1
|
Astorch-Cardona A, Odin GP, Chavagnac V, Dolla A, Gaussier H, Rommevaux C. Linking Zetaproteobacterial diversity and substratum type in iron-rich microbial mats from the Lucky Strike hydrothermal field (EMSO-Azores observatory). Appl Environ Microbiol 2024; 90:e0204123. [PMID: 38193671 PMCID: PMC10880625 DOI: 10.1128/aem.02041-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/01/2023] [Indexed: 01/10/2024] Open
Abstract
Zetaproteobacteria have been reported in different marine and terrestrial environments all over the globe. They play an essential role in marine iron-rich microbial mats, as one of their autotrophic primary producers, oxidizing Fe(II) and producing Fe-oxyhydroxides with different morphologies. Here, we study and compare the Zetaproteobacterial communities of iron-rich microbial mats from six different sites of the Lucky Strike Hydrothermal Field through the use of the Zetaproteobacterial operational taxonomic unit (ZetaOTU) classification. We report for the first time the Zetaproteobacterial core microbiome of these iron-rich microbial mats, which is composed of four ZetaOTUs that are cosmopolitan and essential for the development of the mats. The study of the presence and abundance of different ZetaOTUs among sites reveals two clusters, which are related to the lithology and permeability of the substratum on which they develop. The Zetaproteobacterial communities of cluster 1 are characteristic of poorly permeable substrata, with little evidence of diffuse venting, while those of cluster 2 develop on hydrothermal slabs or deposits that allow the percolation and outflow of diffuse hydrothermal fluids. In addition, two NewZetaOTUs 1 and 2 were identified, which could be characteristic of anthropic iron and unsedimented basalt, respectively. We also report significant correlations between the abundance of certain ZetaOTUs and that of iron oxide morphologies, indicating that their formation could be taxonomically and/or environmentally driven. We identified a new morphology of Fe(III)-oxyhydroxides that we named "corals." Overall, our work contributes to the knowledge of the biogeography of this bacterial class by providing additional data from the Atlantic Ocean, a lesser-studied ocean in terms of Zetaproteobacterial diversity.IMPORTANCEUp until now, Zetaproteobacterial diversity studies have revealed possible links between Zetaproteobacteria taxa, habitats, and niches. Here, we report for the first time the Zetaproteobacterial core microbiome of iron-rich mats from the Lucky Strike Hydrothermal Field (LSHF), as well as two new Zetaproteobacterial operational taxonomic units (NewZetaOTUs) that could be substratum specific. We highlight that the substratum on which iron-rich microbial mats develop, especially because of its permeability to diffuse hydrothermal venting, has an influence on their Zetaproteobacterial communities. Moreover, our work adds to the knowledge of the biogeography of this bacterial class by providing additional data from the hydrothermal vent sites along the Mid-Atlantic Ridge. In addition to the already described iron oxide morphologies, we identify in our iron-rich mats a new morphology that we named corals. Finally, we argue for significant correlations between the relative abundance of certain ZetaOTUs and that of iron oxide morphologies, contributing to the understanding of the drivers of iron oxide production in iron-oxidizing bacteria.
Collapse
Affiliation(s)
- Aina Astorch-Cardona
- Aix-Marseille University, Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Giliane P. Odin
- Laboratoire Géomatériaux et Environnement, Université Gustave Eiffel, Marne-la-Vallée, France
| | - Valérie Chavagnac
- Géosciences Environnement Toulouse, CNRS UMR 5563 (CNRS/UPS/IRD/CNES), Université de Toulouse, Observatoire Midi-Pyrénées, Toulouse, France
| | - Alain Dolla
- Aix-Marseille University, Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Hélène Gaussier
- Aix-Marseille University, Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Céline Rommevaux
- Aix-Marseille University, Université de Toulon, CNRS, IRD, MIO, Marseille, France
| |
Collapse
|
2
|
Li Vigni L, Daskalopoulou K, Calabrese S, Kyriakopoulos K, Bellomo S, Brusca L, Brugnone F, D'Alessandro W. Characterization of trace elements in thermal and mineral waters of Greece. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27829-x. [PMID: 37268809 DOI: 10.1007/s11356-023-27829-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 05/18/2023] [Indexed: 06/04/2023]
Abstract
Natural thermal and mineral waters are widely distributed along the Hellenic region and are related to the geodynamic regime of the country. The diverse lithological and tectonic settings they are found in reflect the great variability in their chemical and isotopic composition. The current study presents 276 (published and unpublished) trace element water data and discusses the sources and processes affecting the water by taking into consideration the framework of their geographic distribution. The dataset is divided in groups using temperature- and pH-related criteria. Results yield a wide range of concentrations, often related to the solubility properties of the individual elements and the factors impacting them (i.e. temperature, acidity, redox conditions and salinity). Many elements (e.g. alkalis, Ti, Sr, As and Tl) present a good correlation with temperature, which is in cases impacted by water rock interactions, while others (e.g. Be, Al, Cu, Se, Cd) exhibit either no relation or an inverse correlation with T possibly because they become oversaturated at higher temperatures in solid phases. A moderately constant inverse correlation is noticed for the vast majority of trace elements and pH, whereas no relationship between trace element concentrations and Eh was found. Seawater contamination and water-rock interaction seem to be the main natural processes that influence both salinity and elemental content. All in all, Greek thermomineral waters exceed occasionally the accepted limits representing in such cases serious harm to the environment and probably indirectly (through the water cycle) to human health.
Collapse
Affiliation(s)
| | - Kyriaki Daskalopoulou
- Institute of Geosciences, University of Potsdam, Karl-Liebknecht-Str. 24-25, Potsdam-Golm, Germany
- Physics of Earthquakes and Volcanoes, GeoForschungs Zentrum, Helmholtzstraße 6/7, Potsdam, Germany
| | - Sergio Calabrese
- DiSTeM, University of Palermo, Via Archirafi 36, Palermo, Italy
- Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Palermo, Via Ugo La Malfa 153, Palermo, Italy
| | - Konstantinos Kyriakopoulos
- Faculty of Geology and Geoenvironment, National and Kapodistrian University of Athens, Ano Ilissia, Panestimioupolis, Greece
| | - Sergio Bellomo
- Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Palermo, Via Ugo La Malfa 153, Palermo, Italy
| | - Lorenzo Brusca
- Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Palermo, Via Ugo La Malfa 153, Palermo, Italy
| | | | - Walter D'Alessandro
- Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Palermo, Via Ugo La Malfa 153, Palermo, Italy.
| |
Collapse
|
3
|
Upin HE, Newell DL, Colman DR, Boyd ES. Tectonic settings influence the geochemical and microbial diversity of Peru hot springs. COMMUNICATIONS EARTH & ENVIRONMENT 2023; 4:112. [PMID: 38665187 PMCID: PMC11041657 DOI: 10.1038/s43247-023-00787-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 03/29/2023] [Indexed: 04/28/2024]
Abstract
Tectonic processes control hot spring temperature and geochemistry, yet how this in turn shapes microbial community composition is poorly understood. Here, we present geochemical and 16 S rRNA gene sequencing data from 14 hot springs from contrasting styles of subduction along a convergent margin in the Peruvian Andes. We find that tectonic influence on hot spring temperature and geochemistry shapes microbial community composition. Hot springs in the flat-slab and back-arc regions of the subduction system had similar pH but differed in geochemistry and microbiology, with significant relationships between microbial community composition, geochemistry, and geologic setting. Flat-slab hot springs were chemically heterogeneous, had modest surface temperatures (up to 45 °C), and were dominated by members of the metabolically diverse phylum Proteobacteria. Whereas, back-arc hot springs were geochemically more homogenous, exhibited high concentrations of dissolved metals and gases, had higher surface temperatures (up to 81 °C), and host thermophilic archaeal and bacterial lineages.
Collapse
Affiliation(s)
- Heather E. Upin
- Department of Geosciences, Utah State University, Logan, UT USA
| | | | - Daniel R. Colman
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT USA
| | - Eric S. Boyd
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT USA
| |
Collapse
|
4
|
Bourrain M, Suzuki MT, Calvez A, West NJ, Lions J, Lebaron P. In-depth prospection of Avène Thermal Spring Water reveals an uncommon and stable microbial community. J Eur Acad Dermatol Venereol 2021; 34 Suppl 5:8-14. [PMID: 32870559 DOI: 10.1111/jdv.16599] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/24/2020] [Accepted: 04/30/2020] [Indexed: 01/04/2023]
Abstract
BACKGROUND Avène Thermal Spring Water (TSW) exhibits therapeutic properties in the treatment of skin pathologies. Arising from a dolomitic aquifer system, its physico-chemical properties are well-established and its bacteriological quality regularly monitored. The microbiota of this aquifer have been characterized. OBJECTIVES We aimed to describe the structure of the bacterial community inhabiting the deep aquifer and to examine its dynamics over time. METHODS The Avène TSW was collected at the catchment point and filtered through 0.1 µm pore size filters. The sampling was carried out every 3 months to generate a 4-year time series. The DNA extracted from filters was analysed using high-throughput 16S rRNA gene amplicon sequencing, and the microorganisms and their contribution were characterized by the taxonomic assignment of sequence variants generated from each sample. RESULTS Bacteria were distributed into 39 phyla. Nitrospirae and Proteobacteria were the most prevalent, accounting for 38% and 23% of the total community on average, respectively. A stable pattern was observed throughout the study. A few bacterial species were always detected, forming a core community of likely chemolithoautotrophic organisms which might use energy sources and nutrients produced from water-bedrock interactions. Most of the species were distantly related to organisms described to date. CONCLUSIONS Avène TSW provided by the deep aquifer system harbours a unique microbial community, shaped by the physico-chemical characteristics of the deep environment. Its remarkable stability over time has revealed a high level of confinement of the water resource.
Collapse
Affiliation(s)
- M Bourrain
- Pierre Fabre Dermo-Cosmétique R&D Center, Toulouse, France
| | - M T Suzuki
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes, LBBM, Observatoire Océanologique, Banyuls-sur-mer, France
| | - A Calvez
- Pierre Fabre Dermo-Cosmétique R&D Center, Toulouse, France
| | - N J West
- Sorbonne Université, CNRS, Observatoire Océanologique de Banyuls, Banyuls-sur-mer, France
| | - J Lions
- Pierre Fabre Dermo-Cosmétique R&D Center, Toulouse, France
| | - P Lebaron
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes, LBBM, Observatoire Océanologique, Banyuls-sur-mer, France
| |
Collapse
|
5
|
Genomic Insights into Two Novel Fe(II)-Oxidizing Zetaproteobacteria Isolates Reveal Lifestyle Adaption to Coastal Marine Sediments. Appl Environ Microbiol 2020; 86:AEM.01160-20. [PMID: 32561582 DOI: 10.1128/aem.01160-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 06/13/2020] [Indexed: 11/20/2022] Open
Abstract
The discovery of the novel Zetaproteobacteria class greatly expanded our understanding of neutrophilic, microaerophilic microbial Fe(II) oxidation in marine environments. Despite molecular techniques demonstrating their global distribution, relatively few isolates exist, especially from low-Fe(II) environments. Furthermore, the Fe(II) oxidation pathways used by Zetaproteobacteria remain poorly understood. Here, we present the genomes (>99% genome completeness) of two Zetaproteobacteria, which are the only cultivated isolates originating from typical low-Fe [porewater Fe(II), 70 to 100 μM] coastal marine sediments. The two strains share <90% average nucleotide identity (ANI) with each other and <80% ANI with any other Zetaproteobacteria genome. The closest relatives were Mariprofundus aestuarium strain CP-5 and Mariprofundus ferrinatatus strain CP-8 (96 to 98% 16S rRNA gene sequence similarity). Fe(II) oxidation of strains KV and NF is most likely mediated by the putative Fe(II) oxidase Cyc2. Interestingly, the genome of strain KV also encodes a putative multicopper oxidase, PcoAB, which could play a role in Fe(II) oxidation, a pathway found only in two other Zetaproteobacteria genomes (Ghiorsea bivora TAG-1 and SCGC AB-602-C20). The strains show potential adaptations to fluctuating O2 concentrations, indicated by the presence of both cbb 3- and aa 3-type cytochrome c oxidases, which are adapted to low and high O2 concentrations, respectively. This is further supported by the presence of several oxidative-stress-related genes. In summary, our results reveal the potential Fe(II) oxidation pathways employed by these two novel chemolithoautotrophic Fe(II)-oxidizing species and the lifestyle adaptations which enable the Zetaproteobacteria to survive in coastal environments with low Fe(II) and regular redox fluctuations.IMPORTANCE Until recently, the importance and relevance of Zetaproteobacteria were mainly thought to be restricted to high-Fe(II) environments, such as deep-sea hydrothermal vents. The two novel Mariprofundus isolates presented here originate from typical low-Fe(II) coastal marine sediments. As well as being low in Fe(II), these environments are often subjected to fluctuating O2 concentrations and regular mixing by wave action and bioturbation. The discovery of two novel isolates highlights the importance of these organisms in such environments, as Fe(II) oxidation has been shown to impact nutrients and trace metals. Genome analysis of these two strains further supported their lifestyle adaptation and therefore their potential preference for coastal marine sediments, as genes necessary for surviving dynamic O2 concentrations and oxidative stress were identified. Furthermore, our analyses also expand our understanding of the poorly understood Fe(II) oxidation pathways used by neutrophilic, microaerophilic Fe(II) oxidizers.
Collapse
|
6
|
McAllister SM, Moore RM, Gartman A, Luther GW, Emerson D, Chan CS. The Fe(II)-oxidizing Zetaproteobacteria: historical, ecological and genomic perspectives. FEMS Microbiol Ecol 2019; 95:fiz015. [PMID: 30715272 PMCID: PMC6443915 DOI: 10.1093/femsec/fiz015] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 01/29/2019] [Indexed: 01/22/2023] Open
Abstract
The Zetaproteobacteria are a class of bacteria typically associated with marine Fe(II)-oxidizing environments. First discovered in the hydrothermal vents at Loihi Seamount, Hawaii, they have become model organisms for marine microbial Fe(II) oxidation. In addition to deep sea and shallow hydrothermal vents, Zetaproteobacteria are found in coastal sediments, other marine subsurface environments, steel corrosion biofilms and saline terrestrial springs. Isolates from a range of environments all grow by autotrophic Fe(II) oxidation. Their success lies partly in their microaerophily, which enables them to compete with abiotic Fe(II) oxidation at Fe(II)-rich oxic/anoxic transition zones. To determine the known diversity of the Zetaproteobacteria, we have used 16S rRNA gene sequences to define 59 operational taxonomic units (OTUs), at 97% similarity. While some Zetaproteobacteria taxa appear to be cosmopolitan, others are enriched by specific habitats. OTU networks show that certain Zetaproteobacteria co-exist, sharing compatible niches. These niches may correspond with adaptations to O2, H2 and nitrate availability, based on genomic analyses of metabolic potential. Also, a putative Fe(II) oxidation gene has been found in diverse Zetaproteobacteria taxa, suggesting that the Zetaproteobacteria evolved as Fe(II) oxidation specialists. In all, studies suggest that Zetaproteobacteria are widespread, and therefore may have a broad influence on marine and saline terrestrial Fe cycling.
Collapse
Affiliation(s)
- Sean M McAllister
- School of Marine Science and Policy, University of Delaware, 700 Pilottown Road, 204 Cannon Lab, Lewes, Delaware, USA 19958
| | - Ryan M Moore
- Center for Bioinformatics and Computational Biology, University of Delaware, 15 Innovation Way, 205 Delaware Biotechnology Institute, Newark, Delaware, USA 19711
| | - Amy Gartman
- School of Marine Science and Policy, University of Delaware, 700 Pilottown Road, 204 Cannon Lab, Lewes, Delaware, USA 19958
| | - George W Luther
- School of Marine Science and Policy, University of Delaware, 700 Pilottown Road, 204 Cannon Lab, Lewes, Delaware, USA 19958
| | - David Emerson
- Bigelow Laboratory for Ocean Sciences, 60 Bigelow Drive, East Boothbay, Maine, USA 04544
| | - Clara S Chan
- School of Marine Science and Policy, University of Delaware, 700 Pilottown Road, 204 Cannon Lab, Lewes, Delaware, USA 19958
- Department of Geological Sciences, University of Delaware, 101 Penny Hall, Newark, Delaware, USA 19716
| |
Collapse
|