1
|
Dai Y, Huang H, Qing Y, Li J, Li D. Ecological response of an umbrella species to changing climate and land use: Habitat conservation for Asiatic black bear in the Sichuan-Chongqing Region, Southwestern China. Ecol Evol 2023; 13:e10222. [PMID: 37384242 PMCID: PMC10293704 DOI: 10.1002/ece3.10222] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/06/2023] [Accepted: 06/12/2023] [Indexed: 06/30/2023] Open
Abstract
Climate and land use changes are increasingly recognized as major threats to global biodiversity, with significant impacts on wildlife populations and ecosystems worldwide. The study of how climate and land use changes impact wildlife is of paramount importance for advancing our understanding of ecological processes in the face of global environmental change, informing conservation planning and management, and identifying the mechanisms and thresholds that underlie species' responses to shifting climatic conditions. The Asiatic black bear (Ursus thibetanus) is a prominent umbrella species in a biodiversity hotspot in Southwestern China, and its conservation is vital for safeguarding sympatric species. However, the extent to which this species' habitat may respond to global climate and land use changes is poorly understood, underscoring the need for further investigation. Our goal was to anticipate the potential impacts of upcoming climate and land use changes on the distribution and dispersal patterns of the Asiatic black bear in the Sichuan-Chongqing Region. We used MaxEnt modeling to evaluate habitat vulnerability using three General Circulation Models (GCMs) and three scenarios of climate and land use changes. Subsequently, we used Circuit Theory to identify prospective dispersal paths. Our results revealed that the current area of suitable habitat for the Asiatic black bear was 225,609.59 km2 (comprising 39.69% of the total study area), but was expected to decrease by -53.1%, -49.48%, and -28.55% under RCP2.6, RCP4.5, and RCP8.5 projection scenarios, respectively. Across all three GCMs, the distribution areas and dispersal paths of the Asiatic black bear were projected to shift to higher altitudes and constrict by the 2070s. Furthermore, the results indicated that the density of dispersal paths would decrease, while the resistance to dispersal would increase across the study area. In order to protect the Asiatic black bear, it is essential to prioritize the protection of climate refugia and dispersal paths. Our findings provide a sound scientific foundation for the allocation of such protected areas in the Sichuan-Chongqing Region that are both effective and adaptive in the face of ongoing global climate and land use changes.
Collapse
Affiliation(s)
- Yunchuan Dai
- Institute for Ecology and Environmental Resources, Research Center for Ecological Security and Green DevelopmentChongqing Academy of Social SciencesChongqingChina
| | - Heqing Huang
- Chongqing Academy of Ecology and Environmental SciencesChongqingChina
| | - Yu Qing
- Chongqing Industry Polytechnic CollegeChongqingChina
| | - Jiatong Li
- School of TourismKaili UniversityKailiChina
| | - Dayong Li
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education)China West Normal UniversityNanchongChina
| |
Collapse
|
2
|
Wolverines (Gulo gulo) in the Arctic: Revisiting distribution and identifying research and conservation priorities amid rapid environmental change. Polar Biol 2022; 45:1465-1482. [PMID: 36090964 PMCID: PMC9440465 DOI: 10.1007/s00300-022-03079-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/23/2022]
Abstract
Wolverines (Gulo gulo) occupy most of the globe’s Arctic tundra. Given the rapidly warming climate and expanding human activity in this biome, understanding wolverine ecology, and therefore the species’ vulnerability to such changes, is increasingly important for developing research priorities and effective management strategies. Here, we review and synthesize knowledge of wolverines in the Arctic using both Western science sources and available Indigenous Knowledge (IK) to improve our understanding of wolverine ecology in the Arctic and better predict the species’ susceptibility to change. To accomplish this, we update the pan-Arctic distribution map of wolverines to account for recent observations and then discuss resulting inference and uncertainties. We use these patterns to contextualize and discuss potential underlying drivers of distribution and population dynamics, drawing upon knowledge of food habits, habitat associations, and harvest, as well as studies of wolverine ecology elsewhere. We then identify four broad areas to prioritize conservation and research efforts: (1) Monitoring trends in population abundance, demographics, and distribution and the drivers thereof, (2) Evaluating and predicting wolverines’ responses to ongoing climate change, particularly the consequences of reduced snow and sea ice, and shifts in prey availability, (3) Understanding wolverines’ response to human development, including the possible impact of wintertime over-snow travel and seismic testing to reproductive denning, as well as vulnerability to hunting and trapping associated with increased human access, and (4) Ensuring that current and future harvest are sustainable.
Collapse
|
3
|
Boyle JS, Angers-Blondin S, Assmann JJ, Myers-Smith IH. Summer temperature—but not growing season length—influences radial growth of Salix arctica in coastal Arctic tundra. Polar Biol 2022. [DOI: 10.1007/s00300-022-03074-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
AbstractArctic climate change is leading to an advance of plant phenology (the timing of life history events) with uncertain impacts on tundra ecosystems. Although the lengthening of the growing season is thought to lead to increased plant growth, we have few studies of how plant phenology change is altering tundra plant productivity. Here, we test the correspondence between 14 years of Salix arctica phenology data and radial growth on Qikiqtaruk–Herschel Island, Yukon Territory, Canada. We analysed stems from 28 individuals using dendroecology and linear mixed-effect models to test the statistical power of growing season length and climate variables to individually predict radial growth. We found that summer temperature best explained annual variation in radial growth. We found no strong evidence that leaf emergence date, earlier leaf senescence date, or total growing season length had any direct or lagged effects on radial growth. Radial growth was also not explained by interannual variation in precipitation, MODIS surface greenness (NDVI), or sea ice concentration. Our results demonstrate that at this site, for the widely distributed species S. arctica, temperature—but not growing season length—influences radial growth. These findings challenge the assumption that advancing phenology and longer growing seasons will increase the productivity of all plant species in Arctic tundra ecosystems.
Collapse
|
4
|
Ktitorov P, Ivanov S, Kornilova E, Kulikova O, Ris H, Sokolovskis K, Solovyeva D. Shrub-dwelling species are joining the Arctic passerine bird community in the Chaun Delta (Western Chukotka, Russia). Polar Biol 2021. [DOI: 10.1007/s00300-021-02915-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Rapid Ecosystem Change at the Southern Limit of the Canadian Arctic, Torngat Mountains National Park. REMOTE SENSING 2021. [DOI: 10.3390/rs13112085] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Northern protected areas guard against habitat and species loss but are themselves highly vulnerable to environmental change due to their fixed spatial boundaries. In the low Arctic, Torngat Mountains National Park (TMNP) of Canada, widespread greening has recently occurred alongside warming temperatures and regional declines in caribou. Little is known, however, about how biophysical controls mediate plant responses to climate warming, and available observational data are limited in temporal and spatial scope. In this study, we investigated the drivers of land cover change for the 9700 km2 extent of the park using satellite remote sensing and geostatistical modelling. Random forest classification was used to hindcast and simulate land cover change for four different land cover types from 1985 to 2019 with topographic and surface reflectance imagery (Landsat archive). The resulting land cover maps, in addition to topographic and biotic variables, were then used to predict where future shrub expansion is likely to occur using a binomial regression framework. Land cover hindcasts showed a 235% increase in shrub and a 105% increase in wet vegetation cover from 1985/89 to 2015/19. Shrub cover was highly persistent and displaced wet vegetation in southern, low-elevation areas, whereas wet vegetation expanded to formerly dry, mid-elevations. The predictive model identified both biotic (initial cover class, number of surrounding shrub neighbors), and topographic variables (elevation, latitude, and distance to the coast) as strong predictors of future shrub expansion. A further 51% increase in shrub cover is expected by 2039/43 relative to 2014 reference data. Establishing long-term monitoring plots within TMNP in areas where rapid vegetation change is predicted to occur will help to validate remote sensing observations and will improve our understanding of the consequences of change for biotic and abiotic components of the tundra ecosystem, including important cultural keystone species.
Collapse
|
6
|
McDermott MT, Doak P, Handel CM, Breed GA, Mulder CPH. Willow drives changes in arthropod communities of northwestern Alaska: ecological implications of shrub expansion. Ecosphere 2021. [DOI: 10.1002/ecs2.3514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Molly T. McDermott
- Department of Biology and Wildlife Institute of Arctic Biology University of Alaska Fairbanks Alaska99775USA
- Alaska Science Center U.S. Geological Survey 4210 University Drive Anchorage Alaska99508USA
| | - Patricia Doak
- Department of Biology and Wildlife Institute of Arctic Biology University of Alaska Fairbanks Alaska99775USA
| | - Colleen M. Handel
- Alaska Science Center U.S. Geological Survey 4210 University Drive Anchorage Alaska99508USA
| | - Greg A. Breed
- Department of Biology and Wildlife Institute of Arctic Biology University of Alaska Fairbanks Alaska99775USA
| | - Christa P. H. Mulder
- Department of Biology and Wildlife Institute of Arctic Biology University of Alaska Fairbanks Alaska99775USA
| |
Collapse
|
7
|
Ecological determinants of avian distribution and abundance at Rankin Inlet, Nunavut in the Canadian Arctic. Polar Biol 2021. [DOI: 10.1007/s00300-020-02766-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
8
|
Doyle S, Gray A, McMahon BJ. Anthropogenic impacts on the demographics of Arctic-breeding birds. Polar Biol 2020. [DOI: 10.1007/s00300-020-02756-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
9
|
Zhou J, Tape KD, Prugh L, Kofinas G, Carroll G, Kielland K. Enhanced shrub growth in the Arctic increases habitat connectivity for browsing herbivores. GLOBAL CHANGE BIOLOGY 2020; 26:3809-3820. [PMID: 32243648 DOI: 10.1111/gcb.15104] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 03/26/2020] [Indexed: 06/11/2023]
Abstract
Habitat connectivity is a key factor influencing species range dynamics. Rapid warming in the Arctic is leading to widespread heterogeneous shrub expansion, but impacts of these habitat changes on range dynamics for large herbivores are not well understood. We use the climate-shrub-moose system of northern Alaska as a case study to examine how shrub habitat will respond to predicted future warming, and how these changes may impact habitat connectivity and the distribution of moose (Alces alces). We used a 19 year moose location dataset, a 568 km transect of field shrub sampling, and forecasted warming scenarios with regional downscaling to map current and projected shrub habitat for moose on the North Slope of Alaska. The tall-shrub habitat for moose exhibited a dendritic spatial configuration correlated with river corridor networks and mean July temperature. Warming scenarios predict that moose habitat will more than double by 2099. Forecasted warming is predicted to increase the spatial cohesion of the habitat network that diminishes effects of fragmentation, which improves overall habitat quality and likely expands the range of moose. These findings demonstrate how climate change may increase habitat connectivity and alter the distributions of shrub herbivores in the Arctic, including creation of novel communities and ecosystems.
Collapse
Affiliation(s)
- Jiake Zhou
- Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - Ken D Tape
- Geophysical Institute, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - Laura Prugh
- School of Environmental and Forest Sciences, University of Washington, Seattle, WA, USA
| | - Gary Kofinas
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, USA
| | | | - Knut Kielland
- Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK, USA
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, USA
| |
Collapse
|
10
|
Nawrocki TW, Carlson ML, Osnas JLD, Trammell EJ, Witmer FDW. Regional mapping of species-level continuous foliar cover: beyond categorical vegetation mapping. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2020; 30:e02081. [PMID: 31971646 PMCID: PMC7317374 DOI: 10.1002/eap.2081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 12/02/2019] [Accepted: 12/20/2019] [Indexed: 06/10/2023]
Abstract
The ability to quantify spatial patterns and detect change in terrestrial vegetation across large landscapes depends on linking ground-based measurements of vegetation to remotely sensed data. Unlike non-overlapping categorical vegetation types (i.e., typical vegetation and land cover maps), species-level gradients of foliar cover are consistent with the ecological theories of individualistic response of species and niche space. We collected foliar cover data for vascular plant, bryophyte, and lichen species and 17 environmental variables in the Arctic Coastal Plain and Brooks Foothills of Alaska from 2012 to 2017. We integrated these data into a standardized database with 13 additional vegetation survey and monitoring data sets in northern Alaska collected from 1998 to 2017. To map the patterns of foliar cover for six dominant and widespread vascular plant species in arctic Alaska, we statistically associated ground-based measurements of species distribution and abundance to environmental and multi-season spectral covariates using a Bayesian statistical learning approach. For five of the six modeled species, our models predicted 36% to 65% of the observed species-level variation in foliar cover. Overall, our continuous foliar cover maps predicted more of the observed spatial heterogeneity in species distribution and abundance than an existing categorical vegetation map. Mapping continuous foliar cover at the species level also revealed ecological patterns obscured by aggregation in existing plant functional type approaches. Species-level analysis of vegetation patterns enables quantifying and monitoring landscape-level changes in species, vegetation communities, and wildlife habitat independently of subjective categorical vegetation types and facilitates integrating spatial patterns across multiple ecological scales. The novel species-level foliar cover mapping approach described here provides spatial information about the functional role of plant species in vegetation communities and wildlife habitat that are not available in categorical vegetation maps or quantitative maps of broadly defined vegetation aggregates.
Collapse
Affiliation(s)
- Timm W. Nawrocki
- Alaska Center for Conservation ScienceUniversity of Alaska Anchorage3211 Providence DriveAnchorageAlaska99508USA
| | - Matthew L. Carlson
- Alaska Center for Conservation ScienceUniversity of Alaska Anchorage3211 Providence DriveAnchorageAlaska99508USA
- Department of Biological Sciences and Alaska Center for Conservation ScienceUniversity of Alaska Anchorage3211 Providence DriveAnchorageAlaska99508USA
| | - Jeanne L. D. Osnas
- Alaska Center for Conservation ScienceUniversity of Alaska Anchorage3211 Providence DriveAnchorageAlaska99508USA
| | - E. Jamie Trammell
- Department of Environmental Science & PolicySouthern Oregon University1250 Siskiyou Blvd.AshlandOregon97520USA
| | - Frank D. W. Witmer
- Department of Computer Science & EngineeringUniversity of Alaska Anchorage3211 Providence DriveAnchorageAlaska99508USA
| |
Collapse
|
11
|
Bjorkman AD, García Criado M, Myers-Smith IH, Ravolainen V, Jónsdóttir IS, Westergaard KB, Lawler JP, Aronsson M, Bennett B, Gardfjell H, Heiðmarsson S, Stewart L, Normand S. Status and trends in Arctic vegetation: Evidence from experimental warming and long-term monitoring. AMBIO 2020; 49:678-692. [PMID: 30929249 PMCID: PMC6989703 DOI: 10.1007/s13280-019-01161-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 02/04/2019] [Accepted: 02/14/2019] [Indexed: 05/20/2023]
Abstract
Changes in Arctic vegetation can have important implications for trophic interactions and ecosystem functioning leading to climate feedbacks. Plot-based vegetation surveys provide detailed insight into vegetation changes at sites around the Arctic and improve our ability to predict the impacts of environmental change on tundra ecosystems. Here, we review studies of changes in plant community composition and phenology from both long-term monitoring and warming experiments in Arctic environments. We find that Arctic plant communities and species are generally sensitive to warming, but trends over a period of time are heterogeneous and complex and do not always mirror expectations based on responses to experimental manipulations. Our findings highlight the need for more geographically widespread, integrated, and comprehensive monitoring efforts that can better resolve the interacting effects of warming and other local and regional ecological factors.
Collapse
Affiliation(s)
- Anne D. Bjorkman
- Senckenberg Gesellschaft für Naturforschung, Biodiversity and Climate Research Centre (SBiK-F), Frankfurt, Germany
- Ecoinformatics and Biodiversity, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | | | | | | | | | | | - James P. Lawler
- Inventory and Monitoring Program, U.S. National Park Service, Anchorage, Alaska USA
| | - Mora Aronsson
- Swedish Species Information Centre, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Bruce Bennett
- Yukon Conservation Data Centre, Whitehorse, Yukon Canada
| | - Hans Gardfjell
- Department of Forest Resource Management, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Starri Heiðmarsson
- Akureyri Division, Icelandic Institute of Natural History, Borgir vid Nordurslod, 600 Akureyri, Iceland
| | - Laerke Stewart
- Arctic Ecosystem Ecology, Department of Bioscience, Aarhus University, Roskilde, Denmark
| | - Signe Normand
- Ecoinformatics and Biodiversity, Department of Bioscience, Aarhus University, Aarhus, Denmark
- Arctic Research Center, Department of Bioscience, Aarhus University, Ny Munkegade 114-116, 8000 Århus, Denmark
- Center for Biodiversity Dynamic in a Changing World (BIOCHANGE), Department of Bioscience, Aarhus University, Ny Munkegade 114-116, 8000 Århus, Denmark
| |
Collapse
|
12
|
Hunt KE, Hahn TP, Buck CL, Wingfield JC. Effect of testosterone blockers on male aggression, song and parental care in an arctic passerine, the Lapland longspur (Calcarius lapponicus). Horm Behav 2019; 110:10-18. [PMID: 30735664 DOI: 10.1016/j.yhbeh.2019.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 01/16/2019] [Accepted: 02/04/2019] [Indexed: 01/19/2023]
Abstract
In many passerine birds, testosterone stimulates song and aggression but inhibits paternal care, but few studies have explored whether such effects can be reversed with testosterone blockers. We explored the effect of testosterone blockers on song, aggression and paternal care of Lapland longspurs (Calcarius lapponicus), an arctic passerine with a short breeding season. Twenty-one "blocker males" received implants containing an androgen receptor blocker and an aromatase inhibitor, compared to 27 control males with empty or no implants. Song, aggression and other behaviors were evaluated with simulated territorial intrusions (STI) during mate-guarding, and with focal observations (without STI) during mate-guarding and incubation. Nests were monitored and nestlings weighed as an indirect measure of paternal care. During STI, blocker males exhibited similar song rates, significantly lower aggression, and were significantly less likely to be found on territory than control males. Focal observations revealed no differences in spontaneous song, aggression, foraging, preening, or flight activity. Blocker males' nestlings had greater body mass on day 5 after hatching, but this difference disappeared by fledging, and both groups fledged similar numbers of young. Two blocker males exhibited unusual paternal care: incubation and brooding of young, or feeding of nestlings at another male's nest. In sum, testosterone blockers affected aggression but not song, contrasting with results from previously published testosterone implant studies. Effects on paternal care were concordant with testosterone implant studies. These patterns may be related to rapid behavioral changes characteristic of the short breeding season of the Arctic.
Collapse
Affiliation(s)
- Kathleen E Hunt
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA.
| | - Thomas P Hahn
- Department of Neurobiology, Physiology & Behavior, University of California, One Shields Ave., Davis, CA 95616, USA.
| | - C Loren Buck
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA.
| | - John C Wingfield
- Department of Neurobiology, Physiology & Behavior, University of California, One Shields Ave., Davis, CA 95616, USA.
| |
Collapse
|
13
|
Myers‐Smith IH, Grabowski MM, Thomas HJD, Angers‐Blondin S, Daskalova GN, Bjorkman AD, Cunliffe AM, Assmann JJ, Boyle JS, McLeod E, McLeod S, Joe R, Lennie P, Arey D, Gordon RR, Eckert CD. Eighteen years of ecological monitoring reveals multiple lines of evidence for tundra vegetation change. ECOL MONOGR 2019. [DOI: 10.1002/ecm.1351] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Isla H. Myers‐Smith
- School of GeoSciences University of Edinburgh Edinburgh EH9 3FF United Kingdom
| | | | - Haydn J. D. Thomas
- School of GeoSciences University of Edinburgh Edinburgh EH9 3FF United Kingdom
| | | | | | - Anne D. Bjorkman
- School of GeoSciences University of Edinburgh Edinburgh EH9 3FF United Kingdom
- Section for Ecoinformatics & Biodiversity Department of Bioscience Aarhus University DK‐8000 Aarhus Denmark
| | - Andrew M. Cunliffe
- School of GeoSciences University of Edinburgh Edinburgh EH9 3FF United Kingdom
| | - Jakob J. Assmann
- School of GeoSciences University of Edinburgh Edinburgh EH9 3FF United Kingdom
| | - Joseph S. Boyle
- School of GeoSciences University of Edinburgh Edinburgh EH9 3FF United Kingdom
| | - Edward McLeod
- Department of Environment Yukon Parks–Inuvik Office Yukon Territorial Government Inuvik NWT X0E 0T0 Canada
| | - Samuel McLeod
- Department of Environment Yukon Parks–Inuvik Office Yukon Territorial Government Inuvik NWT X0E 0T0 Canada
| | - Ricky Joe
- Department of Environment Yukon Parks–Inuvik Office Yukon Territorial Government Inuvik NWT X0E 0T0 Canada
| | - Paden Lennie
- Department of Environment Yukon Parks–Inuvik Office Yukon Territorial Government Inuvik NWT X0E 0T0 Canada
| | - Deon Arey
- Department of Environment Yukon Parks–Inuvik Office Yukon Territorial Government Inuvik NWT X0E 0T0 Canada
| | - Richard R. Gordon
- Department of Environment Yukon Parks–Inuvik Office Yukon Territorial Government Inuvik NWT X0E 0T0 Canada
| | - Cameron D. Eckert
- Department of Environment Yukon Parks–Whitehorse Office Yukon Territorial Government Whitehorse Yukon Territory Y1A 2C6 Canada
| |
Collapse
|
14
|
Krause JS, Pérez JH, Chmura HE, Meddle SL, Hunt KE, Gough L, Boelman N, Wingfield JC. Weathering the storm: Do arctic blizzards cause repeatable changes in stress physiology and body condition in breeding songbirds? Gen Comp Endocrinol 2018; 267:183-192. [PMID: 30031732 PMCID: PMC6127033 DOI: 10.1016/j.ygcen.2018.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 04/09/2018] [Accepted: 07/07/2018] [Indexed: 11/24/2022]
Abstract
Severe weather events are increasing worldwide because of climate change. To cope with severe weather events, vertebrates rely on the stress response which is activated by the hypothalamic-pituitary adrenal (HPA) axis to adjust physiology and behavior. Previous studies have detailed changes in baseline concentrations of the stress hormone corticosterone during a single storm event, but little data exists on how stress physiology and body condition are adjusted as the storm progresses across multiple days. This represents a serious gap in our understanding of how birds respond physiologically over the duration of a storm. We documented arctic snowstorms that occurred over five consecutive years that were endured by Lapland longspurs (Calcarius lapponicus; 2012-2016) and in three consecutive years by white-crowned sparrows (Zonotrichia leucophrys gambelii; 2014-2016). Data were collected on storm-free days, during snowstorms ranging in length from 1 to 3 days, and the day immediately following a snowstorm. The specific aims were to understand how stress physiology, measured at baseline and in response to restraint handling, and body condition changed over multiple days of the storm, and if these responses were consistent across years. Snowstorms did not affect baseline corticosterone concentrations for either species except for female Lapland longspurs and male white-crowned sparrows in 2014. Lapland longspurs, regardless of sex, increased stress-induced (restraint handling) corticosterone in response to snowstorms in all years but 2013, which was characterized by unusually harsh conditions. Both sexes of White-crowned sparrows showed a significant increase in the stress-induced levels of corticosterone during snowstorms in one of the three years of the study. Stress-induced corticosterone concentrations were only different across each day of the storm in one year of the study for Lapland longspurs. Changes in fat and body mass were not uniform across years, but measurable increases in fat stores and body mass were detected in males of both species during the first day of a snowstorm with declines typically occurring by the second day. Our study showed that severe weather events often caused rapid increases in HPA axis activity and body condition, but these profiles are likely dependent upon ecological and environmental context within the breeding season.
Collapse
Affiliation(s)
- Jesse S Krause
- Department of Neurobiology, Physiology and Behavior, University of California Davis, One Shields Avenue, Davis, CA 95616, USA.
| | - Jonathan H Pérez
- Department of Neurobiology, Physiology and Behavior, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Helen E Chmura
- Department of Neurobiology, Physiology and Behavior, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Simone L Meddle
- The Roslin Institute, The Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, Midlothian EH25 9RG, Scotland, UK
| | - Kathleen E Hunt
- Northern Arizona University, Department of Biological Sciences, Flagstaff, AZ 86011, USA
| | - Laura Gough
- Department of Biological Sciences, Towson University, Towson, MD 21252, USA
| | - Natalie Boelman
- Department of Earth and Environmental Sciences, and Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY 10964, USA
| | - John C Wingfield
- Department of Neurobiology, Physiology and Behavior, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
15
|
Ladin ZS, Van Nieuland S, Adalsteinsson SA, D’Amico V, Bowman JL, Buler JJ, Baetens JM, De Baets B, Shriver WG. Differential post-fledging habitat use of Nearctic-Neotropical migratory birds within an urbanized landscape. MOVEMENT ECOLOGY 2018; 6:17. [PMID: 30151198 PMCID: PMC6100711 DOI: 10.1186/s40462-018-0132-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 07/06/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Persistent declines in migratory songbird populations continue to motivate research exploring contributing factors to inform conservation efforts. Nearctic-Neotropical migratory species' population declines have been linked to habitat loss and reductions in habitat quality due to increasing urbanization in areas used throughout the annual cycle. Despite an increase in the number of studies on post-fledging ecology, generally characterized by the period between fledging and dispersal from natal areas or migration, contextual research linking post-fledging survival and habitat use to anthropogenic factors remains limited. METHODS Here, we examined habitat use of post-fledging habitat-generalist gray catbirds (Dumetella caroliniensis), and habitat-specialist wood thrushes (Hylocichla mustelina), up to 88 days after fledging within an urbanized landscape. These Neotropical migratory species share many life-history traits, exhibit differential degrees of habitat specialization, and co-occur in urbanized landscapes. Starting from daily movement data, we used time-integrated Brownian bridges to generate probability density functions of each species' probability of occurrence, and home range among 16 land cover classes including roads from the US Geological Survey National Land Cover Database for each species. RESULTS Habitat use differed between pre- and post-independence periods. After controlling for factors that influence habitat use (i.e., pre- or post-independence period, fate (whether individuals survived or not), and land cover class), we found that wood thrushes occupied home ranges containing six times more forest land cover than catbirds. In contrast, catbirds occupied home ranges containing twice the area of roads compared to wood thrushes. Wood thrushes had greater variance for area used (km2) among land cover classes within home ranges compared to catbirds. However, once fledglings achieved independence from parents, wood thrushes had lower variance associated with area used compared to catbirds. CONCLUSIONS Our findings support predictions that habitat-generalist gray catbirds spend more time in developed areas, less time in forest habitat, and use areas with more roads than the forest-specialist wood thrush. We found strong effects of pre- and post-independence periods on all of the response variables we tested. Species-specific habitat use patterns will likely be affected by projected increases in urbanization over the next several decades leading to further reductions in available forest habitat and increased road density, and will have important implications for the ecology and conservation of these birds.
Collapse
Affiliation(s)
- Zachary S. Ladin
- Department of Entomology and Wildlife Ecology, University of Delaware, Rm. 250 Townsend Hall, 531 South College Avenue, Newark, DE 19716 USA
| | - Steffie Van Nieuland
- Department of Data Analysis and Mathematical Modeling, Ghent University, Ghent, Belgium
| | | | - Vincent D’Amico
- US Forest Service, Northern Research Station, Newark, DE USA
| | - Jacob L. Bowman
- Department of Entomology and Wildlife Ecology, University of Delaware, Rm. 250 Townsend Hall, 531 South College Avenue, Newark, DE 19716 USA
| | - Jeffrey J. Buler
- Department of Entomology and Wildlife Ecology, University of Delaware, Rm. 250 Townsend Hall, 531 South College Avenue, Newark, DE 19716 USA
| | - Jan M. Baetens
- Department of Data Analysis and Mathematical Modeling, Ghent University, Ghent, Belgium
| | - Bernard De Baets
- Department of Data Analysis and Mathematical Modeling, Ghent University, Ghent, Belgium
| | - W. Gregory Shriver
- Department of Entomology and Wildlife Ecology, University of Delaware, Rm. 250 Townsend Hall, 531 South College Avenue, Newark, DE 19716 USA
| |
Collapse
|
16
|
González‐Gómez PL, Echeverria V, Estades CF, Perez JH, Krause JS, Sabat P, Li J, Kültz D, Wingfield JC. Contrasting seasonal and aseasonal environments across stages of the annual cycle in the rufous‐collared sparrow,
Zonotrichia capensis
: Differences in endocrine function, proteome and body condition. J Anim Ecol 2018; 87:1364-1382. [DOI: 10.1111/1365-2656.12846] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 03/29/2018] [Indexed: 01/07/2023]
Affiliation(s)
- Paulina L. González‐Gómez
- Department of Neurobiology, Physiology and Behavior University of California Davis Davis California
- Universidad Autónoma de Chile Providencia Santiago Chile
| | - Valentina Echeverria
- Departamento de Manejo de Recursos Naturales Facultad de Ciencias Forestales y Conservación de la Naturaleza Universidad de Chile La Pintana Santiago Chile
| | - Cristian F. Estades
- Departamento de Manejo de Recursos Naturales Facultad de Ciencias Forestales y Conservación de la Naturaleza Universidad de Chile La Pintana Santiago Chile
| | - Jonathan H. Perez
- Department of Neurobiology, Physiology and Behavior University of California Davis Davis California
| | - Jesse S. Krause
- Department of Neurobiology, Physiology and Behavior University of California Davis Davis California
| | - Pablo Sabat
- IEB Facultad de Ciencias Universidad de Chile Ñuñoa Santiago Chile
- Center of Applied Ecology and Sustainability (CAPES) Pontificia Universidad Católica de Chile Santiago Chile
| | - Jonathon Li
- Biochemical Evolution Laboratory Department of Animal Science University of California Davis Davis California
| | - Dietmar Kültz
- Biochemical Evolution Laboratory Department of Animal Science University of California Davis Davis California
| | - John C. Wingfield
- Department of Neurobiology, Physiology and Behavior University of California Davis Davis California
| |
Collapse
|
17
|
Oliver RY, Ellis DPW, Chmura HE, Krause JS, Pérez JH, Sweet SK, Gough L, Wingfield JC, Boelman NT. Eavesdropping on the Arctic: Automated bioacoustics reveal dynamics in songbird breeding phenology. SCIENCE ADVANCES 2018; 4:eaaq1084. [PMID: 29938220 PMCID: PMC6010323 DOI: 10.1126/sciadv.aaq1084] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 05/14/2018] [Indexed: 06/01/2023]
Abstract
Bioacoustic networks could vastly expand the coverage of wildlife monitoring to complement satellite observations of climate and vegetation. This approach would enable global-scale understanding of how climate change influences phenomena such as migratory timing of avian species. The enormous data sets that autonomous recorders typically generate demand automated analyses that remain largely undeveloped. We devised automated signal processing and machine learning approaches to estimate dates on which songbird communities arrived at arctic breeding grounds. Acoustically estimated dates agreed well with those determined via traditional surveys and were strongly related to the landscape's snow-free dates. We found that environmental conditions heavily influenced daily variation in songbird vocal activity, especially before egg laying. Our novel approaches demonstrate that variation in avian migratory arrival can be detected autonomously. Large-scale deployment of this innovation in wildlife monitoring would enable the coverage necessary to assess and forecast changes in bird migration in the face of climate change.
Collapse
Affiliation(s)
- Ruth Y. Oliver
- Department of Earth and Environmental Sciences, Columbia University, New York, NY 10027, USA
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY 10964, USA
| | | | - Helen E. Chmura
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, CA 95616, USA
| | - Jesse S. Krause
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, CA 95616, USA
| | - Jonathan H. Pérez
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, CA 95616, USA
| | - Shannan K. Sweet
- Horticulture Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Laura Gough
- Department of Biological Sciences, Towson University, Towson, MD 21252, USA
| | - John C. Wingfield
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, CA 95616, USA
| | - Natalie T. Boelman
- Department of Earth and Environmental Sciences, Columbia University, New York, NY 10027, USA
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY 10964, USA
| |
Collapse
|
18
|
Wheeler HC, Høye TT, Svenning JC. Wildlife species benefitting from a greener Arctic are most sensitive to shrub cover at leading range edges. GLOBAL CHANGE BIOLOGY 2018; 24:212-223. [PMID: 28731522 DOI: 10.1111/gcb.13837] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 07/01/2017] [Indexed: 06/07/2023]
Abstract
Widespread expansion of shrubs is occurring across the Arctic. Shrub expansion will substantially alter arctic wildlife habitats. Identifying which wildlife species are most affected by shrubification is central to predicting future arctic community composition. Through meta-analysis, we synthesized the published evidence for effects of canopy-forming shrubs on birds and mammals in the Arctic and Subarctic. We examined variation in species behaviour, distribution and population dynamics in birds and mammals in response to shrub cover (including shrub cover indicators such as shrub occurrence, extent, density and height). We also assessed the degree of heterogeneity in wildlife responses to shrub cover and synthesized the remaining literature that did not fit the criteria for our quantitative meta-analyses. Species from higher green vegetation biomass habitats (high Normalized Difference Vegetation Index, NDVI, across their distribution) were more likely to respond positively to shrub cover, demonstrating the potential for species to expand from boreal to arctic habitats under shrubification. Wildlife populations located in the lowest vegetation biomass (low NDVI) areas of their species' range had the greatest proportion of positive responses to shrub cover, highlighting how increases in performance at leading edges of invaders distributions may be particularly rapid. This demonstrates the need to study species at these leading edges to accurately predict expansion potential. Arctic specialists were poorly represented across studies (limited to 5 bird and 0 mammal species), this knowledge gap potentially explains the few reported negative effects of shrub cover (3 of 29 species). Species responses to shrub cover showed substantial heterogeneity and varied among sites and years in all studies with sufficient replication to detect such variation. Our study highlights the importance of responses at species range edges in determining outcomes of shrubification for arctic birds and mammals and the need for greater examination of potential wildlife losers under shrubification.
Collapse
Affiliation(s)
- Helen C Wheeler
- Department of Bioscience, Section for Ecoinformatics and Biodiversity, Aarhus University, Aarhus C, Denmark
- Department of Arctic and Marine Biology, UiT the Arctic University of Norway, Tromsø, Norway
- Centre d'Ecologie Fonctionnelle et Evolutive, UMR 5175, CNRS-Université de Montpellier-Université Paul-Valéry Montpellier-EPHE, Montpellier, France
- Centre for Northern Studies, Université du Québec à Rimouski, Rimouski, Canada
| | - Toke T Høye
- Arctic Research Centre, Aarhus University, Aarhus C, Denmark
- Department of Bioscience, Kalø, Aarhus University, Rønde, Denmark
| | - Jens-Christian Svenning
- Department of Bioscience, Section for Ecoinformatics and Biodiversity, Aarhus University, Aarhus C, Denmark
| |
Collapse
|
19
|
Asmus A, Koltz A, McLaren J, Shaver GR, Gough L. Long-term nutrient addition alters arthropod community composition but does not increase total biomass or abundance. OIKOS 2017. [DOI: 10.1111/oik.04398] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Ashley Asmus
- Dept of Ecology; Evolution and Behavior, Univ. of Minnesota; St. Paul MN 55108 USA
| | - Amanda Koltz
- Dept of Biology; Washington Univ. in Saint Louis; St. Louis MO USA
| | - Jennie McLaren
- Dept of Biological Sciences; Univ. of Texas at El Paso; El Paso TX USA
| | - Gaius R. Shaver
- The Ecosystems Center, Marine Biological Laboratory; Woods Hole MA USA
| | - Laura Gough
- Dept of Ecology; Evolution and Behavior, Univ. of Minnesota; St. Paul MN 55108 USA
- Dept of Biological Sciences; Towson Univ.; Towson MD USA
| |
Collapse
|
20
|
Ackerman D, Griffin D, Hobbie SE, Finlay JC. Arctic shrub growth trajectories differ across soil moisture levels. GLOBAL CHANGE BIOLOGY 2017; 23:4294-4302. [PMID: 28267242 DOI: 10.1111/gcb.13677] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 02/21/2017] [Accepted: 02/22/2017] [Indexed: 05/12/2023]
Abstract
The circumpolar expansion of woody deciduous shrubs in arctic tundra alters key ecosystem properties including carbon balance and hydrology. However, landscape-scale patterns and drivers of shrub expansion remain poorly understood, inhibiting accurate incorporation of shrub effects into climate models. Here, we use dendroecology to elucidate the role of soil moisture in modifying the relationship between climate and growth for a dominant deciduous shrub, Salix pulchra, on the North Slope of Alaska, USA. We improve upon previous modeling approaches by using ecological theory to guide model selection for the relationship between climate and shrub growth. Finally, we present novel dendroecology-based estimates of shrub biomass change under a future climate regime, made possible by recently developed shrub allometry models. We find that S. pulchra growth has responded positively to mean June temperature over the past 2.5 decades at both a dry upland tundra site and an adjacent mesic riparian site. For the upland site, including a negative second-order term in the climate-growth model significantly improved explanatory power, matching theoretical predictions of diminishing growth returns to increasing temperature. A first-order linear model fit best at the riparian site, indicating consistent growth increases in response to sustained warming, possibly due to lack of temperature-induced moisture limitation in mesic habitats. These contrasting results indicate that S. pulchra in mesic habitats may respond positively to a wider range of temperature increase than S. pulchra in dry habitats. Lastly, we estimate that a 2°C increase in current mean June temperature will yield a 19% increase in aboveground S. pulchra biomass at the upland site and a 36% increase at the riparian site. Our method of biomass estimation provides an important link toward incorporating dendroecology data into coupled vegetation and climate models.
Collapse
Affiliation(s)
- Daniel Ackerman
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, MN, USA
| | - Daniel Griffin
- Department of Geography, Environment and Society, University of Minnesota, Minneapolis, MN, USA
| | - Sarah E Hobbie
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, MN, USA
| | - Jacques C Finlay
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, MN, USA
| |
Collapse
|
21
|
The detritus-based microbial-invertebrate food web contributes disproportionately to carbon and nitrogen cycling in the Arctic. Polar Biol 2017. [DOI: 10.1007/s00300-017-2201-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
22
|
Elevation modulates how Arctic arthropod communities are structured along local environmental gradients. Polar Biol 2017. [DOI: 10.1007/s00300-017-2204-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
23
|
Boelman NT, Krause JS, Sweet SK, Chmura HE, Perez JH, Gough L, Wingfield JC. Extreme spring conditions in the Arctic delay spring phenology of long-distance migratory songbirds. Oecologia 2017; 185:69-80. [DOI: 10.1007/s00442-017-3907-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 06/19/2017] [Indexed: 01/14/2023]
|
24
|
Ropars P, Angers-Blondin S, Gagnon M, Myers-Smith IH, Lévesque E, Boudreau S. Different parts, different stories: climate sensitivity of growth is stronger in root collars vs. stems in tundra shrubs. GLOBAL CHANGE BIOLOGY 2017; 23:3281-3291. [PMID: 28107770 DOI: 10.1111/gcb.13631] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 12/20/2016] [Accepted: 12/21/2016] [Indexed: 05/06/2023]
Abstract
Shrub densification has been widely reported across the circumpolar arctic and subarctic biomes in recent years. Long-term analyses based on dendrochronological techniques applied to shrubs have linked this phenomenon to climate change. However, the multi-stemmed structure of shrubs makes them difficult to sample and therefore leads to non-uniform sampling protocols among shrub ecologists, who will favor either root collars or stems to conduct dendrochronological analyses. Through a comparative study of the use of root collars and stems of Betula glandulosa, a common North American shrub species, we evaluated the relative sensitivity of each plant part to climate variables and assessed whether this sensitivity is consistent across three different types of environments in northwestern Québec, Canada (terrace, hilltop and snowbed). We found that root collars had greater sensitivity to climate than stems and that these differences were maintained across the three types of environments. Growth at the root collar was best explained by spring precipitation and summer temperature, whereas stem growth showed weak and inconsistent responses to climate variables. Moreover, sensitivity to climate was not consistent among plant parts, as individuals having climate-sensitive root collars did not tend to have climate-sensitive stems. These differences in sensitivity of shrub parts to climate highlight the complexity of resource allocation in multi-stemmed plants. Whereas stem initiation and growth are driven by microenvironmental variables such as light availability and competition, root collars integrate the growth of all plant parts instead, rendering them less affected by mechanisms such as competition and more responsive to signals of global change. Although further investigations are required to determine the degree to which these findings are generalizable across the tundra biome, our results indicate that consistency and caution in the choice of plant parts are a key consideration for the success of future dendroclimatological studies on shrubs.
Collapse
Affiliation(s)
- Pascale Ropars
- Chaire de recherche du Canada en biodiversité nordique and Département de biologie, chimie et géographie, Université du Québec à Rimouski, 300 allée des Ursulines, Rimouski, QC, G5L 3A1, Canada
- Centre d'études nordiques, 2405 av. de la Terrasse, Québec, QC, G1V 0A6, Canada
| | - Sandra Angers-Blondin
- Centre d'études nordiques, 2405 av. de la Terrasse, Québec, QC, G1V 0A6, Canada
- School of GeoSciences, University of Edinburgh, Edinburgh, EH9 3FF, UK
| | - Marianne Gagnon
- Centre d'études nordiques, 2405 av. de la Terrasse, Québec, QC, G1V 0A6, Canada
- Département de biologie, Université Laval, 1045 av. de la Médecine, Québec, QC, G1V 0A6, Canada
| | | | - Esther Lévesque
- Centre d'études nordiques, 2405 av. de la Terrasse, Québec, QC, G1V 0A6, Canada
- Département des sciences de l'environnement, Université du Québec à Trois-Rivières, 3351 boul. des Forges, Trois-Rivières, QC, G9A 5H7, Canada
| | - Stéphane Boudreau
- Centre d'études nordiques, 2405 av. de la Terrasse, Québec, QC, G1V 0A6, Canada
- Département de biologie, Université Laval, 1045 av. de la Médecine, Québec, QC, G1V 0A6, Canada
| |
Collapse
|
25
|
Wauchope HS, Shaw JD, Varpe Ø, Lappo EG, Boertmann D, Lanctot RB, Fuller RA. Rapid climate-driven loss of breeding habitat for Arctic migratory birds. GLOBAL CHANGE BIOLOGY 2017; 23:1085-1094. [PMID: 27362976 DOI: 10.1111/gcb.13404] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 05/19/2016] [Indexed: 06/06/2023]
Abstract
Millions of birds migrate to and from the Arctic each year, but rapid climate change in the High North could strongly affect where species are able to breed, disrupting migratory connections globally. We modelled the climatically suitable breeding conditions of 24 Arctic specialist shorebirds and projected them to 2070 and to the mid-Holocene climatic optimum, the world's last major warming event ~6000 years ago. We show that climatically suitable breeding conditions could shift, contract and decline over the next 70 years, with 66-83% of species losing the majority of currently suitable area. This exceeds, in rate and magnitude, the impact of the mid-Holocene climatic optimum. Suitable climatic conditions are predicted to decline acutely in the most species rich region, Beringia (western Alaska and eastern Russia), and become concentrated in the Eurasian and Canadian Arctic islands. These predicted spatial shifts of breeding grounds could affect the species composition of the world's major flyways. Encouragingly, protected area coverage of current and future climatically suitable breeding conditions generally meets target levels; however, there is a lack of protected areas within the Canadian Arctic where resource exploitation is a growing threat. Given that already there are rapid declines of many populations of Arctic migratory birds, our results emphasize the urgency of mitigating climate change and protecting Arctic biodiversity.
Collapse
Affiliation(s)
- Hannah S Wauchope
- School of Biological Sciences, University of Queensland, Brisbane, Qld, 4072, Australia
| | - Justine D Shaw
- School of Biological Sciences, University of Queensland, Brisbane, Qld, 4072, Australia
| | - Øystein Varpe
- University Centre in Svalbard (UNIS), 9171, Longyearbyen, Norway
- Akvaplan-niva, Fram Centre, 9296, Tromsø, Norway
| | - Elena G Lappo
- Institute of Geography, Russian Academy of Sciences, Staromonetny pereulok 29, Moscow, 119017, Russia
| | - David Boertmann
- Institute of Bioscience, Arctic Research Centre, Aarhus University, 4000, Roskilde, Denmark
| | - Richard B Lanctot
- Migratory Bird Management Division, U.S. Fish and Wildlife Service, Anchorage, AK, USA
| | - Richard A Fuller
- School of Biological Sciences, University of Queensland, Brisbane, Qld, 4072, Australia
| |
Collapse
|
26
|
When Winners Become Losers: Predicted Nonlinear Responses of Arctic Birds to Increasing Woody Vegetation. PLoS One 2016; 11:e0164755. [PMID: 27851768 PMCID: PMC5112980 DOI: 10.1371/journal.pone.0164755] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 10/02/2016] [Indexed: 11/19/2022] Open
Abstract
Climate change is facilitating rapid changes in the composition and distribution of vegetation at northern latitudes, raising questions about the responses of wildlife that rely on arctic ecosystems. One widely observed change occurring in arctic tundra ecosystems is an increasing dominance of deciduous shrub vegetation. Our goals were to examine the tolerance of arctic-nesting bird species to existing gradients of vegetation along the boreal forest-tundra ecotone, to predict the abundance of species across different heights and densities of shrubs, and to identify species that will be most or least responsive to ongoing expansion of shrubs in tundra ecosystems. We conducted 1,208 point counts on 12 study blocks from 2012–2014 in northwestern Alaska, using repeated surveys to account for imperfect detection of birds. We considered the importance of shrub height, density of low and tall shrubs (i.e. shrubs >0.5 m tall), percent of ground cover attributed to shrubs (including dwarf shrubs <0.5 m tall), and percent of herbaceous plant cover in predicting bird abundance. Among 17 species considered, only gray-cheeked thrush (Catharus minimus) abundance was associated with the highest values of all shrub metrics in its top predictive model. All other species either declined in abundance in response to one or more shrub metrics or reached a threshold where further increases in shrubs did not contribute to greater abundance. In many instances the relationship between avian abundance and shrubs was nonlinear, with predicted abundance peaking at moderate values of the covariate, then declining at high values. In particular, a large number of species were responsive to increasing values of average shrub height with six species having highest abundance at near-zero values of shrub height and abundance of four other species decreasing once heights reached moderate values (≤ 33 cm). Our findings suggest that increases in shrub cover and density will negatively affect abundance of only a few bird species and may potentially be beneficial for many others. As shrub height increases further, however, a considerable number of tundra bird species will likely find habitat increasingly unsuitable.
Collapse
|
27
|
Krause JS, Pérez JH, Chmura HE, Sweet SK, Meddle SL, Hunt KE, Gough L, Boelman N, Wingfield JC. The effect of extreme spring weather on body condition and stress physiology in Lapland longspurs and white-crowned sparrows breeding in the Arctic. Gen Comp Endocrinol 2016; 237:10-18. [PMID: 27449342 PMCID: PMC5053339 DOI: 10.1016/j.ygcen.2016.07.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 07/08/2016] [Accepted: 07/14/2016] [Indexed: 02/06/2023]
Abstract
Climate change is causing rapid shifts in temperature while also increasing the frequency, duration, and intensity of extreme weather. In the northern hemisphere, the spring of 2013 was characterized as extreme due to record high snow cover and low temperatures. Studies that describe the effects of extreme weather on phenology across taxa are limited while morphological and physiological responses remain poorly understood. Stress physiology, as measured through baseline and stress-induced concentrations of cortisol or corticosterone, has often been studied to understand how organisms respond to environmental stressors. We compared body condition and stress physiology of two long-distance migrants breeding in low arctic Alaska - the white-crowned sparrow (Zonotrichia leucophrys) and Lapland longspur (Calcarius lapponicus) - in 2013, an extreme weather year, with three more typical years (2011, 2012, and 2014). The extended snow cover in spring 2013 caused measureable changes in phenology, body condition and physiology. Arrival timing for both species was delayed 4-5days compared to the other three years. Lapland longspurs had reduced fat stores, pectoralis muscle profiles, body mass, and hematocrit levels, while stress-induced concentrations of corticosterone were increased. Similarly, white-crowned sparrows had reduced pectoralis muscle profiles and hematocrit levels, but in contrast to Lapland longspurs, had elevated fat stores and no difference in mass or stress physiology relative to other study years. An understanding of physiological mechanisms that regulate coping strategies is of critical importance for predicting how species will respond to the occurrence of extreme events in the future due to global climate change.
Collapse
Affiliation(s)
- Jesse S Krause
- Department of Neurobiology, Physiology and Behavior, University of California Davis, One Shields Avenue, Davis, CA 95616, USA.
| | - Jonathan H Pérez
- Department of Neurobiology, Physiology and Behavior, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Helen E Chmura
- Department of Neurobiology, Physiology and Behavior, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Shannan K Sweet
- Department of Earth and Environmental Sciences, and Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY 10964, USA
| | - Simone L Meddle
- The Roslin Institute, The Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, Midlothian EH25 9RG, Scotland, UK
| | - Kathleen E Hunt
- John H. Prescott Marine Laboratory, Research Department, New England Aquarium, Boston, MA 02110, USA
| | - Laura Gough
- Department of Biological Sciences, Towson University, Towson, MD 21252, USA
| | - Natalie Boelman
- Department of Earth and Environmental Sciences, and Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY 10964, USA
| | - John C Wingfield
- Department of Neurobiology, Physiology and Behavior, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
28
|
Gough L, Bettez ND, Slavik KA, Bowden WB, Giblin AE, Kling GW, Laundre JA, Shaver GR. Effects of long-term nutrient additions on Arctic tundra, stream, and lake ecosystems: beyond NPP. Oecologia 2016; 182:653-65. [PMID: 27582122 DOI: 10.1007/s00442-016-3716-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 08/21/2016] [Indexed: 11/28/2022]
Abstract
Primary producers form the base of food webs but also affect other ecosystem characteristics, such as habitat structure, light availability, and microclimate. Here, we examine changes caused by 5-30+ years of nutrient addition and resulting increases in net primary productivity (NPP) in tundra, streams, and lakes in northern Alaska. The Arctic provides an important opportunity to examine how ecosystems characterized by low diversity and low productivity respond to release from nutrient limitation. We review how responses of algae and plants affect light availability, perennial biotic structures available for consumers, oxygen levels, and temperature. Sometimes, responses were similar across all three ecosystems; e.g., increased NPP significantly reduced light to the substrate following fertilization. Perennial biotic structures increased in tundra and streams but not in lakes, and provided important new habitat niches for consumers as well as other producers. Oxygen and temperature responses also differed. Life history traits (e.g., longevity) of the primary producers along with the fate of detritus drove the responses and recovery. As global change persists and nutrients become more available in the Arctic and elsewhere, incorporating these factors as response variables will enable better prediction of ecosystem changes and feedbacks in this biome and others.
Collapse
Affiliation(s)
- Laura Gough
- Department of Biological Sciences, Towson University, Towson, MD, 21252, USA.
| | - Neil D Bettez
- Cary Institute for Ecosystem Studies, PO Box AB, Millbrook, NY, 12545, USA
| | - Karie A Slavik
- University of Michigan Biological Station, 930 N. University, Ann Arbor, MI, 48109, USA
| | - William B Bowden
- Rubenstein School of Environment and Natural Resources, University of Vermont, Burlington, VT, 05405, USA
| | - Anne E Giblin
- Marine Biological Laboratory, Ecosystems Center, Woods Hole, MA, 02543, USA
| | - George W Kling
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - James A Laundre
- Marine Biological Laboratory, Ecosystems Center, Woods Hole, MA, 02543, USA
| | - Gaius R Shaver
- Marine Biological Laboratory, Ecosystems Center, Woods Hole, MA, 02543, USA
| |
Collapse
|
29
|
Krause JS, Németh Z, Pérez JH, Chmura HE, Ramenofsky M, Wingfield JC. Annual Hematocrit Profiles in Two Subspecies of White-Crowned Sparrow: A Migrant and a Resident Comparison. Physiol Biochem Zool 2016; 89:51-60. [DOI: 10.1086/684612] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
30
|
Tape KD, Christie K, Carroll G, O'Donnell JA. Novel wildlife in the Arctic: the influence of changing riparian ecosystems and shrub habitat expansion on snowshoe hares. GLOBAL CHANGE BIOLOGY 2016; 22:208-219. [PMID: 26527375 DOI: 10.1111/gcb.13058] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 07/15/2015] [Indexed: 06/05/2023]
Abstract
Warming during the 20th century has changed the arctic landscape, including aspects of the hydrology, vegetation, permafrost, and glaciers, but effects on wildlife have been difficult to detect. The primary aim of this study is to examine the physical and biological processes contributing to the expanded riparian habitat and range of snowshoe hares (Lepus americanus) in northern Alaska. We explore linkages between components of the riparian ecosystem in Arctic Alaska since the 1960s, including seasonality of stream flow, air temperature, floodplain shrub habitat, and snowshoe hare distributions. Our analyses show that the peak discharge during spring snowmelt has occurred on average 3.4 days per decade earlier over the last 30 years and has contributed to a longer growing season in floodplain ecosystems. We use empirical correlations between cumulative summer warmth and riparian shrub height to reconstruct annual changes in shrub height from the 1960s to the present. The effects of longer and warmer growing seasons are estimated to have stimulated a 78% increase in the height of riparian shrubs. Earlier spring discharge and the estimated increase in riparian shrub height are consistent with observed riparian shrub expansion in the region. Our browsing measurements show that snowshoe hares require a mean riparian shrub height of at least 1.24-1.36 m, a threshold which our hindcasting indicates was met between 1964 and 1989. This generally coincides with observational evidence we present suggesting that snowshoe hares became established in 1977 or 1978. Warming and expanded shrub habitat is the most plausible reason for recent snowshoe hare establishment in Arctic Alaska. The establishment of snowshoe hares and other shrub herbivores in the Arctic in response to increasing shrub habitat is a contrasting terrestrial counterpart to the decline in marine mammals reliant on decreasing sea ice.
Collapse
Affiliation(s)
- Ken D Tape
- Institute of Northern Engineering, Water & Environmental Research Center, University of Alaska, Fairbanks, AK, 99775-9500, USA
| | - Katie Christie
- Institute of Arctic Biology, University of Alaska, Fairbanks, AK, 99775-9500, USA
| | - Geoff Carroll
- Alaska Department of Fish & Game, Barrow, AK, 99723-1284, USA
| | - Jonathan A O'Donnell
- Arctic Network, National Park Service, 240 W. 5th Ave, Anchorage, AK, 99501, USA
| |
Collapse
|
31
|
Breeding on the leading edge of a northward range expansion: differences in morphology and the stress response in the arctic Gambel's white-crowned sparrow. Oecologia 2015; 180:33-44. [PMID: 26423267 PMCID: PMC4698297 DOI: 10.1007/s00442-015-3447-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 09/02/2015] [Indexed: 11/07/2022]
Abstract
Individuals at the forefront of a range shift are likely to exhibit phenotypic traits that distinguish them from the population breeding within the historic range. Recent studies have examined morphological, physiological and behavioral phenotypes of individuals at the edge of their range. Several studies have found differences in the hypothalamic–pituitary–adrenal (HPA) axis activity in response to acute restraint stress in individuals at the range limits. HPA axis activation leads to elevations in glucocorticoids that regulate physiology and behavior. Here we compare the hormonal profiles and morphometrics from Gambel’s white-crowned sparrows (Zonotrichia leucophrys gambelii) breeding at the northern limit of the population’s range to those birds breeding within the historic population range. Birds breeding at the northern limit experienced a harsher environment with colder temperatures; however, we found no differences in arthropod prey biomass between the northern limit and more southern (historic) sites. Males at the northern limit had higher body condition scores (mass corrected for body size) compared to individuals within the historic range, but no differences were found in beak and tarsus lengths, wing chord, muscle profile or fat stores. In males during the pre-parental stage, before breeding commenced, HPA axis activity was elevated in birds at the northern limit of the range, but no differences were found during the parental or molt stages. Females showed no differences in HPA axis activity during the parental stage. This study suggests that “pioneering” individuals at the limits of their breeding range exhibit physiology and morphology that are distinct from individuals within the historic range.
Collapse
|
32
|
Krause JS, McGuigan MA, Bishop VR, Wingfield JC, Meddle SL. Decreases in mineralocorticoid but not glucocorticoid receptor mRNA expression during the short Arctic breeding season in free-living Gambel's white-crowned sparrow (Zonotrichia leucophrys gambelii). J Neuroendocrinol 2015; 27:66-75. [PMID: 25411901 DOI: 10.1111/jne.12237] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 11/14/2014] [Accepted: 11/17/2014] [Indexed: 01/09/2023]
Abstract
The acute stress response in vertebrates is a highly adaptive suite of physiological and behavioural mechanisms that promote survival in the face of deleterious stimuli from the environment. Facultative changes of physiology and behaviour are mediated through changes in circulating levels of glucocorticoids (corticosterone, cortisol) and their subsequent binding to the high-affinity mineralocorticoid receptor (MR) or the low-affinity glucocorticoid receptor (GR). Free-living male wild Gambel's white-crowned sparrows (Zonotrichia leucophrys gambelii) display annual fluctuations in the stress response with marked attenuation during the transition from the pre-parental to the parental stage. We investigated whether this rapid reduction in the stress response is mediated through changes in MR and GR mRNA expression in the brain using in situ hybridisation. MR mRNA expression was found to be significantly lower in the hippocampus as the male birds became parental. No changes were observed in GR mRNA expression in the paraventricular nucleus (PVN) or preoptic area (POA) at this time. No significant correlations were found between initial capture levels of corticosterone and GR or MR mRNA expression. No differences were found in basal levels of corticosterone between pre-parental and parental in birds collected for in situ hybridisation. Stress response data revealed no difference at baseline but reductions in peak levels of corticosterone as birds became parental. These data suggest that changes in MR expression may be important for the regulation of the stress response or behavioural stress sensitivity with respect to promoting parental care and investment.
Collapse
Affiliation(s)
- J S Krause
- Department of Neurobiology, Physiology and Behaviour, University of California, Davis, CA, USA
| | | | | | | | | |
Collapse
|