1
|
Feller IC, Berger U, Chapman SK, Dangremond EM, Dix NG, Langley JA, Lovelock CE, Osborne TZ, Shor AC, Simpson LT. Nitrogen Addition Increases Freeze Resistance in Black Mangrove (Avicennia germinans) Shrubs in a Temperate-Tropical Ecotone. Ecosystems 2022. [DOI: 10.1007/s10021-022-00796-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
2
|
Idbella M, Abd‐ElGawad AM, Mazzoleni S, Bonanomi G. Microclimate, soil chemistry, and microbiota fail to explain
Euphorbia dendroides
Janzen‐Connell
pattern in a shrubland. Ecosphere 2022. [DOI: 10.1002/ecs2.4296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Mohamed Idbella
- Department of Agricultural Sciences University of Naples Federico II Naples Italy
- Laboratory of Biosciences, Faculty of Sciences and Techniques Hassan II University Casablanca Morocco
| | - Ahmed M. Abd‐ElGawad
- Department of Botany, Faculty of Sciences Mansoura University Mansoura Egypt
- Plant Production Department, College of Food and Agriculture Sciences King Saud University Riyadh Saudi Arabia
| | - Stefano Mazzoleni
- Department of Agricultural Sciences University of Naples Federico II Naples Italy
- Task Force on Microbiome Studies University of Naples Federico II Naples Italy
| | - Giuliano Bonanomi
- Department of Agricultural Sciences University of Naples Federico II Naples Italy
- Task Force on Microbiome Studies University of Naples Federico II Naples Italy
| |
Collapse
|
3
|
Li J, Ravi S, Wang G, Van Pelt RS, Gill TE, Sankey JB. Woody plant encroachment of grassland and the reversibility of shrub dominance: Erosion, fire, and feedback processes. Ecosphere 2022. [DOI: 10.1002/ecs2.3949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Junran Li
- Department of Geosciences The University of Tulsa Tulsa Oklahoma USA
| | - Sujith Ravi
- Department of Earth and Environmental Science Temple University Philadelphia Pennsylvania USA
| | - Guan Wang
- Department of Geosciences The University of Tulsa Tulsa Oklahoma USA
| | - R. Scott Van Pelt
- Wind Erosion and Water Conservation Research USDA‐ARS Big Spring Texas USA
| | - Thomas E. Gill
- Department of Earth, Environmental and Resource Sciences and Environmental Science & Engineering Program University of Texas at El Paso El Paso Texas USA
| | - Joel B. Sankey
- Southwestern Biological Science Center, Grand Canyon Monitoring and Research Center U.S. Geological Survey Flagstaff Arizona USA
| |
Collapse
|
4
|
Ladwig LM, Bell-Dereske LP, Bell KC, Collins SL, Natvig DO, Taylor DL. Soil fungal composition changes with shrub encroachment in the northern Chihuahuan Desert. FUNGAL ECOL 2021. [DOI: 10.1016/j.funeco.2021.101096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
5
|
Wood LK, Hays S, Zinnert JC. Decreased temperature variance associated with biotic composition enhances coastal shrub encroachment. Sci Rep 2020; 10:8210. [PMID: 32427910 PMCID: PMC7237465 DOI: 10.1038/s41598-020-65161-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 04/28/2020] [Indexed: 11/09/2022] Open
Abstract
Regime shift from grasslands to shrub-dominated landscapes occur worldwide driven by altered land-use and climate change, affecting landscape function, biodiversity, and productivity. Warming winter temperatures are a main driver of expansion of the native, evergreen shrub, Morella cerifera, in coastal landscapes. Shrub establishment in these habitats alters microclimate, but little is known about seasonal differences and microclimate variance. We assessed influence of shrubs on microclimate variance, community composition, and community physiological functioning across three vegetation zones: grass, transitional, and shrub in a coastal grassland. Using a novel application of a time-series analysis, we interpret microclimatic variance modification and elucidate mechanisms of shrub encroachment at the Virginia Coast Reserve, Long-Term Ecological Research site. As shrub thickets form, diversity is reduced with little grass/forb cover, while transpiration and annual productivity increase. Shrub thickets significantly reduced temperature variance with a positive influence of one day on the next in maximum air, minimum air, and maximum ground temperature. We also show that microclimatic temperature moderation reduces summer extreme temperatures in transition areas, even before coalescence into full thickets. Encroachment of Morella cerifera on the Virginia barrier islands is driven by reduced local exposure to cold temperatures and enhanced by abiotic microclimatic modification and biotic physiological functioning. This shift in plant community composition from grassland to shrub thicket alters the role of barrier islands in productivity and can have impacts on the natural resilience of the islands.
Collapse
Affiliation(s)
- Lauren K Wood
- Department of Biology, Virginia Commonwealth University, 1000 West Cary St, Richmond, VA, 23225, USA.,Integrative Life Sciences Doctoral Program, Virginia Commonwealth University, 1000 West Cary St, Richmond, VA, 23225, USA
| | - Spencer Hays
- Department of Statistics, Indiana University, 919 E. 10th St, Bloomington, IN, 47408, USA
| | - Julie C Zinnert
- Department of Biology, Virginia Commonwealth University, 1000 West Cary St, Richmond, VA, 23225, USA.
| |
Collapse
|
6
|
Predicting changes in bee assemblages following state transitions at North American dryland ecotones. Sci Rep 2020; 10:708. [PMID: 31959812 PMCID: PMC6971228 DOI: 10.1038/s41598-020-57553-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 12/26/2019] [Indexed: 11/11/2022] Open
Abstract
Drylands worldwide are experiencing ecosystem state transitions: the expansion of some ecosystem types at the expense of others. Bees in drylands are particularly abundant and diverse, with potential for large compositional differences and seasonal turnover across ecotones. To better understand how future ecosystem state transitions may influence bees, we compared bee assemblages and their seasonality among sites at the Sevilleta National Wildlife Refuge (NM, USA) that represent three dryland ecosystem types (and two ecotones) of the southwestern U.S. (Plains grassland, Chihuahuan Desert grassland, and Chihuahuan Desert shrubland). Using passive traps, we caught bees during two-week intervals from March–October, 2002–2014. The resulting dataset included 302 bee species and 56 genera. Bee abundance, composition, and diversity differed among ecosystems, indicating that future state transitions could alter bee assemblage composition in our system. We found strong seasonal bee species turnover, suggesting that bee phenological shifts may accompany state transitions. Common species drove the observed trends, and both specialist and generalist bee species were indicators of ecosystem types or months; these species could be sentinels of community-wide responses to future shifts. Our work suggests that predicting the consequences of global change for bee assemblages requires accounting for both within-year and among-ecosystem variation.
Collapse
|
7
|
Impact of Large-Scale Afforestation on Surface Temperature: A Case Study in the Kubuqi Desert, Inner Mongolia Based on the WRF Model. FORESTS 2019. [DOI: 10.3390/f10050368] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Afforestation activities in the Kubuqi Desert, Inner Mongolia, China, have substantially increased tree and shrub coverage in this region. In this study, the response of the surface temperature to afforestation is simulated with the Weather Research and Forecasting model. The surface temperature changes are decomposed into contributions from the intrinsic surface biophysical effect and atmospheric feedback, using the theory of intrinsic biophysical mechanism. The effect of afforestation on the surface temperature is 1.34 K, −0.48 K, 2.09 K and 0.22 K for the summer daytime, the summer nighttime, the winter daytime and the winter nighttime, respectively, for the grid cells that have experienced conversion from bare soil to shrub. The corresponding domain mean values are 0.15 K, −0.2 K, 0.67 K, and 0.06 K. The seasonal variation of surface temperature change is mainly caused by changes in roughness and Bowen ratio. In the daytime, the surface temperature changes are dominated by the biophysical effect, with albedo change being the main biophysical factor. In the nighttime, the biophysical effect (mainly associated with roughness change) and the atmospheric feedback (mainly associated with change in the background air temperature) contribute similar amounts to the surface temperature changes. We conclude that the atmospheric feedback can amplify the influence of the surface biophysical effect, especially in the nighttime.
Collapse
|
8
|
Huang H, Zinnert JC, Wood LK, Young DR, D'Odorico P. Non-linear shift from grassland to shrubland in temperate barrier islands. Ecology 2018; 99:1671-1681. [PMID: 29729181 DOI: 10.1002/ecy.2383] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 03/03/2018] [Accepted: 04/05/2018] [Indexed: 11/10/2022]
Abstract
Woody plant encroachment into grasslands is a major land cover change taking place in many regions of the world, including arctic, alpine and desert ecosystems. This change in plant dominance is also affecting coastal ecosystems, including barrier islands, which are known for being vulnerable to the effects of climate change. In the last century, the woody plant species Morella cerifera L. (Myricaceae), has encroached into grass covered swales in many of the barrier islands of Virginia along the Atlantic seaboard. The abrupt shift to shrub cover in these islands could result from positive feedbacks with the physical environment, though the underlying mechanisms remain poorly understood. We use a combination of experimental and modeling approaches to investigate the role of climate warming and the ability of M. cerifera to mitigate its microclimate thereby leading to the emergence of alternative stable states in barrier island vegetation. Nighttime air temperatures were significantly higher in myrtle shrublands than grasslands, particularly in the winter season. The difference in the mean of the 5% and 10% lowest minimum temperatures between shrubland and grassland calculated from two independent datasets ranged from 1.3 to 2.4°C. The model results clearly show that a small increase in near-surface temperature can induce a non-linear shift in ecosystem state from a stable state with no shrubs to an alternative stable state dominated by M. cerifera. This modeling framework improves our understanding and prediction of barrier island vegetation stability and resilience under climate change, and highlights the existence of important nonlinearities and hystereses that limit the reversibility of this ongoing shift in vegetation dominance.
Collapse
Affiliation(s)
- Heng Huang
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, California, 94720-3116, USA
| | - Julie C Zinnert
- Department of Biology, Virginia Commonwealth University, Richmond, Virginia, 23284, USA
| | - Lauren K Wood
- Department of Biology, Virginia Commonwealth University, Richmond, Virginia, 23284, USA
| | - Donald R Young
- Department of Biology, Virginia Commonwealth University, Richmond, Virginia, 23284, USA
| | - Paolo D'Odorico
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, California, 94720-3116, USA
| |
Collapse
|
9
|
de Casas RR, Mort ME, Soltis DE. The influence of habitat on the evolution of plants: a case study across Saxifragales. ANNALS OF BOTANY 2016; 118:1317-1328. [PMID: 27551029 PMCID: PMC5155595 DOI: 10.1093/aob/mcw160] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 06/13/2016] [Accepted: 07/05/2016] [Indexed: 05/31/2023]
Abstract
BACKGROUND AND AIMS Organismal evolution tends to be closely associated with ecological conditions. However, the extent to which this association constrains adaptation or diversification into new habitats remains unclear. We studied habitat evolution in the hyper-diverse angiosperm clade Saxifragales. METHODS We used species-level phylogenies for approx. 950 species to analyse the evolution of habitat shifts as well as their influence on plant diversification. We combined habitat characterization based on floristic assignments and state-of-the art phylogenetic comparative methods to estimate within- and across-habitat diversification patterns. KEY RESULTS Our analyses showed that Saxifragales diversified into multiple habitats from a forest-inhabiting ancestor and that this diversification is governed by relatively rare habitat shifts. Lineages are likely to stay within inferred ancestral ecological conditions. Adaptation to some habitat types (e.g. aquatic, desert) may be canalizing events that lineages do not escape. Although associations between increased diversification rates and shifts in habitat preferences are occasionally observed, extreme macroevolutionary rates are closely associated with specific habitats. Lineages occurring in shrubland, and especially tundra and rock cliffs, exhibit comparatively high diversification, whereas forest, grassland, desert and aquatic habitats are associated with low diversification. CONCLUSIONS The likelihood of occupation of new habitats appears to be asymmetric. Shifts to aquatic and desert habitats may be canalizing events. Other habitats, such as tundra, might act as evolutionary sources, while forests provide the only habitat seemingly colonized easily by lineages originating elsewhere. However, habitat shifts are very rare, and any major environmental alteration is expected to have dramatic evolutionary consequences.
Collapse
Affiliation(s)
- Rafael Rubio de Casas
- Estación Experimental de Zonas Áridas, EEZA-CSIC, Carretera de Sacramento s/n, 04120 Almería, Spain
- CEFE UMR 5175, CNRS, Universite de Montpellier, Universite Paul-Valery 7 Montpellier, EPHE, 1919 route de Mende, 34293 Montpellier cedex 05, France
- Departamento de Ecología, Facultad de Ciencias, Universidad de Granada, Avda. de la Fuentenueva s/n, 18071 Granada, Spain
| | - Mark E Mort
- Department of Ecology and Evolutionary Biology and Biodiversity Institute, University of Kansas, 1200 Sunnyside Avenue, Lawrence, KS 66045-7543, USA
| | - Douglas E Soltis
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|