1
|
Blanc-Betes E, Welker JM, Gomez-Casanovas N, DeLucia EH, Peñuelas J, de Oliveira ED, Gonzalez-Meler MA. Strong legacies of emerging trends in winter precipitation on the carbon-climate feedback from Arctic tundra. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 962:178246. [PMID: 39808895 DOI: 10.1016/j.scitotenv.2024.178246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/27/2024] [Accepted: 12/20/2024] [Indexed: 01/16/2025]
Abstract
Changes in winter precipitation accompanying emerging climate trends lead to a major carbon-climate feedback from Arctic tundra. However, the mechanisms driving the direction, magnitude, and form (CO2 and CH4) of C fluxes and derived climate forcing (i.e. GWP, global warming potential) from Arctic tundra under future precipitation scenarios remain unresolved. Here, we investigated the impacts of 18 years of shallow (SS, -15-30 %) and deeper (IS, +20-45 %; DS, +70-100 %) snow depth on ecosystem C fluxes and GWP in moist acidic tundra over the growing season. The response of Arctic tundra C fluxes to snow accumulation was markedly non-linear. Both shallow- and deeper- winter snow decreased Arctic tundra CO2 emissions relative to ambient (AS), ultimately reducing ecosystem C losses over the growing season. Gross primary productivity (GPP) increased with moderate increases in snow depth and decreased with further snow accumulation closely following transitions in shrub abundance. Photosynthetic uptake, however, was tightly regulated by canopy structure and plant respiration (Raut) to GPP ratio was highly conserved despite substantial transformations of plant community across snow treatments revealing a prominent role of heterotrophic respiration (Rhet) in driving net ecosystem exchange. Consistently, ecosystem C gains responded to constraints on Rhet by temperature limitation within colder soils at SS, and by snow- and thaw-induced increases in soil-water content (SWC) that promoted anaerobic decomposition and dampened the temperature sensitivity of Rhet at IS and DS. Greater CH4 emissions from wetter soils, however, increased the global warming potential (GWP) of Arctic tundra emissions at IS and DS despite decreases in C losses. Overall, our findings indicate the potential of Arctic tussock tundra to reduce C losses over the growing season but also to significantly contribute to the ecosystem GWP under emerging trends in winter precipitation.
Collapse
Affiliation(s)
- Elena Blanc-Betes
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA.
| | - Jeffrey M Welker
- UArctic, Ecology and Genetics Research Unit, University of Oulu, Finland; Department of Biological Sciences, University of Alaska, Anchorage, Anchorage, AK 99501, USA
| | - Nuria Gomez-Casanovas
- Texas A&M AgriLife Research Center, Vernon, Texas A&M University, TX 76384, USA; Rangeland, Wildlife & Fisheries Management Department, Texas A&M University, TX 77843, USA
| | - Evan H DeLucia
- Institute for Sustainability, Energy, and Environment, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Josep Peñuelas
- CSIC, Global Ecology Unit CREAF-CEAB-UAB, Cerdanyola del Vallès, 08193, Catalonia, Spain; CREAF, Cerdanyola del Vallès, 08193, Catalonia, Spain
| | | | - Miquel A Gonzalez-Meler
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
2
|
Harning DJ, Sacco S, Anamthawat-Jónsson K, Ardenghi N, Thordarson T, Raberg JH, Sepúlveda J, Geirsdóttir Á, Shapiro B, Miller GH. Delayed postglacial colonization of Betula in Iceland and the circum North Atlantic. eLife 2023; 12:RP87749. [PMID: 37955570 PMCID: PMC10642962 DOI: 10.7554/elife.87749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023] Open
Abstract
As the Arctic continues to warm, woody shrubs are expected to expand northward. This process, known as 'shrubification,' has important implications for regional biodiversity, food web structure, and high-latitude temperature amplification. While the future rate of shrubification remains poorly constrained, past records of plant immigration to newly deglaciated landscapes in the Arctic may serve as useful analogs. We provide one new postglacial Holocene sedimentary ancient DNA (sedaDNA) record of vascular plants from Iceland and place a second Iceland postglacial sedaDNA record on an improved geochronology; both show Salicaceae present shortly after deglaciation, whereas Betulaceae first appears more than 1000 y later. We find a similar pattern of delayed Betulaceae colonization in eight previously published postglacial sedaDNA records from across the glaciated circum North Atlantic. In nearly all cases, we find that Salicaceae colonizes earlier than Betulaceae and that Betulaceae colonization is increasingly delayed for locations farther from glacial-age woody plant refugia. These trends in Salicaceae and Betulaceae colonization are consistent with the plant families' environmental tolerances, species diversity, reproductive strategies, seed sizes, and soil preferences. As these reconstructions capture the efficiency of postglacial vascular plant migration during a past period of high-latitude warming, a similarly slow response of some woody shrubs to current warming in glaciated regions, and possibly non-glaciated tundra, may delay Arctic shrubification and future changes in the structure of tundra ecosystems and temperature amplification.
Collapse
Affiliation(s)
- David J Harning
- Institute of Arctic and Alpine Research, University of Colorado BoulderBoulderUnited States
| | - Samuel Sacco
- Department of Ecology and Evolutionary Biology, University of California Santa CruzSanta CruzUnited States
| | | | - Nicolò Ardenghi
- Institute of Arctic and Alpine Research, University of Colorado BoulderBoulderUnited States
| | - Thor Thordarson
- Faculty of Earth Sciences, University of IcelandReykjavikIceland
| | - Jonathan H Raberg
- Institute of Arctic and Alpine Research, University of Colorado BoulderBoulderUnited States
| | - Julio Sepúlveda
- Institute of Arctic and Alpine Research, University of Colorado BoulderBoulderUnited States
- Department of Geological Sciences, University of Colorado BoulderBoulderUnited States
| | | | - Beth Shapiro
- Department of Ecology and Evolutionary Biology, University of California Santa CruzSanta CruzUnited States
| | - Gifford H Miller
- Institute of Arctic and Alpine Research, University of Colorado BoulderBoulderUnited States
- Department of Geological Sciences, University of Colorado BoulderBoulderUnited States
| |
Collapse
|
3
|
Jespersen RG, Anderson-Smith M, Sullivan PF, Dial RJ, Welker JM. NDVI changes in the Arctic: Functional significance in the moist acidic tundra of Northern Alaska. PLoS One 2023; 18:e0285030. [PMID: 37115765 PMCID: PMC10146450 DOI: 10.1371/journal.pone.0285030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
The Normalized Difference Vegetation Index (NDVI), derived from reflected visible and infrared radiation, has been critical to understanding change across the Arctic, but relatively few ground truthing efforts have directly linked NDVI to structural and functional properties of Arctic tundra ecosystems. To improve the interpretation of changing NDVI within moist acidic tundra (MAT), a common Arctic ecosystem, we coupled measurements of NDVI, vegetation structure, and CO2 flux in seventy MAT plots, chosen to represent the full range of typical MAT vegetation conditions, over two growing seasons. Light-saturated photosynthesis, ecosystem respiration, and net ecosystem CO2 exchange were well predicted by NDVI, but not by vertically-projected leaf area, our nondestructive proxy for leaf area index (LAI). Further, our data indicate that NDVI in this ecosystem is driven primarily by the biochemical properties of the canopy leaves of the dominant plant functional types, rather than purely the amount of leaf area; NDVI was more strongly correlated with top cover and repeated cover of deciduous shrubs than other plant functional types, a finding supported by our data from separate "monotypic" plots. In these pure stands of a plant functional type, deciduous shrubs exhibited higher NDVI than any other plant functional type. Likewise, leaves from the two most common deciduous shrubs, Betula nana and Salix pulchra, exhibited higher leaf-level NDVI than those from the codominant graminoid, Eriophorum vaginatum. Our findings suggest that recent increases in NDVI in MAT in the North American Arctic are largely driven by expanding deciduous shrub canopies, with substantial implications for MAT ecosystem function, especially net carbon uptake.
Collapse
Affiliation(s)
- R Gus Jespersen
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, Alaska, United States of America
| | | | - P F Sullivan
- Environment and Natural Resources Institute, University of Alaska Anchorage, Anchorage, Alaska, United States of America
| | - R J Dial
- Alaska Pacific University, Anchorage, Alaska, United States of America
| | - J M Welker
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, Alaska, United States of America
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
- University of the Arctic (UArctic), Rovaniemi, Finland
| |
Collapse
|
4
|
Fang Z, Brandt M, Wang L, Fensholt R. A global increase in tree cover extends the growing season length as observed from satellite records. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151205. [PMID: 34710418 DOI: 10.1016/j.scitotenv.2021.151205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
Plant phenology provides information on the seasonal dynamics of plants, and changes herein are important for understanding the impact of climate change and human management on the biosphere. Land surface phenology is the study of plant phenology across large spatial scales estimated by satellite observations. However, satellite observations (pixels) are often composed of a mixture of vegetation types, like woody vegetation and herbaceous vegetation, having different phenological characteristics. Therefore, any changes in tree cover presumably impact land surface phenology, as trees usually have a different seasonal cycle compared to herbaceous vegetation. On the other hand, changes in land surface phenology are often interpreted as a result of climate change-induced impacts on the photosynthetic activity of vegetation. Therefore, it is important to better understand the role of changes in vegetation cover (here, the proportion between tree and short vegetation cover) in satellite-derived land surface phenology analysis. We studied the impact of changes in tree cover on satellite observed land surface phenology at a global scale over the past three decades. We found an extension of the growing season length in 36.6% of the areas where tree cover increased, whereas only 20.1% of the areas where tree cover decreased showed an increase in growing season length. Furthermore, the ratio between tree cover and short vegetation cover was found to affect changes in the length of the growing season, with the denser tree cover showing a more pronounced extension of the growing season length (especially in boreal forests). These results highlight the importance of changes in tree cover when analyzing the impact of climate change on vegetation phenology. Our study thereby addresses a critical knowledge gap for an improved understanding of changes in land surface phenology during recent decades in the context of climate and human-induced global land cover change.
Collapse
Affiliation(s)
- Zhongxiang Fang
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| | - Martin Brandt
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| | - Lanhui Wang
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark; Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus, Denmark.
| | - Rasmus Fensholt
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
A mechanism of expansion: Arctic deciduous shrubs capitalize on warming-induced nutrient availability. Oecologia 2020; 192:671-685. [PMID: 32052180 DOI: 10.1007/s00442-019-04586-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 12/23/2019] [Indexed: 10/25/2022]
Abstract
Warming-induced nutrient enrichment in the Arctic may lead to shifts in leaf-level physiological properties and processes with potential consequences for plant community dynamics and ecosystem function. To explore the physiological responses of Arctic tundra vegetation to increasing nutrient availability, we examined how a set of leaf nutrient and physiological characteristics of eight plant species (representing four plant functional groups) respond to a gradient of experimental nitrogen (N) and phosphorus (P) enrichment. Specifically, we examined a set of chlorophyll fluorescence measures related to photosynthetic efficiency, performance and stress, and two leaf nutrient traits (leaf %C and %N), across an experimental nutrient gradient at the Arctic Long Term Ecological Research site, located in the northern foothills of the Brooks Range, Alaska. In addition, we explicitly assessed the direct relationships between chlorophyll fluorescence and leaf %N. We found significant differences in physiological and nutrient traits between species and plant functional groups, and we found that species within one functional group (deciduous shrubs) have significantly greater leaf %N at high levels of nutrient addition. In addition, we found positive, saturating relationships between leaf %N and chlorophyll fluorescence measures across all species. Our results highlight species-specific differences in leaf nutrient traits and physiology in this ecosystem. In particular, the effects of a gradient of nutrient enrichment were most prominent in deciduous plant species, the plant functional group known to be increasing in relative abundance with warming in this ecosystem.
Collapse
|
6
|
Curasi SR, Parker TC, Rocha AV, Moody ML, Tang J, Fetcher N. Differential responses of ecotypes to climate in a ubiquitous Arctic sedge: implications for future ecosystem C cycling. THE NEW PHYTOLOGIST 2019; 223:180-192. [PMID: 30883787 DOI: 10.1111/nph.15790] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 03/05/2019] [Indexed: 06/09/2023]
Abstract
The response of vegetation to climate change has implications for the carbon cycle and global climate. It is frequently assumed that a species responds uniformly across its range to climate change. However, ecotypes - locally adapted populations within a species - display differences in traits that may affect their gross primary productivity (GPP) and response to climate change. To determine if ecotypes are important for understanding the response of ecosystem productivity to climate we measured and modeled growing season GPP in reciprocally transplanted and experimentally warmed ecotypes of the abundant Arctic sedge Eriophorum vaginatum. Transplanted northern ecotypes displayed home-site advantage in GPP that was associated with differences in leaf area index. Southern ecotypes exhibited a greater response in GPP when transplanted. The results demonstrate that ecotypic differentiation can impact the morphology and function of vegetation with implications for carbon cycling. Moreover they suggest that ecotypic control of GPP may limit the response of ecosystem productivity to climate change. This investigation shows that ecotypes play a substantial role in determining GPP and its response to climate. These results have implications for understanding annual to decadal carbon cycling where ecotypes could influence ecosystem function and vegetation feedbacks to climate change.
Collapse
Affiliation(s)
- Salvatore R Curasi
- Department of Biological Sciences, University of Notre Dame, South Bend, IN, 46556, USA
| | - Thomas C Parker
- The Ecosystems Center, Marine Biological Laboratory, Woods Hole, MA, 02543, USA
- Biological and Environmental Sciences, School of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Adrian V Rocha
- Department of Biological Sciences, University of Notre Dame, South Bend, IN, 46556, USA
| | - Michael L Moody
- Biological Sciences, University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Jianwu Tang
- The Ecosystems Center, Marine Biological Laboratory, Woods Hole, MA, 02543, USA
| | - Ned Fetcher
- Institute for Environmental Science and Sustainability, Wilkes University, Wilkes-Barre, PA, 18766, USA
| |
Collapse
|
7
|
Experimentally warmer and drier conditions in an Arctic plant community reveal microclimatic controls on senescence. Ecosphere 2019. [DOI: 10.1002/ecs2.2677] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
8
|
Darrouzet‐Nardi A, Steltzer H, Sullivan PF, Segal A, Koltz AM, Livensperger C, Schimel JP, Weintraub MN. Limited effects of early snowmelt on plants, decomposers, and soil nutrients in Arctic tundra soils. Ecol Evol 2019; 9:1820-1844. [PMID: 30847075 PMCID: PMC6392369 DOI: 10.1002/ece3.4870] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 11/03/2018] [Accepted: 12/04/2018] [Indexed: 11/29/2022] Open
Abstract
In addition to warming temperatures, Arctic ecosystems are responding to climate change with earlier snowmelt and soil thaw. Earlier snowmelt has been examined infrequently in field experiments, and we lack a comprehensive look at belowground responses of the soil biogeochemical system that includes plant roots, decomposers, and soil nutrients. We experimentally advanced the timing of snowmelt in factorial combination with an open-top chamber warming treatment over a 3-year period and evaluated the responses of decomposers and nutrient cycling processes. We tested two alternative hypotheses: (a) Early snowmelt and warming advance the timing of root growth and nutrient uptake, altering the timing of microbial and invertebrate activity and key nutrient cycling events; and (b) loss of insulating snow cover damages plants, leading to reductions in root growth and altered biological activity. During the 3 years of our study (2010-2012), we advanced snowmelt by 4, 15, and 10 days, respectively. Despite advancing aboveground plant phenology, particularly in the year with the warmest early-season temperatures (2012), belowground effects were primarily seen only on the first sampling date of the season or restricted to particular years or soil type. Overall, consistent and substantial responses to early snowmelt were not observed, counter to both of our hypotheses. The data on soil physical conditions, as well interannual comparisons of our results, suggest that this limited response was because of the earlier date of snowmelt that did not coincide with substantially warmer air and soil temperatures as they might in response to a natural climate event. We conclude that the interaction of snowmelt timing with soil temperatures is important to how the ecosystem will respond, but that 1- to 2-week changes in timing of snowmelt alone are not enough to drive season-long changes in soil microbial and nutrient cycling processes.
Collapse
Affiliation(s)
- Anthony Darrouzet‐Nardi
- Department of Biological SciencesUniversity of Texas at El PasoEl PasoTexas
- Department of Environmental SciencesUniversity of ToledoToledoOhio
| | | | - Patrick F. Sullivan
- Environment and Natural Resources InstituteUniversity of Alaska AnchorageAnchorageAlaska
| | - Aliza Segal
- Environment and Natural Resources InstituteUniversity of Alaska AnchorageAnchorageAlaska
| | - Amanda M. Koltz
- Department of BiologyWashington University in St. LouisSt. LouisMissouri
| | - Carolyn Livensperger
- Natural Resource Ecology LaboratoryColorado State UniversityFort CollinsColorado
| | - Joshua P. Schimel
- Department of Ecology, Evolution, and Marine BiologyUniversity of California Santa BarbaraSanta BarbaraCalifornia
| | | |
Collapse
|
9
|
Hopping KA, Knapp AK, Dorji T, Klein JA. Warming and land use change concurrently erode ecosystem services in Tibet. GLOBAL CHANGE BIOLOGY 2018; 24:5534-5548. [PMID: 30086187 DOI: 10.1111/gcb.14417] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/10/2018] [Accepted: 07/22/2018] [Indexed: 06/08/2023]
Abstract
Alpine meadows on the Tibetan Plateau comprise the largest alpine ecosystem in the world and provide critical ecosystem services, including forage production and carbon sequestration, on which people depend from local to global scales. However, the provision of these services may be threatened by climate warming combined with land use policies that are altering if and how pastoralists can continue to graze livestock, the dominant livelihood practice in this region for millennia. We synthesized findings from a climate warming and yak grazing experiment with landscape-level observations in central Tibet to gain insight into the trajectories of change that Tibet's alpine meadows will undergo in response to expected changes in climate and land use. We show that within 5 years, experimental warming drove an alpine community with intact, sedge-dominated turfs into a degraded state. With removal of livestock, consistent with policy intended to reverse degradation, a longer-term shift to a more shrub-dominated community will likely occur. Neither degraded nor shrub meadows produce forage or sequester carbon to the same degree as intact meadows, indicating that climate warming and drying will reduce the ability of Tibet's alpine meadows to provide key ecosystem services, and that livestock reduction policies intended to counteract trajectories of land degradation instead endanger contemporary livelihoods on the Tibetan Plateau.
Collapse
Affiliation(s)
- Kelly A Hopping
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado
- Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, Colorado
| | - Alan K Knapp
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado
- Department of Biology, Colorado State University, Fort Collins, Colorado
| | - Tsechoe Dorji
- Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Lhasa, Tibet Autonomous Region, China
- CAS Center for Excellence in Tibetan Plateau Earth Science, Beijing, China
| | - Julia A Klein
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado
- Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, Colorado
- Department of Ecosystem Science and Sustainability, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
10
|
Wang L, Tian F, Wang Y, Wu Z, Schurgers G, Fensholt R. Acceleration of global vegetation greenup from combined effects of climate change and human land management. GLOBAL CHANGE BIOLOGY 2018; 24:5484-5499. [PMID: 29963745 DOI: 10.1111/gcb.14369] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/16/2018] [Accepted: 06/07/2018] [Indexed: 06/08/2023]
Abstract
Global warming and human land management have greatly influenced vegetation growth through both changes in spring phenology and photosynthetic primary production. This will presumably impact the velocity of vegetation greenup (Vgreenup, the daily rate of changes in vegetation productivity during greenup period), yet little is currently known about the spatio-temporal patterns of Vgreenup of global vegetation. Here, we define Vgreenup as the ratio of the amplitude of greenup (Agreenup) to the duration of greenup (Dgreenup) and derive global Vgreenup from 34-year satellite leaf area index (LAI) observations to study spatio-temporal dynamics of Vgreenup at the global, hemispheric, and ecosystem scales. We find that 19.9% of the pixels analyzed (n = 1,175,453) experienced significant trends toward higher greenup rates by an average of 0.018 m2 m-2 day-1 for 1982-2015 as compared to 8.6% of pixels with significant negative trends (p < 0.05). Global distribution and dynamics of Vgreenup show high spatial heterogeneity and ecosystem-specific patterns, which is primarily determined by the high spatial variation in Agreenup, while the temporal dynamics of Vgreenup are directly controlled by both changes in Dgreenup and Agreenup. Areas with the largest Vgreenup and largest positive trends are both observed in deciduous and mixed forests as compared to nonforest ecosystems showing both lower Vgreenup and trends. For nonforest ecosystems, human-managed ecosystems (e.g., rangelands and rainfed croplands) exhibited higher Vgreenup and positive trends than those of natural counterparts, suggesting strong imprints of human land management on terrestrial ecosystem functioning. Globally, warming has accelerated Vgreenup in temperature-constrained high latitude forest ecosystems and arctic regions, but decelerated Vgreenup in temperate and arid/semiarid areas. These results suggest that the combined effects of climate change and human land management have greatly accelerated global vegetation greenup, with important implications for changes in terrestrial ecosystem functioning and global carbon cycling.
Collapse
Affiliation(s)
- Lanhui Wang
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| | - Feng Tian
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
- Department of Physical Geography and Ecosystem Science, Lund University, Lund, Sweden
| | - Yuhang Wang
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, China
| | - Zhendong Wu
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
- Department of Physical Geography and Ecosystem Science, Lund University, Lund, Sweden
| | - Guy Schurgers
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| | - Rasmus Fensholt
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
11
|
Gonsamo A, Chen JM, Ooi YW. Peak season plant activity shift towards spring is reflected by increasing carbon uptake by extratropical ecosystems. GLOBAL CHANGE BIOLOGY 2018; 24:2117-2128. [PMID: 29271095 DOI: 10.1111/gcb.14001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 11/10/2017] [Accepted: 11/21/2017] [Indexed: 05/27/2023]
Abstract
Climate change is lengthening the growing season of the Northern Hemisphere extratropical terrestrial ecosystems, but little is known regarding the timing and dynamics of the peak season of plant activity. Here, we use 34-year satellite normalized difference vegetation index (NDVI) observations and atmospheric CO2 concentration and δ13 C isotope measurements at Point Barrow (Alaska, USA, 71°N) to study the dynamics of the peak of season (POS) of plant activity. Averaged across extratropical (>23°N) non-evergreen-dominated pixels, NDVI data show that the POS has advanced by 1.2 ± 0.6 days per decade in response to the spring-ward shifts of the start (1.0 ± 0.8 days per decade) and end (1.5 ± 1.0 days per decade) of peak activity, and the earlier onset of the start of growing season (1.4 ± 0.8 days per decade), while POS maximum NDVI value increased by 7.8 ± 1.8% for 1982-2015. Similarly, the peak day of carbon uptake, based on calculations from atmospheric CO2 concentration and δ13 C data, is advancing by 2.5 ± 2.6 and 4.3 ± 2.9 days per decade, respectively. POS maximum NDVI value shows strong negative relationships (p < .01) with the earlier onset of the start of growing season and POS days. Given that the maximum solar irradiance and day length occur before the average POS day, the earlier occurrence of peak plant activity results in increased plant productivity. Both the advancing POS day and increasing POS vegetation greenness are consistent with the shifting peak productivity towards spring and the increasing annual maximum values of gross and net ecosystem productivity simulated by coupled Earth system models. Our results further indicate that the decline in autumn NDVI is contributing the most to the overall browning of the northern high latitudes (>50°N) since 2011. The spring-ward shift of peak season plant activity is expected to disrupt the synchrony of biotic interaction and exert strong biophysical feedbacks on climate by modifying the surface albedo and energy budget.
Collapse
Affiliation(s)
- Alemu Gonsamo
- Department of Geography and Planning, University of Toronto, Toronto, ON, Canada
| | - Jing M Chen
- Department of Geography and Planning, University of Toronto, Toronto, ON, Canada
| | - Ying W Ooi
- Department of Geography and Planning, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
12
|
Temporal Changes in Coupled Vegetation Phenology and Productivity are Biome-Specific in the Northern Hemisphere. REMOTE SENSING 2017. [DOI: 10.3390/rs9121277] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Global warming has greatly stimulated vegetation growth through both extending the growing season and promoting photosynthesis in the Northern Hemisphere (NH). Analyzing the combined dynamics of such trends can potentially improve our current understanding on changes in vegetation functioning and the complex relationship between anthropogenic and climatic drivers. This study aims to analyze the relationships (long-term trends and correlations) of length of vegetation growing season (LOS) and vegetation productivity assessed by the growing season NDVI integral (GSI) in the NH (>30°N) to study any dependency of major biomes that are characterized by different imprint from anthropogenic influence. Spatial patterns of converging/diverging trends in LOS and GSI and temporal changes in the coupling between LOS and GSI are analyzed for major biomes at hemispheric and continental scales from the third generation Global Inventory Monitoring and Modeling Studies (GIMMS) Normalized Difference Vegetation Index (NDVI) dataset for a 32-year period (1982–2013). A quarter area of the NH is covered by converging trends (consistent significant trends in LOS and GSI), whereas diverging trends (opposing significant trends in LOS and GSI) cover about 6% of the region. Diverging trends are observed mainly in high latitudes and arid/semi-arid areas of non-forest biomes (shrublands, savannas, and grasslands), whereas forest biomes and croplands are primarily characterized by converging trends. The study shows spatially-distinct and biome-specific patterns between the continental land masses of Eurasia (EA) and North America (NA). Finally, areas of high positive correlation between LOS and GSI showed to increase during the period of analysis, with areas of significant positive trends in correlation being more widespread in NA as compared to EA. The temporal changes in the coupled vegetation phenology and productivity suggest complex relationships and interactions that are induced by both ongoing climate change and increasingly intensive human disturbances.
Collapse
|
13
|
Effects of organic carbon enrichment on respiration rates, phosphatase activities, and abundance of heterotrophic bacteria and protists in organic-rich Arctic and mineral-rich temperate soil samples. Polar Biol 2017. [DOI: 10.1007/s00300-017-2166-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
Lorberau KE, Botnen SS, Mundra S, Aas AB, Rozema J, Eidesen PB, Kauserud H. Does warming by open-top chambers induce change in the root-associated fungal community of the arctic dwarf shrub Cassiope tetragona (Ericaceae)? MYCORRHIZA 2017; 27:513-524. [PMID: 28349216 DOI: 10.1007/s00572-017-0767-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 02/28/2017] [Indexed: 05/21/2023]
Abstract
Climate change may alter mycorrhizal communities, which impact ecosystem characteristics such as carbon sequestration processes. These impacts occur at a greater magnitude in Arctic ecosystems, where the climate is warming faster than in lower latitudes. Cassiope tetragona (L.) D. Don is an Arctic plant species in the Ericaceae family with a circumpolar range. C. tetragona has been reported to form ericoid mycorrhizal (ErM) as well as ectomycorrhizal (ECM) symbioses. In this study, the fungal taxa present within roots of C. tetragona plants collected from Svalbard were investigated using DNA metabarcoding. In light of ongoing climate change in the Arctic, the effects of artificial warming by open-top chambers (OTCs) on the fungal root community of C. tetragona were evaluated. We detected only a weak effect of warming by OTCs on the root-associated fungal communities that was masked by the spatial variation between sampling sites. The root fungal community of C. tetragona was dominated by fungal groups in the Basidiomycota traditionally classified as either saprotrophic or ECM symbionts, including the orders Sebacinales and Agaricales and the genera Clavaria, Cortinarius, and Mycena. Only a minor proportion of the operational taxonomic units (OTUs) could be annotated as ErM-forming fungi. This indicates that C. tetragona may be forming mycorrhizal symbioses with typically ECM-forming fungi, although no characteristic ECM root tips were observed. Previous studies have indicated that some saprophytic fungi may also be involved in biotrophic associations, but whether the saprotrophic fungi in the roots of C. tetragona are involved in biotrophic associations remains unclear. The need for more experimental and microscopy-based studies to reveal the nature of the fungal associations in C. tetragona roots is emphasized.
Collapse
Affiliation(s)
- Kelsey Erin Lorberau
- University of Oslo, P.O. Box 1072, Blindern, 0316, Oslo, Norway.
- University Centre in Svalbard, P.O. Box 156, 9171, Longyearbyen, Norway.
| | - Synnøve Smebye Botnen
- University of Oslo, P.O. Box 1072, Blindern, 0316, Oslo, Norway
- University Centre in Svalbard, P.O. Box 156, 9171, Longyearbyen, Norway
| | - Sunil Mundra
- University of Oslo, P.O. Box 1072, Blindern, 0316, Oslo, Norway
- University Centre in Svalbard, P.O. Box 156, 9171, Longyearbyen, Norway
- Biodiversity and Climate Research Centre, Senckenberg Gesellschaft für Naturforschung, Seckenberganlage, 25, 60325, Frankfurt am Main, Germany
| | | | - Jelte Rozema
- VU University (Vrije Universiteit) Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | | | - Håvard Kauserud
- University of Oslo, P.O. Box 1072, Blindern, 0316, Oslo, Norway
| |
Collapse
|
15
|
Prager CM, Naeem S, Boelman NT, Eitel JUH, Greaves HE, Heskel MA, Magney TS, Menge DNL, Vierling LA, Griffin KL. A gradient of nutrient enrichment reveals nonlinear impacts of fertilization on Arctic plant diversity and ecosystem function. Ecol Evol 2017; 7:2449-2460. [PMID: 28405308 PMCID: PMC5383475 DOI: 10.1002/ece3.2863] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/28/2017] [Accepted: 02/07/2017] [Indexed: 11/09/2022] Open
Abstract
Rapid environmental change at high latitudes is predicted to greatly alter the diversity, structure, and function of plant communities, resulting in changes in the pools and fluxes of nutrients. In Arctic tundra, increased nitrogen (N) and phosphorus (P) availability accompanying warming is known to impact plant diversity and ecosystem function; however, to date, most studies examining Arctic nutrient enrichment focus on the impact of relatively large (>25x estimated naturally occurring N enrichment) doses of nutrients on plant community composition and net primary productivity. To understand the impacts of Arctic nutrient enrichment, we examined plant community composition and the capacity for ecosystem function (net ecosystem exchange, ecosystem respiration, and gross primary production) across a gradient of experimental N and P addition expected to more closely approximate warming-induced fertilization. In addition, we compared our measured ecosystem CO 2 flux data to a widely used Arctic ecosystem exchange model to investigate the ability to predict the capacity for CO 2 exchange with nutrient addition. We observed declines in abundance-weighted plant diversity at low levels of nutrient enrichment, but species richness and the capacity for ecosystem carbon uptake did not change until the highest level of fertilization. When we compared our measured data to the model, we found that the model explained roughly 30%-50% of the variance in the observed data, depending on the flux variable, and the relationship weakened at high levels of enrichment. Our results suggest that while a relatively small amount of nutrient enrichment impacts plant diversity, only relatively large levels of fertilization-over an order of magnitude or more than warming-induced rates-significantly alter the capacity for tundra CO 2 exchange. Overall, our findings highlight the value of measuring and modeling the impacts of a nutrient enrichment gradient, as warming-related nutrient availability may impact ecosystems differently than single-level fertilization experiments.
Collapse
Affiliation(s)
- Case M Prager
- Department of Ecology, Evolution, and Environmental Biology Columbia University New York NY USA
| | - Shahid Naeem
- Department of Ecology, Evolution, and Environmental Biology Columbia University New York NY USA
| | - Natalie T Boelman
- Department of Earth and Environmental Sciences Columbia University New York NY USA; Lamont-Doherty Earth Observatory Columbia University Palisades NY USA
| | - Jan U H Eitel
- Geospatial Laboratory for Environmental Dynamics Department of Natural Resources and Society University of Idaho Moscow ID USA; McCall Outdoor Science School University of Idaho McCall ID USA
| | - Heather E Greaves
- Geospatial Laboratory for Environmental Dynamics Department of Natural Resources and Society University of Idaho Moscow ID USA
| | - Mary A Heskel
- Ecosystems Center Marine Biological Laboratory Woods Hole MA USA
| | - Troy S Magney
- Jet Propulsion Laboratory California Institute of Technology Pasadena CA USA
| | - Duncan N L Menge
- Department of Ecology, Evolution, and Environmental Biology Columbia University New York NY USA
| | - Lee A Vierling
- Geospatial Laboratory for Environmental Dynamics Department of Natural Resources and Society University of Idaho Moscow ID USA; McCall Outdoor Science School University of Idaho McCall ID USA
| | - Kevin L Griffin
- Department of Ecology, Evolution, and Environmental Biology Columbia University New York NY USA; Department of Earth and Environmental Sciences Columbia University New York NY USA; Lamont-Doherty Earth Observatory Columbia University Palisades NY USA
| |
Collapse
|
16
|
Williamson SN, Barrio IC, Hik DS, Gamon JA. Phenology and species determine growing-season albedo increase at the altitudinal limit of shrub growth in the sub-Arctic. GLOBAL CHANGE BIOLOGY 2016; 22:3621-3631. [PMID: 27158930 DOI: 10.1111/gcb.13297] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 03/02/2016] [Accepted: 03/18/2016] [Indexed: 06/05/2023]
Abstract
Arctic warming is resulting in reduced snow cover and increased shrub growth, both of which have been associated with altered land surface-atmospheric feedback processes involving sensible heat flux, ground heat flux and biogeochemical cycling. Using field measurements, we show that two common Arctic shrub species (Betula glandulosa and Salix pulchra), which are largely responsible for shrub encroachment in tundra, differed markedly in albedo and that albedo of both species increased as growing season progressed when measured at their altitudinal limit. A moveable apparatus was used to repeatedly measure albedo at six precise spots during the summer of 2012, and resampled in 2013. Contrary to the generally accepted view of shrub-covered areas having low albedo in tundra, full-canopy prostrate B. glandulosa had almost the highest albedo of all surfaces measured during the peak of the growing season. The higher midsummer albedo is also evident in localized MODIS albedo aggregated from 2000 to 2013, which displays a similar increase in growing-season albedo. Using our field measurements, we show the ensemble summer increase in tundra albedo counteracts the generalized effect of earlier spring snow melt on surface energy balance by approximately 40%. This summer increase in albedo, when viewed in absolute values, is as large as the difference between the forest and tundra transition. These results indicate that near future (<50 years) changes in growing-season albedo related to Arctic vegetation change are unlikely to be particularly large and might constitute a negative feedback to climate warming in certain circumstances. Future efforts to calculate energy budgets and a sensible heating feedback in the Arctic will require more detailed information about the relative abundance of different ground cover types, particularly shrub species and their respective growth forms and phenology.
Collapse
Affiliation(s)
- Scott N Williamson
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada.
| | - Isabel C Barrio
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - David S Hik
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - John A Gamon
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, AB, T6G 2E3, Canada
| |
Collapse
|
17
|
Greater Abundance of Betula nana and Early Onset of the Growing Season Increase Ecosystem CO2 Uptake in West Greenland. Ecosystems 2016. [DOI: 10.1007/s10021-016-9997-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
18
|
Spectral determination of concentrations of functionally diverse pigments in increasingly complex arctic tundra canopies. Oecologia 2016; 182:85-97. [PMID: 27193900 DOI: 10.1007/s00442-016-3646-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 04/28/2016] [Indexed: 10/21/2022]
Abstract
As the Arctic warms, tundra vegetation is becoming taller and more structurally complex, as tall deciduous shrubs become increasingly dominant. Emerging studies reveal that shrubs exhibit photosynthetic resource partitioning, akin to forests, that may need accounting for in the "big leaf" net ecosystem exchange models. We conducted a lab experiment on sun and shade leaves from S. pulchra shrubs to determine the influence of both constitutive (slowly changing bulk carotenoid and chlorophyll pools) and facultative (rapidly changing xanthophyll cycle) pigment pools on a suite of spectral vegetation indices, to devise a rapid means of estimating within canopy resource partitioning. We found that: (1) the PRI of dark-adapted shade leaves (PRIo) was double that of sun leaves, and that PRIo was sensitive to variation among sun and shade leaves in both xanthophyll cycle pool size (V + A + Z) (r (2) = 0.59) and Chla/b (r (2) = 0.64); (2) A corrected PRI (difference between dark and illuminated leaves, ΔPRI) was more sensitive to variation among sun and shade leaves in changes to the epoxidation state of their xanthophyll cycle pigments (dEPS) (r (2) = 0.78, RMSE = 0.007) compared to the uncorrected PRI of illuminated leaves (PRI) (r (2) = 0.34, RMSE = 0.02); and (3) the SR680 index was correlated with each of (V + A + Z), lutein, bulk carotenoids, (V + A + Z)/(Chla + b), and Chla/b (r (2) range = 0.52-0.69). We suggest that ΔPRI be employed as a proxy for facultative pigment dynamics, and the SR680 for the estimation of constitutive pigment pools. We contribute the first Arctic-specific information on disentangling PRI-pigment relationships, and offer insight into how spectral indices can assess resource partitioning within shrub tundra canopies.
Collapse
|
19
|
Livensperger C, Steltzer H, Darrouzet-Nardi A, Sullivan PF, Wallenstein M, Weintraub MN. Earlier snowmelt and warming lead to earlier but not necessarily more plant growth. AOB PLANTS 2016; 8:plw021. [PMID: 27075181 PMCID: PMC4866651 DOI: 10.1093/aobpla/plw021] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 03/14/2016] [Indexed: 05/09/2023]
Abstract
Climate change over the past ∼50 years has resulted in earlier occurrence of plant life-cycle events for many species. Across temperate, boreal and polar latitudes, earlier seasonal warming is considered the key mechanism leading to earlier leaf expansion and growth. Yet, in seasonally snow-covered ecosystems, the timing of spring plant growth may also be cued by snowmelt, which may occur earlier in a warmer climate. Multiple environmental cues protect plants from growing too early, but to understand how climate change will alter the timing and magnitude of plant growth, experiments need to independently manipulate temperature and snowmelt. Here, we demonstrate that altered seasonality through experimental warming and earlier snowmelt led to earlier plant growth, but the aboveground production response varied among plant functional groups. Earlier snowmelt without warming led to early leaf emergence, but often slowed the rate of leaf expansion and had limited effects on aboveground production. Experimental warming alone had small and inconsistent effects on aboveground phenology, while the effect of the combined treatment resembled that of early snowmelt alone. Experimental warming led to greater aboveground production among the graminoids, limited changes among deciduous shrubs and decreased production in one of the dominant evergreen shrubs. As a result, we predict that early onset of the growing season may favour early growing plant species, even those that do not shift the timing of leaf expansion.
Collapse
Affiliation(s)
- Carolyn Livensperger
- Department of Ecosystem Science and Sustainability, Colorado State University, Fort Collins, CO 80523, USA
| | - Heidi Steltzer
- Biology Department, Fort Lewis College, Durango, CO 81301, USA
| | | | - Patrick F Sullivan
- Environment and Natural Resources Institute, University of Alaska Anchorage, Anchorage, AK 99508, USA
| | - Matthew Wallenstein
- Department of Ecosystem Science and Sustainability, Colorado State University, Fort Collins, CO 80523, USA
| | - Michael N Weintraub
- Department of Environmental Sciences, University of Toledo, Toledo, OH 43606, USA
| |
Collapse
|
20
|
Garonna I, de Jong R, Schaepman ME. Variability and evolution of global land surface phenology over the past three decades (1982-2012). GLOBAL CHANGE BIOLOGY 2016; 22:1456-1468. [PMID: 26924776 DOI: 10.1111/gcb.13168] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 10/24/2015] [Indexed: 06/05/2023]
Abstract
Monitoring land surface phenology (LSP) is important for understanding both the responses and feedbacks of ecosystems to the climate system, and for representing these accurately in terrestrial biosphere models. Moreover, by shedding light on phenological trends at a variety of scales, LSP provides the potential to fill the gap between traditional phenological (field) observations and the large-scale view of global models. In this study, we review and evaluate the variability and evolution of satellite-derived growing season length (GSL) globally and over the past three decades. We used the longest continuous record of Normalized Difference Vegetation Index data available to date at global scale to derive LSP metrics consistently over all vegetated land areas and for the period 1982-2012. We tested GSL, start- and end-of-season metrics (SOS and EOS, respectively) for linear trends as well as for significant trend shifts over the study period. We evaluated trends using global environmental stratification information in place of commonly used land cover maps to avoid circular findings. Our results confirmed an average lengthening of the growing season globally during 1982-2012 - averaging 0.22-0.34 days yr(-1), but with spatially heterogeneous trends. About 13-19% of global land areas displayed significant GSL change, and over 30% of trends occurred in the boreal/alpine biome of the Northern Hemisphere, which showed diverging GSL evolution over the past three decades. Within this biome, the 'Cold and Mesic' environmental zone appeared as an LSP change hotspot. We also examined the relative contribution of SOS and EOS to the overall changes, finding that EOS trends were generally stronger and more prevalent than SOS trends. These findings constitute a step towards the identification of large-scale phenological drivers of vegetated land surfaces, necessary for improving phenological representation in terrestrial biosphere models.
Collapse
Affiliation(s)
- Irene Garonna
- Remote Sensing Laboratories, Department of Geography, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Rogier de Jong
- Remote Sensing Laboratories, Department of Geography, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Michael E Schaepman
- Remote Sensing Laboratories, Department of Geography, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| |
Collapse
|