- Melanie R Denommé
- Department of Integrative Biology, University of Guelph, Ontario, Canada
| | - Georgia J Mason
- Department of Integrative Biology, University of Guelph, Ontario, Canada
- Corresponding author. Email address:
| |
Collapse
|
13
|
Kavaliers M, Ossenkopp KP, Choleris E. Pathogens, odors, and disgust in rodents. Neurosci Biobehav Rev 2020; 119:281-293. [PMID: 33031813 PMCID: PMC7536123 DOI: 10.1016/j.neubiorev.2020.09.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 09/11/2020] [Accepted: 09/24/2020] [Indexed: 01/04/2023]
Abstract
All animals are under the constant threat of attack by parasites. The mere presence of parasite threat can alter behavior before infection takes place. These effects involve pathogen disgust, an evolutionarily conserved affective/emotional system that functions to detect cues associated with parasites and infection and facilitate avoidance behaviors. Animals gauge the infection status of conspecific and the salience of the threat they represent on the basis of various sensory cues. Odors in particular are a major source of social information about conspecifics and the infection threat they present. Here we briefly consider the origins, expression, and regulation of the fundamental features of odor mediated pathogen disgust in rodents. We briefly review aspects of: (1) the expression of affective states and emotions and in particular, disgust, in rodents; (2) olfactory mediated recognition and avoidance of potentially infected conspecifics and the impact of pathogen disgust and its' fundamental features on behavior; (3) pathogen disgust associated trade-offs; (4) the neurobiological mechanisms, and in particular the roles of the nonapeptide, oxytocin, and steroidal hormones, in the expression of pathogen disgust and the regulation of avoidance behaviors and concomitant trade-offs. Understanding the roles of pathogen disgust in rodents can provide insights into the regulation and expression of responses to pathogens and infection in humans.
Collapse
Affiliation(s)
- Martin Kavaliers
- Department of Psychology and Neuroscience Program, University of Western Ontario, London, Canada; Department of Psychology and Neuroscience Program, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| | - Klaus-Peter Ossenkopp
- Department of Psychology and Neuroscience Program, University of Western Ontario, London, Canada
| | - Elena Choleris
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| |
Collapse
|
14
|
Leblanc H, Ramirez S. Linking Social Cognition to Learning and Memory. J Neurosci 2020; 40:8782-8798. [PMID: 33177112 PMCID: PMC7659449 DOI: 10.1523/jneurosci.1280-20.2020] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/30/2020] [Accepted: 10/02/2020] [Indexed: 12/16/2022] Open
Abstract
Many mammals have evolved to be social creatures. In humans, the ability to learn from others' experiences is essential to survival; and from an early age, individuals are surrounded by a social environment that helps them develop a variety of skills, such as walking, talking, and avoiding danger. Similarly, in rodents, behaviors, such as food preference, exploration of novel contexts, and social approach, can be learned through social interaction. Social encounters facilitate new learning and help modify preexisting memories throughout the lifespan of an organism. Moreover, social encounters can help buffer stress or the effects of negative memories, as well as extinguish maladaptive behaviors. Given the importance of such interactions, there has been increasing work studying social learning and applying its concepts in a wide range of fields, including psychotherapy and medical sociology. The process of social learning, including its neural and behavioral mechanisms, has also been a rapidly growing field of interest in neuroscience. However, the term "social learning" has been loosely applied to a variety of psychological phenomena, often without clear definition or delineations. Therefore, this review gives a definition for specific aspects of social learning, provides an overview of previous work at the circuit, systems, and behavioral levels, and finally, introduces new findings on the social modulation of learning. We contextualize such social processes in the brain both through the role of the hippocampus and its capacity to process "social engrams" as well as through the brainwide realization of social experiences. With the integration of new technologies, such as optogenetics, chemogenetics, and calcium imaging, manipulating social engrams will likely offer a novel therapeutic target to enhance the positive buffering effects of social experiences or to inhibit fear-inducing social stimuli in models of anxiety and post-traumatic stress disorder.
Collapse
Affiliation(s)
- Heloise Leblanc
- Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts, 02119
- Boston University School of Medicine, Boston, Massachusetts, 02118
| | - Steve Ramirez
- Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts, 02119
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, 02119
- Neurophotonics Center at Boston University, Boston, Massachusetts, 02119
- Center for Systems Neuroscience at Boston University, Boston, Massachusetts, 02119
| |
Collapse
|
15
|
Holmes A. The neuroscience and genomics of social behavior. GENES BRAIN AND BEHAVIOR 2019; 18:e12551. [PMID: 30666807 DOI: 10.1111/gbb.12551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|