1
|
Pérez‐Barrancos C, Fraile‐Nuez E, Martín‐Díaz JP, González‐Vega A, Escánez‐Pérez J, Díaz‐Durán MI, Presas‐Navarro C, Nieto‐Cid M, Arrieta JM. Shallow Hydrothermal Fluids Shape Microbial Dynamics at the Tagoro Submarine Volcano (Canary Islands, Spain). Environ Microbiol 2025; 27:e70052. [PMID: 39924467 PMCID: PMC11807932 DOI: 10.1111/1462-2920.70052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 01/18/2025] [Accepted: 01/23/2025] [Indexed: 02/11/2025]
Abstract
Shallow underwater hydrothermal systems are often overlooked despite their potential contribution to marine diversity and biogeochemistry. Over a decade after its eruption, the Tagoro submarine volcano continues to emit heat, reduced compounds, and nutrients into shallow waters, serving as a model system for studying the effects of diffuse hydrothermal fluids on surface microbial communities. The impact on both phytoplankton and bacterial communities was examined through experimental manipulations mimicking dilution levels up to ~100 m from the primary crater of Tagoro. Chlorophyll a concentration doubled in the presence of hydrothermal products, with peak levels detected about a day earlier than in controls. Picoeukaryotes and Synechococcus cell abundances moderately increased, yet small eukaryotic phytoplankton (≤ 5 μm) predominated in the hydrothermally enriched bottles. Dinoflagellates, diatoms, small green algae and radiolarians particularly benefited from the hydrothermal inputs, along with phototrophic and chemoautotrophic bacteria. Our results indicate that hydrothermal products in shallow waters enhance primary production driven by phototrophic microbes, potentially triggering a secondary response associated with increased organic matter availability. Additionally, protistan grazing and parasitism emerged as key factors modulating local planktonic communities. Our findings highlight the role of shallow submarine hydrothermal systems in enhancing local primary production and element cycling.
Collapse
Affiliation(s)
- Clàudia Pérez‐Barrancos
- Centro Oceanográfico de Canarias, Instituto Español de Oceanografía, Consejo Superior de Investigaciones Científicas (IEO‐CSIC)Santa Cruz de TenerifeSpain
- Universidad de Las Palmas de Gran Canaria (ULPGC)Las Palmas de Gran CanariaSpain
| | - Eugenio Fraile‐Nuez
- Centro Oceanográfico de Canarias, Instituto Español de Oceanografía, Consejo Superior de Investigaciones Científicas (IEO‐CSIC)Santa Cruz de TenerifeSpain
| | - Juan Pablo Martín‐Díaz
- Centro Oceanográfico de Canarias, Instituto Español de Oceanografía, Consejo Superior de Investigaciones Científicas (IEO‐CSIC)Santa Cruz de TenerifeSpain
- Universidad de La Laguna (ULL)San Cristóbal de La LagunaSpain
| | - Alba González‐Vega
- Centro Oceanográfico de Canarias, Instituto Español de Oceanografía, Consejo Superior de Investigaciones Científicas (IEO‐CSIC)Santa Cruz de TenerifeSpain
| | - José Escánez‐Pérez
- Centro Oceanográfico de Canarias, Instituto Español de Oceanografía, Consejo Superior de Investigaciones Científicas (IEO‐CSIC)Santa Cruz de TenerifeSpain
| | - María Isabel Díaz‐Durán
- Centro Oceanográfico de Canarias, Instituto Español de Oceanografía, Consejo Superior de Investigaciones Científicas (IEO‐CSIC)Santa Cruz de TenerifeSpain
| | - Carmen Presas‐Navarro
- Centro Oceanográfico de Canarias, Instituto Español de Oceanografía, Consejo Superior de Investigaciones Científicas (IEO‐CSIC)Santa Cruz de TenerifeSpain
| | - Mar Nieto‐Cid
- Centro Oceanográfico de A Coruña, Instituto Español de Oceanografía, Consejo Superior de Investigaciones Científicas (IEO‐CSIC)A CoruñaSpain
| | - Jesús María Arrieta
- Centro Oceanográfico de Canarias, Instituto Español de Oceanografía, Consejo Superior de Investigaciones Científicas (IEO‐CSIC)Santa Cruz de TenerifeSpain
| |
Collapse
|
2
|
Achberger AM, Jones R, Jamieson J, Holmes CP, Schubotz F, Meyer NR, Dekas AE, Moriarty S, Reeves EP, Manthey A, Brünjes J, Fornari DJ, Tivey MK, Toner BM, Sylvan JB. Inactive hydrothermal vent microbial communities are important contributors to deep ocean primary productivity. Nat Microbiol 2024; 9:657-668. [PMID: 38287146 DOI: 10.1038/s41564-024-01599-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 12/20/2023] [Indexed: 01/31/2024]
Abstract
Active hydrothermal vents are oases for productivity in the deep ocean, but the flow of dissolved substrates that fuel such abundant life ultimately ceases, leaving behind inactive mineral deposits. The rates of microbial activity on these deposits are largely unconstrained. Here we show primary production occurs on inactive hydrothermal deposits and quantify its contribution to new organic carbon production in the deep ocean. Measured incorporation of 14C-bicarbonate shows that microbial communities on inactive deposits fix inorganic carbon at rates comparable to those on actively venting deposits. Single-cell uptake experiments and nanoscale secondary ion mass spectrometry showed chemoautotrophs comprise a large fraction (>30%) of the active microbial cells. Metagenomic and lipidomic surveys of inactive deposits further revealed that the microbial communities are dominated by Alphaproteobacteria and Gammaproteobacteria using the Calvin-Benson-Bassham pathway for carbon fixation. These findings establish inactive vent deposits as important sites for microbial activity and organic carbon production on the seafloor.
Collapse
Affiliation(s)
- Amanda M Achberger
- Department of Oceanography, Texas A&M University, College Station, Texas, USA.
| | - Rose Jones
- Department of Soil, Water and Climate, University of Minnesota-Twin Cities, St Paul, MN, USA
| | - John Jamieson
- Department of Earth Sciences, Memorial University of Newfoundland, St John's, Newfoundland and Labrador, Canada
| | - Charles P Holmes
- Department of Oceanography, Texas A&M University, College Station, Texas, USA
| | - Florence Schubotz
- MARUM Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Nicolette R Meyer
- Department of Earth System Science, Stanford University, Stanford, CA, USA
| | - Anne E Dekas
- Department of Earth System Science, Stanford University, Stanford, CA, USA
| | - Sarah Moriarty
- Department of Earth Sciences, Memorial University of Newfoundland, St John's, Newfoundland and Labrador, Canada
| | - Eoghan P Reeves
- Department of Earth Science, Centre for Deep Sea Research, University of Bergen, Bergen, Norway
| | - Alex Manthey
- MARUM Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Jonas Brünjes
- MARUM Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
- Department of Earth Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Daniel J Fornari
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Margaret K Tivey
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Brandy M Toner
- Department of Soil, Water and Climate, University of Minnesota-Twin Cities, St Paul, MN, USA
| | - Jason B Sylvan
- Department of Oceanography, Texas A&M University, College Station, Texas, USA.
| |
Collapse
|
3
|
Hauer MA, Breusing C, Trembath-Reichert E, Huber JA, Beinart RA. Geography, not lifestyle, explains the population structure of free-living and host-associated deep-sea hydrothermal vent snail symbionts. MICROBIOME 2023; 11:106. [PMID: 37189129 DOI: 10.1186/s40168-023-01493-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 02/11/2023] [Indexed: 05/17/2023]
Abstract
BACKGROUND Marine symbioses are predominantly established through horizontal acquisition of microbial symbionts from the environment. However, genetic and functional comparisons of free-living populations of symbionts to their host-associated counterparts are sparse. Here, we assembled the first genomes of the chemoautotrophic gammaproteobacterial symbionts affiliated with the deep-sea snail Alviniconcha hessleri from two separate hydrothermal vent fields of the Mariana Back-Arc Basin. We used phylogenomic and population genomic methods to assess sequence and gene content variation between free-living and host-associated symbionts. RESULTS Our phylogenomic analyses show that the free-living and host-associated symbionts of A. hessleri from both vent fields are populations of monophyletic strains from a single species. Furthermore, genetic structure and gene content analyses indicate that these symbiont populations are differentiated by vent field rather than by lifestyle. CONCLUSION Together, this work suggests that, despite the potential influence of host-mediated acquisition and release processes on horizontally transmitted symbionts, geographic isolation and/or adaptation to local habitat conditions are important determinants of symbiont population structure and intra-host composition. Video Abstract.
Collapse
Affiliation(s)
- Michelle A Hauer
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI, USA
| | - Corinna Breusing
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI, USA
| | | | - Julie A Huber
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Falmouth, MA, USA
| | - Roxanne A Beinart
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI, USA.
| |
Collapse
|
4
|
Hou J, Sievert SM, Wang Y, Seewald JS, Natarajan VP, Wang F, Xiao X. Microbial succession during the transition from active to inactive stages of deep-sea hydrothermal vent sulfide chimneys. MICROBIOME 2020; 8:102. [PMID: 32605604 PMCID: PMC7329443 DOI: 10.1186/s40168-020-00851-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 04/28/2020] [Indexed: 05/19/2023]
Abstract
BACKGROUND Deep-sea hydrothermal vents are highly productive biodiversity hotspots in the deep ocean supported by chemosynthetic microorganisms. Prominent features of these systems are sulfide chimneys emanating high-temperature hydrothermal fluids. While several studies have investigated the microbial diversity in both active and inactive sulfide chimneys that have been extinct for up to thousands of years, little is known about chimneys that have ceased activity more recently, as well as the microbial succession occurring during the transition from active to inactive chimneys. RESULTS Genome-resolved metagenomics was applied to an active and a recently extinct (~ 7 years) sulfide chimney from the 9-10° N hydrothermal vent field on the East Pacific Rise. Full-length 16S rRNA gene and a total of 173 high-quality metagenome assembled genomes (MAGs) were retrieved for comparative analysis. In the active chimney (L-vent), sulfide- and/or hydrogen-oxidizing Campylobacteria and Aquificae with the potential for denitrification were identified as the dominant community members and primary producers, fixing carbon through the reductive tricarboxylic acid (rTCA) cycle. In contrast, the microbiome of the recently extinct chimney (M-vent) was largely composed of heterotrophs from various bacterial phyla, including Delta-/Beta-/Alphaproteobacteria and Bacteroidetes. Gammaproteobacteria were identified as the main primary producers, using the oxidation of metal sulfides and/or iron oxidation coupled to nitrate reduction to fix carbon through the Calvin-Benson-Bassham (CBB) cycle. Further analysis revealed a phylogenetically distinct Nitrospirae cluster that has the potential to oxidize sulfide minerals coupled to oxygen and/or nitrite reduction, as well as for sulfate reduction, and that might serve as an indicator for the early stages of chimneys after venting has ceased. CONCLUSIONS This study sheds light on the composition, metabolic functions, and succession of microbial communities inhabiting deep-sea hydrothermal vent sulfide chimneys. Collectively, microbial succession during the life span of a chimney could be described to proceed from a "fluid-shaped" microbial community in newly formed and actively venting chimneys supported by the oxidation of reductants in the hydrothermal fluid to a "mineral-shaped" community supported by the oxidation of minerals after hydrothermal activity has ceased. Remarkably, the transition appears to occur within the first few years, after which the communities stay stable for thousands of years. Video Abstract.
Collapse
Affiliation(s)
- Jialin Hou
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Stefan M Sievert
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Yinzhao Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jeffrey S Seewald
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Vengadesh Perumal Natarajan
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Fengping Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, China.
| | - Xiang Xiao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, China.
| |
Collapse
|
5
|
Meier DV, Pjevac P, Bach W, Markert S, Schweder T, Jamieson J, Petersen S, Amann R, Meyerdierks A. Microbial metal-sulfide oxidation in inactive hydrothermal vent chimneys suggested by metagenomic and metaproteomic analyses. Environ Microbiol 2019; 21:682-701. [PMID: 30585382 PMCID: PMC6850669 DOI: 10.1111/1462-2920.14514] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 12/17/2018] [Accepted: 12/19/2018] [Indexed: 01/02/2023]
Abstract
Metal-sulfides are wide-spread in marine benthic habitats. At deep-sea hydrothermal vents, they occur as massive sulfide chimneys formed by mineral precipitation upon mixing of reduced vent fluids with cold oxygenated sea water. Although microorganisms inhabiting actively venting chimneys and utilizing compounds supplied by the venting fluids are well studied, only little is known about microorganisms inhabiting inactive chimneys. In this study, we combined 16S rRNA gene-based community profiling of sulfide chimneys from the Manus Basin (SW Pacific) with radiometric dating, metagenome (n = 4) and metaproteome (n = 1) analyses. Our results shed light on potential lifestyles of yet poorly characterized bacterial clades colonizing inactive chimneys. These include sulfate-reducing Nitrospirae and sulfide-oxidizing Gammaproteobacteria dominating most of the inactive chimney communities. Our phylogenetic analysis attributed the gammaproteobacterial clades to the recently described Woeseiaceae family and the SSr-clade found in marine sediments around the world. Metaproteomic data identified these Gammaproteobacteria as autotrophic sulfide-oxidizers potentially facilitating metal-sulfide dissolution via extracellular electron transfer. Considering the wide distribution of these gammaproteobacterial clades in marine environments such as hydrothermal vents and sediments, microbially accelerated neutrophilic mineral oxidation might be a globally relevant process in benthic element cycling and a considerable energy source for carbon fixation in marine benthic habitats.
Collapse
Affiliation(s)
- Dimitri V. Meier
- Max Planck Institute for Marine MicrobiologyCelsiusstrasse 1, 28359, BremenGermany
| | - Petra Pjevac
- Max Planck Institute for Marine MicrobiologyCelsiusstrasse 1, 28359, BremenGermany
| | - Wolfgang Bach
- MARUM – Center for Marine Environmental Sciences, Petrology of the Ocean Crust groupUniversity of BremenLeobener Str., 28359, BremenGermany
| | - Stephanie Markert
- Institute of PharmacyErnst‐Moritz‐Arndt‐UniversityFriedrich‐Ludwig‐Jahn‐Straße 17, 17489, GreifswaldGermany
| | - Thomas Schweder
- Institute of PharmacyErnst‐Moritz‐Arndt‐UniversityFriedrich‐Ludwig‐Jahn‐Straße 17, 17489, GreifswaldGermany
| | - John Jamieson
- Department of Earth SciencesMemorial University of Newfoundland40 Arctic Ave, Saint John'sNL, A1B 3X7Canada
| | - Sven Petersen
- GEOMAR Helmholtz Centre for Ocean ResearchWischhofstraße 1‐3, 24148, KielGermany
| | - Rudolf Amann
- Max Planck Institute for Marine MicrobiologyCelsiusstrasse 1, 28359, BremenGermany
| | - Anke Meyerdierks
- Max Planck Institute for Marine MicrobiologyCelsiusstrasse 1, 28359, BremenGermany
| |
Collapse
|
6
|
Microbial community differentiation between active and inactive sulfide chimneys of the Kolumbo submarine volcano, Hellenic Volcanic Arc. Extremophiles 2017; 22:13-27. [DOI: 10.1007/s00792-017-0971-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/03/2017] [Indexed: 01/28/2023]
|
7
|
Olins HC, Rogers DR, Preston C, Ussler W, Pargett D, Jensen S, Roman B, Birch JM, Scholin CA, Haroon MF, Girguis PR. Co-registered Geochemistry and Metatranscriptomics Reveal Unexpected Distributions of Microbial Activity within a Hydrothermal Vent Field. Front Microbiol 2017; 8:1042. [PMID: 28659879 PMCID: PMC5468400 DOI: 10.3389/fmicb.2017.01042] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 05/24/2017] [Indexed: 12/11/2022] Open
Abstract
Despite years of research into microbial activity at diffuse flow hydrothermal vents, the extent of microbial niche diversity in these settings is not known. To better understand the relationship between microbial activity and the associated physical and geochemical conditions, we obtained co-registered metatranscriptomic and geochemical data from a variety of different fluid regimes within the ASHES vent field on the Juan de Fuca Ridge. Microbial activity in the majority of the cool and warm fluids sampled was dominated by a population of Gammaproteobacteria (likely sulfur oxidizers) that appear to thrive in a variety of chemically distinct fluids. Only the warmest, most hydrothermally-influenced flows were dominated by active populations of canonically vent-endemic Epsilonproteobacteria. These data suggest that the Gammaproteobacteria collected during this study may be generalists, capable of thriving over a broader range of geochemical conditions than the Epsilonproteobacteria. Notably, the apparent metabolic activity of the Gammaproteobacteria—particularly carbon fixation—in the seawater found between discrete fluid flows (the intra-field water) suggests that this area within the Axial caldera is a highly productive, and previously overlooked, habitat. By extension, our findings suggest that analogous, diffuse flow fields may be similarly productive and thus constitute a very important and underappreciated aspect of deep-sea biogeochemical cycling that is occurring at the global scale.
Collapse
Affiliation(s)
- Heather C Olins
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridge, MA, United States
| | - Daniel R Rogers
- Department of Chemistry, Stonehill CollegeEaston, MA, United States
| | - Christina Preston
- Research and Development, Monterey Bay Aquarium Research InstituteMoss Landing, CA, United States
| | - William Ussler
- Research and Development, Monterey Bay Aquarium Research InstituteMoss Landing, CA, United States
| | - Douglas Pargett
- Research and Development, Monterey Bay Aquarium Research InstituteMoss Landing, CA, United States
| | - Scott Jensen
- Research and Development, Monterey Bay Aquarium Research InstituteMoss Landing, CA, United States
| | - Brent Roman
- Research and Development, Monterey Bay Aquarium Research InstituteMoss Landing, CA, United States
| | - James M Birch
- Research and Development, Monterey Bay Aquarium Research InstituteMoss Landing, CA, United States
| | - Christopher A Scholin
- Research and Development, Monterey Bay Aquarium Research InstituteMoss Landing, CA, United States
| | - M Fauzi Haroon
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridge, MA, United States
| | - Peter R Girguis
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridge, MA, United States
| |
Collapse
|
8
|
Gomez-Saez GV, Pop Ristova P, Sievert SM, Elvert M, Hinrichs KU, Bühring SI. Relative Importance of Chemoautotrophy for Primary Production in a Light Exposed Marine Shallow Hydrothermal System. Front Microbiol 2017; 8:702. [PMID: 28484442 PMCID: PMC5399606 DOI: 10.3389/fmicb.2017.00702] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 04/05/2017] [Indexed: 01/09/2023] Open
Abstract
The unique geochemistry of marine shallow-water hydrothermal systems promotes the establishment of diverse microbial communities with a range of metabolic pathways. In contrast to deep-sea vents, shallow-water vents not only support chemosynthesis, but also phototrophic primary production due to the availability of light. However, comprehensive studies targeting the predominant biogeochemical processes are rare, and consequently a holistic understanding of the functioning of these ecosystems is currently lacking. To this end, we combined stable isotope probing of lipid biomarkers with an analysis of the bacterial communities to investigate if chemoautotrophy, in parallel to photoautotrophy, plays an important role in autotrophic carbon fixation and to identify the key players. The study was carried out at a marine shallow-water hydrothermal system located at 5 m water depth off Dominica Island (Lesser Antilles), characterized by up to 55°C warm hydrothermal fluids that contain high amounts of dissolved Fe2+. Analysis of the bacterial diversity revealed Anaerolineae of the Chloroflexi as the most abundant bacterial class. Furthermore, the presence of key players involved in iron cycling generally known from deep-sea hydrothermal vents (e.g., Zetaproteobacteria and Geothermobacter), supported the importance of iron-driven redox processes in this hydrothermal system. Uptake of 13C-bicarbonate into bacterial fatty acids under light and dark conditions revealed active photo- and chemoautotrophic communities, with chemoautotrophy accounting for up to 65% of the observed autotrophic carbon fixation. Relatively increased 13C-incorporation in the dark allowed the classification of aiC15:0, C15:0, and iC16:0 as potential lipid biomarkers for bacterial chemoautotrophy in this ecosystem. Highest total 13C-incorporation into fatty acids took place at the sediment surface, but chemosynthesis was found to be active down to 8 cm sediment depth. In conclusion, this study highlights the relative importance of chemoautotrophy compared to photoautotrophy in a shallow-water hydrothermal system, emphasizing chemosynthesis as a prominent process for biomass production in marine coastal environments influenced by hydrothermalism.
Collapse
Affiliation(s)
- Gonzalo V Gomez-Saez
- Hydrothermal Geomicrobiology Group, MARUM - Center for Marine Environmental Sciences, University of BremenBremen, Germany
| | - Petra Pop Ristova
- Hydrothermal Geomicrobiology Group, MARUM - Center for Marine Environmental Sciences, University of BremenBremen, Germany
| | - Stefan M Sievert
- Biology Department, Woods Hole Oceanographic Institution, Woods HoleMA, USA
| | - Marcus Elvert
- Organic Geochemistry Group, MARUM - Center for Marine Environmental Sciences and Department of Geosciences, University of BremenBremen, Germany
| | - Kai-Uwe Hinrichs
- Organic Geochemistry Group, MARUM - Center for Marine Environmental Sciences and Department of Geosciences, University of BremenBremen, Germany
| | - Solveig I Bühring
- Hydrothermal Geomicrobiology Group, MARUM - Center for Marine Environmental Sciences, University of BremenBremen, Germany
| |
Collapse
|
9
|
Lin TJ, Ver Eecke HC, Breves EA, Dyar MD, Jamieson JW, Hannington MD, Dahle H, Bishop JL, Lane MD, Butterfield DA, Kelley DS, Lilley MD, Baross JA, Holden JF. Linkages between mineralogy, fluid chemistry, and microbial communities within hydrothermal chimneys from the Endeavour Segment, Juan de Fuca Ridge. GEOCHEMISTRY, GEOPHYSICS, GEOSYSTEMS : G(3) 2016; 17:300-323. [PMID: 30123099 PMCID: PMC6094386 DOI: 10.1002/2015gc006091] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Rock and fluid samples were collected from three hydrothermal chimneys at the Endeavour Segment, Juan de Fuca Ridge to evaluate linkages among mineralogy, fluid chemistry, and microbial community composition within the chimneys. Mössbauer, midinfrared thermal emission, and visible-near infrared spectroscopies were utilized for the first time to characterize vent mineralogy, in addition to thin-section petrography, X-ray diffraction, and elemental analyses. A 282°C venting chimney from the Bastille edifice was composed primarily of sulfide minerals such as chalcopyrite, marcasite, and sphalerite. In contrast, samples from a 300°C venting chimney from the Dante edifice and a 321°C venting chimney from the Hot Harold edifice contained a high abundance of the sulfate mineral anhydrite. Geochemical modeling of mixed vent fluids suggested the oxic-anoxic transition zone was above 100°C at all three vents, and that the thermodynamic energy available for autotrophic microbial redox reactions favored aerobic sulfide and methane oxidation. As predicted, microbes within the Dante and Hot Harold chimneys were most closely related to mesophilic and thermophilic aerobes of the Betaproteobacteria and Gammaproteobacteria and sulfide-oxidizing autotrophic Epsilonproteobacteria. However, most of the microbes within the Bastille chimney were most closely related to mesophilic and thermophilic anaerobes of the Deltaproteobacteria, especially sulfate reducers, and anaerobic hyperthermophilic archaea. The predominance of anaerobes in the Bastille chimney indicated that other environmental factors promote anoxic conditions. Possibilities include the maturity or fluid flow characteristics of the chimney, abiotic Fe2+ and S2- oxidation in the vent fluids, or O2 depletion by aerobic respiration on the chimney outer wall.
Collapse
Affiliation(s)
- T. J. Lin
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
| | - H. C. Ver Eecke
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
| | - E. A. Breves
- Department of Astronomy, Mount Holyoke College, South Hadley, Massachusetts, USA
| | - M. D. Dyar
- Department of Astronomy, Mount Holyoke College, South Hadley, Massachusetts, USA
| | - J. W. Jamieson
- Department of Earth Sciences, University of Ottawa, Ottawa, Ontario, Canada
- GEOMAR, Helmholtz Centre for Ocean Research, Kiel, Germany
| | - M. D. Hannington
- Department of Earth Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - H. Dahle
- Department of Biology, Centre for Geobiology, University of Bergen, Bergen, Norway
| | - J. L. Bishop
- SETI Institute/NASA Ames Research Center, Moffett Field, California, USA
| | - M. D. Lane
- Planetary Science Institute, Tucson, Arizona, USA
| | - D. A. Butterfield
- Joint Institute for the Study of the Atmosphere and Ocean, University of Washington and NOAA-PMEL, Seattle, Washington, USA
| | - D. S. Kelley
- School of Oceanography, University of Washington, Seattle, Washington, USA
| | - M. D. Lilley
- School of Oceanography, University of Washington, Seattle, Washington, USA
| | - J. A. Baross
- School of Oceanography, University of Washington, Seattle, Washington, USA
| | - J. F. Holden
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
10
|
Frank KL, Rogers KL, Rogers DR, Johnston DT, Girguis PR. Key Factors Influencing Rates of Heterotrophic Sulfate Reduction in Active Seafloor Hydrothermal Massive Sulfide Deposits. Front Microbiol 2015; 6:1449. [PMID: 26733984 PMCID: PMC4686611 DOI: 10.3389/fmicb.2015.01449] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 12/04/2015] [Indexed: 11/14/2022] Open
Abstract
Hydrothermal vents are thermally and geochemically dynamic habitats, and the organisms therein are subject to steep gradients in temperature and chemistry. To date, the influence of these environmental dynamics on microbial sulfate reduction has not been well constrained. Here, via multivariate experiments, we evaluate the effects of key environmental variables (temperature, pH, H2S, SO42−, DOC) on sulfate reduction rates and metabolic energy yields in material recovered from a hydrothermal flange from the Grotto edifice in the Main Endeavor Field, Juan de Fuca Ridge. Sulfate reduction was measured in batch reactions across a range of physico-chemical conditions. Temperature and pH were the strongest stimuli, and maximum sulfate reduction rates were observed at 50°C and pH 6, suggesting that the in situ community of sulfate-reducing organisms in Grotto flanges may be most active in a slightly acidic and moderate thermal/chemical regime. At pH 4, sulfate reduction rates increased with sulfide concentrations most likely due to the mitigation of metal toxicity. While substrate concentrations also influenced sulfate reduction rates, energy-rich conditions muted the effect of metabolic energetics on sulfate reduction rates. We posit that variability in sulfate reduction rates reflect the response of the active microbial consortia to environmental constraints on in situ microbial physiology, toxicity, and the type and extent of energy limitation. These experiments help to constrain models of the spatial contribution of heterotrophic sulfate reduction within the complex gradients inherent to seafloor hydrothermal deposits.
Collapse
Affiliation(s)
- Kiana L Frank
- Department of Molecular Biology, Harvard UniversityCambridge, MA, USA; Department of Oceanography, University of HawaiiHonolulu, HI, USA
| | - Karyn L Rogers
- Department of Earth and Environmental Sciences, Rensselaer Polytechnic Institute Troy, NY, USA
| | - Daniel R Rogers
- Department of Chemistry, Stonehill CollegeEaston, MA, USA; Department of Earth and Planetary Sciences, Harvard UniversityCambridge, MA, USA
| | - David T Johnston
- Department of Earth and Planetary Sciences, Harvard University Cambridge, MA, USA
| | - Peter R Girguis
- Department of Organismic and Evolutionary Biology, Harvard University Cambridge, MA, USA
| |
Collapse
|
11
|
Callac N, Rouxel O, Lesongeur F, Liorzou C, Bollinger C, Pignet P, Chéron S, Fouquet Y, Rommevaux-Jestin C, Godfroy A. Biogeochemical insights into microbe-mineral-fluid interactions in hydrothermal chimneys using enrichment culture. Extremophiles 2015; 19:597-617. [PMID: 25778451 DOI: 10.1007/s00792-015-0742-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 03/01/2015] [Indexed: 10/23/2022]
Abstract
Active hydrothermal chimneys host diverse microbial communities exhibiting various metabolisms including those involved in various biogeochemical cycles. To investigate microbe-mineral-fluid interactions in hydrothermal chimney and the driver of microbial diversity, a cultural approach using a gas-lift bioreactor was chosen. An enrichment culture was performed using crushed active chimney sample as inoculum and diluted hydrothermal fluid from the same vent as culture medium. Daily sampling provided time-series access to active microbial diversity and medium composition. Active archaeal and bacterial communities consisted mainly of sulfur, sulfate and iron reducers and hydrogen oxidizers with the detection of Thermococcus, Archaeoglobus, Geoglobus, Sulfurimonas and Thermotoga sequences. The simultaneous presence of active Geoglobus sp. and Archaeoglobus sp. argues against competition for available carbon sources and electron donors between sulfate and iron reducers at high temperature. This approach allowed the cultivation of microbial populations that were under-represented in the initial environmental sample. The microbial communities are heterogeneously distributed within the gas-lift bioreactor; it is unlikely that bulk mineralogy or fluid chemistry is the drivers of microbial community structure. Instead, we propose that micro-environmental niche characteristics, created by the interaction between the mineral grains and the fluid chemistry, are the main drivers of microbial diversity in natural systems.
Collapse
Affiliation(s)
- Nolwenn Callac
- Laboratoire de Microbiologie des Environnements Extrêmes, Université de Bretagne Occidentale, UEB, IUEM, UMR 6197, Place Nicolas Copernic, 29280, Plouzané, France,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
The Kolumbo submarine volcano of Santorini island is a large pool of bacterial strains with antimicrobial activity. Arch Microbiol 2015; 197:539-52. [PMID: 25627249 DOI: 10.1007/s00203-015-1086-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 01/13/2015] [Accepted: 01/16/2015] [Indexed: 10/24/2022]
Abstract
Microbes in hydrothermal vents with their unique secondary metabolism may represent an untapped potential source of new natural products. In this study, samples were collected from the hydrothermal field of Kolumbo submarine volcano in the Aegean Sea, in order to isolate bacteria with antimicrobial activity. Eight hundred and thirty-two aerobic heterotrophic bacteria were isolated and then differentiated through BOX-PCR analysis at the strain level into 230 genomic fingerprints, which were screened against 13 different type strains (pathogenic and nonpathogenic) of Gram-positive, Gram-negative bacteria and fungi. Forty-two out of 176 bioactive-producing genotypes (76 %) exhibited antimicrobial activity against at least four different type strains and were selected for 16S rDNA sequencing and screening for nonribosomal peptide (NRPS) and polyketide (PKS) synthases genes. The isolates were assigned to genus Bacillus and Proteobacteria, and 20 strains harbored either NRPS, PKS type I or both genes. This is the first report on the diversity of culturable mesophilic bacteria associated with antimicrobial activity from Kolumbo area; the extremely high proportion of antimicrobial-producing strains suggested that this unique environment may represent a potential reservoir of novel bioactive compounds.
Collapse
|
13
|
Reeves EP, Yoshinaga MY, Pjevac P, Goldenstein NI, Peplies J, Meyerdierks A, Amann R, Bach W, Hinrichs KU. Microbial lipids reveal carbon assimilation patterns on hydrothermal sulfide chimneys. Environ Microbiol 2014; 16:3515-32. [DOI: 10.1111/1462-2920.12525] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 05/25/2014] [Indexed: 11/30/2022]
Affiliation(s)
- Eoghan P. Reeves
- MARUM Center for Marine Environmental Sciences & Department of Geosciences; University of Bremen; Bremen D-28359 Germany
| | - Marcos Y. Yoshinaga
- MARUM Center for Marine Environmental Sciences & Department of Geosciences; University of Bremen; Bremen D-28359 Germany
| | - Petra Pjevac
- Department of Molecular Ecology; Max Planck Institute for Marine Microbiology; Bremen D-28359 Germany
| | - Nadine I. Goldenstein
- MARUM Center for Marine Environmental Sciences & Department of Geosciences; University of Bremen; Bremen D-28359 Germany
| | - Jörg Peplies
- Department of Molecular Ecology; Max Planck Institute for Marine Microbiology; Bremen D-28359 Germany
- Ribocon GmbH; Fahrenheitstrasse 1 Bremen D-28359 Germany
| | - Anke Meyerdierks
- Department of Molecular Ecology; Max Planck Institute for Marine Microbiology; Bremen D-28359 Germany
| | - Rudolf Amann
- Department of Molecular Ecology; Max Planck Institute for Marine Microbiology; Bremen D-28359 Germany
| | - Wolfgang Bach
- MARUM Center for Marine Environmental Sciences & Department of Geosciences; University of Bremen; Bremen D-28359 Germany
| | - Kai-Uwe Hinrichs
- MARUM Center for Marine Environmental Sciences & Department of Geosciences; University of Bremen; Bremen D-28359 Germany
| |
Collapse
|