1
|
Sáez‐Sandino T, Reich PB, Maestre FT, Cano‐Díaz C, Stefanski A, Bermudez R, Wang J, Dhar A, Singh BK, Gallardo A, Delgado‐Baquerizo M, Trivedi P. A Large Fraction of Soil Microbial Taxa Is Sensitive to Experimental Warming. GLOBAL CHANGE BIOLOGY 2025; 31:e70231. [PMID: 40406879 PMCID: PMC12100458 DOI: 10.1111/gcb.70231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 04/08/2025] [Accepted: 04/10/2025] [Indexed: 05/26/2025]
Abstract
Global warming is expected to significantly impact the soil fungal and bacterial microbiomes, yet the predominant ecological response of microbial taxa-whether an increase, decrease, or no change-remains unclear. It is also unknown whether microbial taxa from different evolutionary lineages exhibit common patterns and what factors drive these changes. Here, we analyzed three mid-term (> 5 years) warming experiments across contrasting dryland and temperate-boreal ecosystems, encompassing over 500 topsoil samples collected across multiple time points. We found that warming altered the relative abundance of microbial taxa, with both increases and decreases over time. For instance, the relative abundance of bacterial and fungal taxa responding to warming (increase or decrease) accounted for 35.9% and 42.9% in the dryland ecosystem, respectively. Notably, taxa within the same phylum exhibited divergent responses to warming. These ecological shifts were linked to factors such as photosynthetic cover and fungal lifestyle, both of which influence soil functions. Overall, our findings indicate that soil warming can reshape a significant fraction of the microbial community across ecosystems, potentially driving changes in soil functions.
Collapse
Affiliation(s)
- Tadeo Sáez‐Sandino
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityPenrithNew South WalesAustralia
| | - Peter B. Reich
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityPenrithNew South WalesAustralia
- Department of Forest ResourcesUniversity of MinnesotaSaint PaulMinnesotaUSA
- Institute for Global Change BiologyUniversity of MichiganAnn ArborMichiganUSA
| | - Fernando T. Maestre
- Environmental Sciences and Engineering, Biological and Environmental Science and Engineering DivisionKing Abdullah University of Science and TechnologyThuwalSaudi Arabia
| | - Concha Cano‐Díaz
- CISAS—Center for Research and Development in Agrifood Systems and SustainabilityInstituto Politécnico de Viana do Castelo (IPVC), Rua Escola Industrial e Comercial Nun'álvaresViana do CasteloPortugal
| | - Artur Stefanski
- Department of Forest ResourcesUniversity of MinnesotaSaint PaulMinnesotaUSA
- Colleage of Natural ResourcesUniversity of Wisconsin Stevens PointStevens PointWisconsinUSA
| | - Raimundo Bermudez
- Department of Forest ResourcesUniversity of MinnesotaSaint PaulMinnesotaUSA
| | - Juntao Wang
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityPenrithNew South WalesAustralia
| | - Avinash Dhar
- Microbiome Network and Department of Agricultural BiologyColorado State UniversityFort CollinsColoradoUSA
| | - Brajesh K. Singh
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityPenrithNew South WalesAustralia
| | - Antonio Gallardo
- Departamento de Sistemas Físicos, Químicos y NaturalesUniversidad Pablo de OlavideSevillaSpain
| | - Manuel Delgado‐Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento EcosistémicoInstituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), Consejo Superior de Investigaciones Científicas (CSIC)SevillaSpain
| | - Pankaj Trivedi
- Microbiome Network and Department of Agricultural BiologyColorado State UniversityFort CollinsColoradoUSA
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil SciencesTexas Tech UniversityLubbockTexasUSA
| |
Collapse
|
2
|
Lian J, Cai K, Yin A, Yuan Y, Zhang X, Xu C. Both light and soil moisture affect the rhizosphere microecology in two oak species. Front Microbiol 2025; 16:1506558. [PMID: 39963499 PMCID: PMC11830677 DOI: 10.3389/fmicb.2025.1506558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 01/13/2025] [Indexed: 02/20/2025] Open
Abstract
Understanding the mechanisms by which seedlings respond to light and water regulation, as well as studying the response of rhizosphere microecology to drought stress, are crucial for forest ecosystem management and ecological restoration. To elucidate the response of the rhizosphere microecology of Quercus dentata and Quercus variabilis seedlings to water and light conditions, and to clarify how plants modulate the structure and function of rhizosphere microbial communities under drought stress, we conducted 12 water-light gradient control experiments. These experiments aimed to offer scientific theoretical support for the dynamic changes in rhizosphere soil enzyme activities and microbial community compositions of these two oak species under varying light and moisture conditions, and subsequently assist in the future breeding and cultivation efforts. The results are summarized as follows: (1) The activities of cellulase, urease, and chitinase in the rhizosphere soil of Q. dentata and Q. variabilis were significantly influenced by water and light treatments (p < 0.05). Urease was particularly sensitive to light, while sucrase exhibited sensitivity to light in Q. dentata and no significant difference in Q. variabilis. (2) Compared to Q. dentata, the rhizosphere bacteria of Q. variabilis demonstrated greater adaptability to drought conditions. Significant differences were observed in the composition of microorganisms and types of fungi in the rhizosphere soil of the two Quercus seedlings. The fungal community is significantly influenced by light and moisture, and appropriate shading treatment can increase the species diversity of fungi; (3) Under different water and light treatments, the rhizosphere soil microbial composition and dominant species differed significantly between the two Quercus seedlings. For instance, Streptomyces, Mesorhizobium, and Paecilomyces exhibited significant variations under different treatment conditions. Specifically, under L3W0 (25% light, 75-85% moisture) conditions, Hyphomonadaceae and SWB02 dominated in the Q. dentata rhizosphere, whereas Burkholderiales and Nitrosomonadaceae were prevalent in the Q. variabilis rhizosphere. Overall, the rhizosphere microecology of Q. dentata and Q. variabilis exhibited markedly distinct responses to varying light and water regimen conditions. Under identical conditions, however, the enzyme activity and microbial community composition in the rhizosphere soil of these two oak seedlings were found to be similar.
Collapse
Affiliation(s)
- Jinshuo Lian
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Key Laboratory for Silviculture and Forest Ecosystem of State Forestry and Grassland Administration, Research Center for Urban Forestry, Research Center of Deciduous Oaks, Beijing Forestry University, Beijing, China
| | - Keke Cai
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Key Laboratory for Silviculture and Forest Ecosystem of State Forestry and Grassland Administration, Research Center for Urban Forestry, Research Center of Deciduous Oaks, Beijing Forestry University, Beijing, China
| | - Aijing Yin
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Key Laboratory for Silviculture and Forest Ecosystem of State Forestry and Grassland Administration, Research Center for Urban Forestry, Research Center of Deciduous Oaks, Beijing Forestry University, Beijing, China
| | - Yuan Yuan
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Xinna Zhang
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Key Laboratory for Silviculture and Forest Ecosystem of State Forestry and Grassland Administration, Research Center for Urban Forestry, Research Center of Deciduous Oaks, Beijing Forestry University, Beijing, China
| | - Chengyang Xu
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Key Laboratory for Silviculture and Forest Ecosystem of State Forestry and Grassland Administration, Research Center for Urban Forestry, Research Center of Deciduous Oaks, Beijing Forestry University, Beijing, China
| |
Collapse
|
3
|
Lopez A, Anthony M, Catalan-Dibene J, Ferrenberg S, Jordan SE, Osborne B, Reed S, Romero-Olivares AL. Dryland fungi are spatially heterogeneous and resistant to global change drivers. Ecosphere 2024; 15:e70031. [PMID: 40247861 PMCID: PMC12002595 DOI: 10.1002/ecs2.70031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 07/03/2024] [Indexed: 04/19/2025] Open
Abstract
Fungi are considered particularly important in regulating the structure and function of dryland ecosystems, yet the response of dryland fungal communities to global change remains notably understudied. Without a clear understanding of how fungi respond to global change drivers, mitigation plans-required for biodiversity and ecosystem service conservation and restoration-are impossible to develop. In this study we asked the following: (1) how does the fungal community respond to the individual and interactive effects of physical disturbance and drought in a heterogeneous dryland landscape comprised of drought-adapted shrubs separated by adjacent open areas of soil, and (2) what are the larger scale impacts of this response? We assessed fungal communities (using fungal-specific DNA metabarcoding analyses) of surface soil samples in an in situ global change experiment that included disturbance and drought in a full factorial design in the northern extent of the Chihuahuan Desert. We found that the fungal community was spatially heterogenous and remarkably resistant to disturbance and drought. We also show that dryland soils harbor high shares of facultative pathogenic and obligately pathogenic fungal taxa, with several concerning taxa reaching high relative abundances under drought. Our results suggest that the fungal community is highly influenced by microclimatic conditions associated with the presence or absence of vegetation. Moreover, our results imply that the fungal community in our experiment was already adapted to the magnitude of stress imposed by two years of experimental disturbance and drought treatments. Overall, our study shows that the fungal community is spatially heterogeneous, resistant to global change drivers, and houses many fungal species known for being stress tolerant and pathogenic.
Collapse
Affiliation(s)
- Andrea Lopez
- New Mexico State University, Department of Biology, Las Cruces, New Mexico, USA
| | - Mark Anthony
- University of Vienna, Division of Terrestrial Ecosystem Research, Snow, and the Landscape, Vienna, Austria
| | | | - Scott Ferrenberg
- Department of Ecosystem and Conservation Sciences, University of Montana, Missoula, Montana, USA
| | - Samuel E. Jordan
- Arizona State University, School of Life Sciences, Tempe, Arizona, USA
| | - Brooke Osborne
- Department of Environment and Society, Utah State University, Moab, Utah, USA
| | - Sasha Reed
- U.S. Geological Survey, Southwest Biological Science Center, Moab, Utah, USA
| | | |
Collapse
|
4
|
Romero-Olivares AL, Lopez A, Catalan-Dibene J, Ferrenberg S, Jordan SE, Osborne B. Effects of global change drivers on the expression of pathogenicity and stress genes in dryland soil fungi. mSphere 2024; 9:e0065824. [PMID: 39475318 PMCID: PMC11580470 DOI: 10.1128/msphere.00658-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/08/2024] [Indexed: 11/22/2024] Open
Abstract
The impacts of global climate change on dryland fungi have been understudied even though fungi are extremely sensitive to changes in the environment. Considering that many fungi are pathogens of plants and animals, including humans, their responses to anthropogenic change could have important implications for public health and food security. In this study, we investigated the potential physiological responses (i.e., metatranscriptomics) of pathogenicity and stress in dryland fungi exposed to global change drivers, drought, and the physical disturbance associated with land use. Specifically, we wanted to assess if there was an increase in the transcription of genes associated to pathogenicity and stress in response to global change drivers. In addition, we wanted to investigate which pathogenicity and stress genes were consistently differentially expressed under the different global change conditions across the heterogeneous landscape (i.e., microsite) of the Chihuahuan desert. We observed increased transcription of pathogenicity and stress genes, with specific genes being most upregulated in response to global change drivers. Additionally, climatic conditions linked to different microsites, such as those found under patches of vegetation, may play a significant role. We provide evidence supporting the idea that environmental stress caused by global change could contribute to an increase of pathogenicity as global climate changes. Specifically, increases in the transcription of stress and virulence genes, coupled with variations in gene expression, could lead to the onset of pathogenicity. Our work underscores the importance of studying dryland fungi exposed to global climate change and increases in existing fungal pathogens, as well as the emergence of new fungal pathogens, and consequences to public health and food security. IMPORTANCE The effects of global climate change on dryland fungi and consequences to our society have been understudied despite evidence showing that pathogenic fungi increase in abundance under global climate change. Moreover, there is a growing concern that global climate change will contribute to the emergence of new fungal pathogens. Yet, we do not understand what mechanisms might be driving this increase in virulence and the onset of pathogenicity. In this study, we investigate how fungi respond to global change drivers, physical disturbance, and drought, in a dryland ecosystem in terms of pathogenicity and stress. We find that indeed, under global change drivers, there is an increase in the transcription and expression of genes associated to pathogenicity and stress, but that microclimatic conditions matter. Our study shows the importance of investigating dryland fungi exposed to global climate change and impacts on our society, which may include threats to public health and food security.
Collapse
Affiliation(s)
| | - Andrea Lopez
- Department of Biology, New Mexico State University, Las Cruces, New Mexico, USA
| | | | - Scott Ferrenberg
- Department of Ecosystem and Conservation Sciences, University of Montana, Missoula, Montana, USA
| | - Samuel E. Jordan
- Arizona State University, School of Life Sciences, Tempe, Arizona, USA
| | - Brooke Osborne
- Department of Environment and Society, Utah State University, Moab, Utah, USA
| |
Collapse
|
5
|
Wang X, Deng W, Hu H, Jia X, Chen J, Fang P, Cheng C, Zhang S, Jiang X, Ding D, Ma B. Seasonal variations in soil microbial community co-occurrence network complexity respond differently to field-simulated warming experiments in a northern subtropical forest. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:174692. [PMID: 39002597 DOI: 10.1016/j.scitotenv.2024.174692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024]
Abstract
Global warming may reshape seasonal changes in microbial community diversity and co-occurrence network patterns, with significant implications for terrestrial ecosystem function. We conducted a 2-year in situ field simulation of the effects of warming on the seasonal dynamics of soil microbial communities in a northern subtropical Quercus acutissima forest. Our study revealed that warming had no significant effect on the richness or diversity of soil bacteria or fungi in the growing season, whereas different warming gradients had different effects on their diversity in the nongrowing season. Warming also changed the microbial community structure, increasing the abundance of some thermophilic microbial species and decreasing the abundance of some symbiotrophic microorganisms. The co-occurrence network analysis of the microbial community showed that warming decreased the complexity of the intradomain network in the soil bacterial community in the growing and nongrowing seasons but increased it in the fungal community. Moreover, increasing warming temperatures increased the complexity of the interdomain network between bacteria and fungi in the growing season but decreased it in the nongrowing season, and the keystone species in the interdomain network changed with warming. Warming also reduced the proportion of positive microbial community interactions, indicating that warming reduced the mutualism, commensalism, and neutralism of microorganisms as they adapted to soil environmental stress. The factors affecting the fungal community varied considerably across warming gradients, with the bacterial community being significantly affected by soil temperature, MBC, NO3--N and NH4+-N, moreover, SOC and TN significantly affected fungal communities in the 4 °C warming treatment. These results suggest that warming increases seasonal differences in the diversity and complexity of soil microbial communities in the northern subtropical region, significantly influencing soil dynamic processes regulating forest ecosystems under global warming.
Collapse
Affiliation(s)
- Xia Wang
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Soil and Water Conservation and Ecological Restoration in Jiangsu Province, Nanjing 210037, China
| | - Wenbin Deng
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Soil and Water Conservation and Ecological Restoration in Jiangsu Province, Nanjing 210037, China
| | - Haibo Hu
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Soil and Water Conservation and Ecological Restoration in Jiangsu Province, Nanjing 210037, China.
| | - Xichuan Jia
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Soil and Water Conservation and Ecological Restoration in Jiangsu Province, Nanjing 210037, China
| | - Jianyu Chen
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Soil and Water Conservation and Ecological Restoration in Jiangsu Province, Nanjing 210037, China
| | - Pei Fang
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Soil and Water Conservation and Ecological Restoration in Jiangsu Province, Nanjing 210037, China
| | - Can Cheng
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Soil and Water Conservation and Ecological Restoration in Jiangsu Province, Nanjing 210037, China
| | - Shuai Zhang
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Soil and Water Conservation and Ecological Restoration in Jiangsu Province, Nanjing 210037, China
| | - Xuyi Jiang
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Soil and Water Conservation and Ecological Restoration in Jiangsu Province, Nanjing 210037, China
| | - Dongxia Ding
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Soil and Water Conservation and Ecological Restoration in Jiangsu Province, Nanjing 210037, China
| | - Bing Ma
- Geological Environment Exploration Institute of Jiangsu Province, Nanjing 211102, China
| |
Collapse
|
6
|
Zhang B, Zhu S, Li J, Fu F, Guo L, Li J, Zhang Y, Liu Y, Chen G, Zhang G. Elevational distribution patterns and drivers factors of fungal community diversity at different soil depths in the Abies georgei var. smithii forests on Sygera Mountains, southeastern Tibet, China. Front Microbiol 2024; 15:1444260. [PMID: 39184024 PMCID: PMC11342059 DOI: 10.3389/fmicb.2024.1444260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/22/2024] [Indexed: 08/27/2024] Open
Abstract
Introduction Soil fungal communities play a crucial role in maintaining the ecological functions of alpine forest soil ecosystems. However, it is currently unclear how the distribution patterns of fungal communities in different soil layers of alpine forests will change along the elevational gradients. Material and methods Therefore, Illumina MiSeq sequencing technology was employed to investigate fungal communities in three soil layers (0-10, 10-20, and 20-30 cm) along an elevational gradient (3500 m to 4300 m) at Sygera Mountains, located in Bayi District, Nyingchi City, Tibet. Results and discussion The results indicated that: 1) Soil depth had a greater impact on fungal diversity than elevation, demonstrating a significant reduction in fungal diversity with increased soil depth but showing no significant difference with elevation changes in all soil layers. Within the 0-10 cm soil layer, both Basidiomycota and Ascomycota co-dominate the microbial community. However, as the soil depth increases to 10-20 and 20-30 cm soil layers, the Basidiomycota predominantly dominates. 2) Deterministic processes were dominant in the assembly mechanism of the 0-10 cm fungal community and remained unchanged with increasing elevation. By contrast, the assembly mechanisms of the 10-20 and 20-30 cm fungal communities shifted from deterministic to stochastic processes as elevation increased. 3) The network complexity of the 0-10 cm fungal community gradually increased with elevation, while that of the 10-20 and 20-30 cm fungal communities exhibited a decreasing trend. Compared to the 0-10 cm soil layer, more changes in the relative abundance of fungal biomarkers occurred in the 10-20 and 20-30 cm soil layers, indicating that the fungal communities at these depths are more sensitive to climate changes. Among the key factors driving these alterations, soil temperature and moisture soil water content stood out as pivotal in shaping the assembly mechanisms and network complexity of fungal communities. This study contributes to the understanding of soil fungal community patterns and drivers along elevational gradients in alpine ecosystems and provides important scientific evidence for predicting the functional responses of soil microbial ecosystems in alpine forests.
Collapse
Affiliation(s)
- Bo Zhang
- Research Institute of Tibet Plateau Ecology, Tibet Agricultural and Animal Husbandry University, Nyingchi, China
- Key Laboratory of Forest Ecology in Tibet Plateau, Ministry of Education, Nyingchi, China
- National Key Station of Field Scientific Observation and Experiment, Nyingchi, China
- Key Laboratory of Alpine Vegetation Ecological Security in Tibet, Nyingchi, China
| | - Sijie Zhu
- Research Institute of Tibet Plateau Ecology, Tibet Agricultural and Animal Husbandry University, Nyingchi, China
- Key Laboratory of Forest Ecology in Tibet Plateau, Ministry of Education, Nyingchi, China
- National Key Station of Field Scientific Observation and Experiment, Nyingchi, China
- Key Laboratory of Alpine Vegetation Ecological Security in Tibet, Nyingchi, China
| | - Jiangrong Li
- Research Institute of Tibet Plateau Ecology, Tibet Agricultural and Animal Husbandry University, Nyingchi, China
- Key Laboratory of Forest Ecology in Tibet Plateau, Ministry of Education, Nyingchi, China
- National Key Station of Field Scientific Observation and Experiment, Nyingchi, China
- Key Laboratory of Alpine Vegetation Ecological Security in Tibet, Nyingchi, China
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Fangwei Fu
- Research Institute of Tibet Plateau Ecology, Tibet Agricultural and Animal Husbandry University, Nyingchi, China
- Key Laboratory of Forest Ecology in Tibet Plateau, Ministry of Education, Nyingchi, China
- National Key Station of Field Scientific Observation and Experiment, Nyingchi, China
- Key Laboratory of Alpine Vegetation Ecological Security in Tibet, Nyingchi, China
| | - Liangna Guo
- Research Institute of Tibet Plateau Ecology, Tibet Agricultural and Animal Husbandry University, Nyingchi, China
- Key Laboratory of Forest Ecology in Tibet Plateau, Ministry of Education, Nyingchi, China
- National Key Station of Field Scientific Observation and Experiment, Nyingchi, China
- Key Laboratory of Alpine Vegetation Ecological Security in Tibet, Nyingchi, China
| | - Jieting Li
- Research Institute of Tibet Plateau Ecology, Tibet Agricultural and Animal Husbandry University, Nyingchi, China
- Key Laboratory of Forest Ecology in Tibet Plateau, Ministry of Education, Nyingchi, China
- National Key Station of Field Scientific Observation and Experiment, Nyingchi, China
- Key Laboratory of Alpine Vegetation Ecological Security in Tibet, Nyingchi, China
| | - Yibo Zhang
- Research Institute of Tibet Plateau Ecology, Tibet Agricultural and Animal Husbandry University, Nyingchi, China
- Key Laboratory of Forest Ecology in Tibet Plateau, Ministry of Education, Nyingchi, China
- National Key Station of Field Scientific Observation and Experiment, Nyingchi, China
- Key Laboratory of Alpine Vegetation Ecological Security in Tibet, Nyingchi, China
| | - Yuzhuo Liu
- Research Institute of Tibet Plateau Ecology, Tibet Agricultural and Animal Husbandry University, Nyingchi, China
- Key Laboratory of Forest Ecology in Tibet Plateau, Ministry of Education, Nyingchi, China
- National Key Station of Field Scientific Observation and Experiment, Nyingchi, China
- Key Laboratory of Alpine Vegetation Ecological Security in Tibet, Nyingchi, China
| | - Ganggang Chen
- Research Institute of Tibet Plateau Ecology, Tibet Agricultural and Animal Husbandry University, Nyingchi, China
- Key Laboratory of Forest Ecology in Tibet Plateau, Ministry of Education, Nyingchi, China
- National Key Station of Field Scientific Observation and Experiment, Nyingchi, China
- Key Laboratory of Alpine Vegetation Ecological Security in Tibet, Nyingchi, China
| | - Gengxin Zhang
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
Gajdošová Z, Caboň M, Kolaříková Z, Sudová R, Rydlová J, Turisová I, Turis P, Kučera J, Slovák M. Environmental heterogeneity structures root-associated fungal communities in Daphne arbuscula (Thymelaeaceae), a shrub adapted to extreme rocky habitats. Mol Ecol 2024; 33:e17441. [PMID: 38923648 DOI: 10.1111/mec.17441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/04/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024]
Abstract
Rocky habitats, globally distributed ecosystems, harbour diverse biota, including numerous endemic and endangered species. Vascular plants thriving in these environments face challenging abiotic conditions, requiring diverse morphological and physiological adaptations. Their engagement with the surrounding microbiomes is, however, equally vital for their adaptation, fitness, and long-term survival. Nevertheless, there remains a lack of understanding surrounding this complex interplay within this fascinating biotic ecosystem. Using microscopic observations and metabarcoding analyses, we examined the fungal abundance and diversity in the root system of the rock-dwelling West Carpathian endemic shrub, Daphne arbuscula (Thymelaeaceae). We explored the diversification of root-associated fungal communities in relation to microclimatic variations across the studied sites. We revealed extensive colonization of the Daphne roots by diverse taxonomic fungal groups attributed to different ecological guilds, predominantly plant pathogens, dark septate endophytes (DSE), and arbuscular mycorrhizal fungi (AMF). Notably, differences in taxonomic composition and ecological guilds emerged between colder and warmer microenvironments. Apart from omnipresent AMF, warmer sites exhibited a prevalence of plant pathogens, while colder sites were characterized by a dominance of DSE. This mycobiome diversification, most likely triggered by the environment, suggests that D. arbuscula populations in warmer areas may be more vulnerable to fungal diseases, particularly in the context of global climate change.
Collapse
Affiliation(s)
- Zuzana Gajdošová
- Plant Sciences and Biodiversity Centre, Institute of Botany, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Miroslav Caboň
- Plant Sciences and Biodiversity Centre, Institute of Botany, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Zuzana Kolaříková
- Institute of Botany of the Czech Academy of Sciences, Průhonice, Czech Republic
| | - Radka Sudová
- Institute of Botany of the Czech Academy of Sciences, Průhonice, Czech Republic
| | - Jana Rydlová
- Institute of Botany of the Czech Academy of Sciences, Průhonice, Czech Republic
| | - Ingrid Turisová
- Department of Biology, Ecology and Environment, Faculty of Natural Sciences, Matej Bel University in Banská Bystrica, Banská Bystrica, Slovakia
| | - Peter Turis
- Department of Biology, Ecology and Environment, Faculty of Natural Sciences, Matej Bel University in Banská Bystrica, Banská Bystrica, Slovakia
| | - Jaromír Kučera
- Plant Sciences and Biodiversity Centre, Institute of Botany, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Marek Slovák
- Plant Sciences and Biodiversity Centre, Institute of Botany, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Botany, Faculty of Science, Charles University, Praha, Czech Republic
| |
Collapse
|
8
|
Mandolini E, Bacher M, Peintner U. Ectomycorrhizal communities of adult and young European larch are diverse and dynamics at high altitudinal sites. PLANT AND SOIL 2024; 506:691-707. [PMID: 39991270 PMCID: PMC11839878 DOI: 10.1007/s11104-024-06721-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 05/03/2024] [Indexed: 02/25/2025]
Abstract
Background/Aims The European larch is a pioneer tree and a valuable economic resource in subalpine ecosystems, thus playing crucial roles to ecosystem services and human activities. However, their ectomycorrhizal fungal community remains unknown in high altitudinal natural habitats. Here, we explore the mycobiont diversity of Larix decidua var. decidua between naturally rejuvenated and adult trees, compare ectomycorrhizal colonization patterns in geographically disjunct areas within the Alps of South Tyrol, Italy, characterized by distinct climatic conditions, and explore turnover rates across various seasons. Methods Our approach combines morphotyping of mycorrhized root tips with molecular analysis. Particular effort was given to monitor both ectomycorrhizal host-specialist and -generalist fungi. Results Both adult and young trees show a 100% mycorrhization rate, with a total diversity of 68 ectomycorrhizal species. The ectomycorrhizal composition is dominated by typical host specialists of larch trees (e.g., Lactarius porninsis, Russula laricina, Suillus cavipes, S. grevillei, S. viscidus), which are widely distributed across sites. A rich diversity of host generalists was also detected. The composition of rare species within a habitat was comparatively consistent during one sampling campaign, but exhibited significant differences among individual sampling campaigns. The ectomycorrhizal compositions were only weakly correlated with distinct climatic conditions and tree ages. However, species richness and diversity, particularly of generalist fungi, was consistently higher in warmer, drier sites compared to cooler, more humid ones. Conclusions This study suggests potential mycobiont community shifts across climatic conditions with significant implications for the adaptability and resilience of subalpine forests in the face of climate change. Supplementary Information The online version contains supplementary material available at 10.1007/s11104-024-06721-8.
Collapse
Affiliation(s)
- Edoardo Mandolini
- Department of Microbiology, University of Innsbruck, Technikerstrasse 25B, 6020 Innsbruck, Austria
| | - Margit Bacher
- Department of Microbiology, University of Innsbruck, Technikerstrasse 25B, 6020 Innsbruck, Austria
| | - Ursula Peintner
- Department of Microbiology, University of Innsbruck, Technikerstrasse 25B, 6020 Innsbruck, Austria
| |
Collapse
|
9
|
Liang K, Lin Y, Zheng T, Wang F, Cheng Y, Wang S, Liang C, Chen FS. Enhanced home-field advantage in deep soil organic carbon decomposition: Insights from soil transplantation in subtropical forests. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171596. [PMID: 38461990 DOI: 10.1016/j.scitotenv.2024.171596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/16/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024]
Abstract
Climate change affects microbial community physiological strategies and thus regulates global soil organic carbon (SOC) decomposition. However, SOC decomposition by microorganisms, depending on home-field advantage (HFA, indicating a faster decomposition rate in 'Home' than 'Away' conditions) or environmental advantage (EA, indicating a faster decomposition rate in warmer-wetter environments than in colder-drier environments) remains unknown. Here, a soil transplantation experiment was conducted between warmer-wetter and colder-drier evergreen broadleaved forests in subtropical China. Specifically, soil samples were collected along a 60 cm soil profile, including 0-15, 15-30, 30-45, and 45-60 cm layers after one year of transplantation. SOC fractions, soil chemical properties, and microbial communities were evaluated to assess where there was an HFA of EA in SOC decomposition, along with an exploration of internal linkages. Significant HFAs were observed, particularly in the deep soils (30-60 cm) (P < 0.05), despite the lack of a significant EA along a soil profile, which was attributed to environmental changes affecting soil fungal communities and constraining SOC decomposition in 'Away' conditions. The soils transplanted from warmer-wetter to colder-drier environments changed the proportions of Mortiereltomycota or Basidiomycota fungal taxa in deep soils. Furthermore, the shift from colder-drier to warmer-wetter environments decreased fungal α-diversity and the proportion of fungal necromass carbon, ultimately inhibiting SOC decomposition in 'Away' conditions. However, neither HFAs nor EAs were significantly present in the topsoil (0-30 cm), possibly due to the broader adaptability of bacterial communities in these layers. These results suggest that the HFA of SOC decomposition in deep soils may mostly depend on the plasticity of fungal communities. Moreover, these results highlight the key roles of microbial communities in the SOC decomposition of subtropical forests, especially in deep soils that are easily ignored.
Collapse
Affiliation(s)
- Kuan Liang
- Key Laboratory of National Forestry and Grassland Administration on Forest Ecosystem Protection and Restoration of Poyang Lake Watershed, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Provincial Key Laboratory of Subtropical Forest Resource Cultivation, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yong Lin
- Key Laboratory of National Forestry and Grassland Administration on Forest Ecosystem Protection and Restoration of Poyang Lake Watershed, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Provincial Key Laboratory of Subtropical Forest Resource Cultivation, Jiangxi Agricultural University, Nanchang 330045, China
| | - Tiantian Zheng
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Fangchao Wang
- Key Laboratory of National Forestry and Grassland Administration on Forest Ecosystem Protection and Restoration of Poyang Lake Watershed, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Provincial Key Laboratory of Subtropical Forest Resource Cultivation, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yuandong Cheng
- Key Laboratory of National Forestry and Grassland Administration on Forest Ecosystem Protection and Restoration of Poyang Lake Watershed, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Provincial Key Laboratory of Subtropical Forest Resource Cultivation, Jiangxi Agricultural University, Nanchang 330045, China
| | - Shennan Wang
- Key Laboratory of National Forestry and Grassland Administration on Forest Ecosystem Protection and Restoration of Poyang Lake Watershed, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Provincial Key Laboratory of Subtropical Forest Resource Cultivation, Jiangxi Agricultural University, Nanchang 330045, China
| | - Chao Liang
- Key Laboratory of National Forestry and Grassland Administration on Forest Ecosystem Protection and Restoration of Poyang Lake Watershed, Jiangxi Agricultural University, Nanchang 330045, China; Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Fu-Sheng Chen
- Key Laboratory of National Forestry and Grassland Administration on Forest Ecosystem Protection and Restoration of Poyang Lake Watershed, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Provincial Key Laboratory of Subtropical Forest Resource Cultivation, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
10
|
U'Ren JM, Oita S, Lutzoni F, Miadlikowska J, Ball B, Carbone I, May G, Zimmerman NB, Valle D, Trouet V, Arnold AE. Environmental drivers and cryptic biodiversity hotspots define endophytes in Earth's largest terrestrial biome. Curr Biol 2024; 34:1148-1156.e7. [PMID: 38367618 DOI: 10.1016/j.cub.2024.01.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 12/03/2023] [Accepted: 01/25/2024] [Indexed: 02/19/2024]
Abstract
Understanding how symbiotic associations differ across environmental gradients is key to predicting the fate of symbioses as environments change, and it is vital for detecting global reservoirs of symbiont biodiversity in a changing world.1,2,3 However, sampling of symbiotic partners at the full-biome scale is difficult and rare. As Earth's largest terrestrial biome, boreal forests influence carbon dynamics and climate regulation at a planetary scale. Plants and lichens in this biome host the highest known phylogenetic diversity of fungal endophytes, which occur within healthy photosynthetic tissues and can influence hosts' resilience to stress.4,5 We examined how communities of endophytes are structured across the climate gradient of the boreal biome, focusing on the dominant plant and lichen species occurring across the entire south-to-north span of the boreal zone in eastern North America. Although often invoked for understanding the distribution of biodiversity, neither a latitudinal gradient nor mid-domain effect5,6,7 can explain variation in endophyte diversity at this trans-biome scale. Instead, analyses considering shifts in forest characteristics, Picea biomass and age, and nutrients in host tissues from 46° to 58° N reveal strong and distinctive signatures of climate in defining endophyte assemblages in each host lineage. Host breadth of endophytes varies with climate factors, and biodiversity hotspots can be identified at plant-community transitions across the boreal zone at a global scale. Placed against a backdrop of global circumboreal sampling,4 our study reveals the sensitivity of endophytic fungi, their reservoirs of biodiversity, and their important symbiotic associations, to climate.
Collapse
Affiliation(s)
- Jana M U'Ren
- Department of Plant Pathology, Washington State University, Pullman, WA 99164, USA
| | - Shuzo Oita
- School of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA
| | | | | | - Bernard Ball
- Department of Biology, Duke University, Durham, NC 27708, USA; School of Biology and Environmental Science, University College Dublin, Science Centre Belfield, Dublin D04 V1W8, Ireland
| | - Ignazio Carbone
- Center for Integrated Fungal Research, Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
| | - Georgiana May
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN 55108, USA
| | - Naupaka B Zimmerman
- Department of Biology, University of San Francisco, San Francisco, CA 94117, USA
| | - Denis Valle
- School of Forest, Fisheries, and Geomatics Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Valerie Trouet
- Laboratory of Tree Ring Research, University of Arizona, Tucson, AZ 85721, USA
| | - A Elizabeth Arnold
- School of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA; Department of Ecology and Evolutionary Biology, BIO5 Institute, Ecosystem Genomics Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
11
|
Hopkins AJM, Brace AJ, Bruce JL, Hyde J, Fontaine JB, Walden L, Veber W, Ruthrof KX. Drought legacy interacts with wildfire to alter soil microbial communities in a Mediterranean climate-type forest. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170111. [PMID: 38232837 DOI: 10.1016/j.scitotenv.2024.170111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/19/2024]
Abstract
Mediterranean forest ecosystems will be increasingly affected by hotter drought and more frequent and severe wildfire events in the future. However, little is known about the longer-term responses of these forests to multiple disturbances and the forests' capacity to maintain ecosystem function. This is particularly so for below-ground organisms, which have received less attention than those above-ground, despite their essential contributions to forest function. We investigated rhizosphere microbial communities in a resprouting Eucalyptus marginata forest, southwestern Australia, that had experienced a severe wildfire four years previously, and a hotter drought eight years previously. Our aim was to understand how microbial communities are affected over longer-term trajectories by hotter drought and wildfire, singularly, and in combination. Fungal and bacterial DNA was extracted from soil samples, amplified, and subjected to high throughput sequencing. Richness, diversity, composition, and putative functional groups were then examined. We found a monotonic decrease in fungal, but not bacterial, richness and diversity with increasing disturbance with the greatest changes resulting from the combination of drought and wildfire. Overall fungal and bacterial community composition reflected a stronger effect of fire than drought, but the combination of both produced the greatest number of indicator taxa for fungi, and a significant negative effect on the abundance of several fungal functional groups. Key mycorrhizal fungi, fungal saprotrophs and fungal pathogens were found at lower proportions in sites affected by drought plus wildfire. Wildfire had a positive effect on bacterial hydrogen and bacterial nitrogen recyclers. Fungal community composition was positively correlated with live tree height. These results suggest that microbial communities, in particular key fungal functional groups, are highly responsive to wildfire following drought. Thus, a legacy of past climate conditions such as hotter drought can be important for mediating the responses of soil microbial communities to subsequent disturbance like wildfire.
Collapse
Affiliation(s)
- A J M Hopkins
- Molecular Ecology and Evolution Group, School of Science, Edith Cowan University, Joondalup, WA 6027, Australia.
| | - A J Brace
- Molecular Ecology and Evolution Group, School of Science, Edith Cowan University, Joondalup, WA 6027, Australia
| | - J L Bruce
- Molecular Ecology and Evolution Group, School of Science, Edith Cowan University, Joondalup, WA 6027, Australia
| | - J Hyde
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Kensington, WA 6151, Australia
| | - J B Fontaine
- School of Environmental and Conservation Sciences, Murdoch University, Murdoch, WA 6150, Australia
| | - L Walden
- Soil and Landscape Science, School of Molecular and Life Sciences, Curtin University, Bentley, WA 6102, Australia
| | - W Veber
- School of Environmental and Conservation Sciences, Murdoch University, Murdoch, WA 6150, Australia
| | - K X Ruthrof
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Kensington, WA 6151, Australia; School of Environmental and Conservation Sciences, Murdoch University, Murdoch, WA 6150, Australia
| |
Collapse
|
12
|
Yang A, Zhu D, Zhang W, Shao Y, Shi Y, Liu X, Lu Z, Zhu YG, Wang H, Fu S. Canopy nitrogen deposition enhances soil ecosystem multifunctionality in a temperate forest. GLOBAL CHANGE BIOLOGY 2024; 30:e17250. [PMID: 38500362 DOI: 10.1111/gcb.17250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 03/20/2024]
Abstract
Nitrogen (N) deposition affects ecosystem functions crucial to human health and well-being. However, the consequences of this scenario for soil ecosystem multifunctionality (SMF) in forests are poorly understood. Here, we conducted a long-term field experiment in a temperate forest in China, where N deposition was simulated by adding N above and under the canopies. We discover that canopy N addition promotes SMF expression, whereas understory N addition suppresses it. SMF was regulated by fungal diversity in canopy N addition treatments, which is largely due to the strong resistance to soil acidification and efficient resource utilization characteristics of fungi. While in understory N addition treatments, SMF is regulated by bacterial diversity, which is mainly because of the strong resilience to disturbances and fast turnover of bacteria. Furthermore, rare microbial taxa may play a more important role in the maintenance of the SMF. This study provides the first evidence that N deposition enhanced SMF in temperate forests and enriches the knowledge on enhanced N deposition affecting forest ecosystems. Given the divergent results from two N addition approaches, an innovative perspective of canopy N addition on soil microbial diversity-multifunctionality relationships is crucial to policy-making for the conservation of soil microbial diversity and sustainable ecosystem management under enhanced N deposition. In future research, the consideration of canopy N processes is essential for more realistic assessments of the effects of atmospheric N deposition in forests.
Collapse
Affiliation(s)
- An Yang
- Key Laboratory of Geospatial Technology for Middle and Lower Yellow River Regions, Ministry of Education, College of Geography and Environmental Science, Henan University, Kaifeng, China
- Henan Dabieshan National Field Observation & Research Station of Forest Ecosystem, Xinyang, China
| | - Dong Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Weixin Zhang
- Key Laboratory of Geospatial Technology for Middle and Lower Yellow River Regions, Ministry of Education, College of Geography and Environmental Science, Henan University, Kaifeng, China
- Henan Dabieshan National Field Observation & Research Station of Forest Ecosystem, Xinyang, China
| | - Yuanhu Shao
- Key Laboratory of Geospatial Technology for Middle and Lower Yellow River Regions, Ministry of Education, College of Geography and Environmental Science, Henan University, Kaifeng, China
- Henan Dabieshan National Field Observation & Research Station of Forest Ecosystem, Xinyang, China
| | - Yu Shi
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Xu Liu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Ziluo Lu
- Key Laboratory of Geospatial Technology for Middle and Lower Yellow River Regions, Ministry of Education, College of Geography and Environmental Science, Henan University, Kaifeng, China
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Hongtao Wang
- Key Laboratory of Geospatial Technology for Middle and Lower Yellow River Regions, Ministry of Education, College of Geography and Environmental Science, Henan University, Kaifeng, China
- Henan Dabieshan National Field Observation & Research Station of Forest Ecosystem, Xinyang, China
| | - Shenglei Fu
- Key Laboratory of Geospatial Technology for Middle and Lower Yellow River Regions, Ministry of Education, College of Geography and Environmental Science, Henan University, Kaifeng, China
- Henan Dabieshan National Field Observation & Research Station of Forest Ecosystem, Xinyang, China
| |
Collapse
|
13
|
Fu F, Li Y, Zhang B, Zhu S, Guo L, Li J, Zhang Y, Li J. Differences in soil microbial community structure and assembly processes under warming and cooling conditions in an alpine forest ecosystem. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167809. [PMID: 37863238 DOI: 10.1016/j.scitotenv.2023.167809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/22/2023]
Abstract
Global climate change affects the soil microbial community assemblages of many ecosystems. However, little is known about the effects of climate warming on the structure of soil microbial communities or the underlying mechanisms that influence microbial community composition in alpine forest ecosystems. Thus, our ability to predict the future consequences of climate change is limited. In this study, with the use of PVC pipes, the in situ soils of the rush-tip long-bud Abies georgei var. smithii forest at 3500 and 4300 m above sea level (MASL) of the Sygera Mountains were incubated in pairs for 1 year to simulate climate cooling and warming. This shift corresponds to a change in soil temperature of ±4.7 °C. Findings showed that climate warming increased the complexity of bacterial networks but decreased the complexity of fungal networks. Climate cooling also increased the complexity of bacterial networks. However, in fungal communities, climate cooling increased the number of nodes but decreased the total number of edges. Stochastic processes acted as the drivers of bacterial community composition, with climate warming leading the shift from deterministic to stochastic drivers. Fungal communities were more sensitive to climate change than bacterial communities, with soil temperature (ST) and soil water content (SWC) acting as the main drivers of change. By contrast, soil bacterial communities were more closely related to soil conditions than fungal communities and remained stable after a year of soil transplantation. In conclusion, fungi and bacteria had different response patterns, and their responses to climate cooling and warming were asymmetric. This work is expected to contribute to our understanding of the response to climate change of soil microbial communities in alpine forests and our prediction of the functions of soil microbial ecosystems in alpine forests.
Collapse
Affiliation(s)
- Fangwei Fu
- Research Institute of Tibet Plateau Ecology, Tibet Agricultureal & Animal Husbandry University, Nyingchi, Tibet 860000, China; Key Laboratory of Forest Ecology in Tibet Plateau, Ministry of Education, Nyingchi, Tibet 860000, China; National Key Station of Field Scientific Observation & Experiment, Nyingchi, Tibet 860000, China; Key Laboratory of Alpine Vegetation Ecological Security in Tibet, Nyingchi, Tibet 860000, China
| | - Yueyao Li
- Research Institute of Tibet Plateau Ecology, Tibet Agricultureal & Animal Husbandry University, Nyingchi, Tibet 860000, China; Key Laboratory of Forest Ecology in Tibet Plateau, Ministry of Education, Nyingchi, Tibet 860000, China; National Key Station of Field Scientific Observation & Experiment, Nyingchi, Tibet 860000, China; Key Laboratory of Alpine Vegetation Ecological Security in Tibet, Nyingchi, Tibet 860000, China
| | - Bo Zhang
- Research Institute of Tibet Plateau Ecology, Tibet Agricultureal & Animal Husbandry University, Nyingchi, Tibet 860000, China; Key Laboratory of Forest Ecology in Tibet Plateau, Ministry of Education, Nyingchi, Tibet 860000, China; National Key Station of Field Scientific Observation & Experiment, Nyingchi, Tibet 860000, China; Key Laboratory of Alpine Vegetation Ecological Security in Tibet, Nyingchi, Tibet 860000, China
| | - Sijie Zhu
- Research Institute of Tibet Plateau Ecology, Tibet Agricultureal & Animal Husbandry University, Nyingchi, Tibet 860000, China; Key Laboratory of Forest Ecology in Tibet Plateau, Ministry of Education, Nyingchi, Tibet 860000, China; National Key Station of Field Scientific Observation & Experiment, Nyingchi, Tibet 860000, China; Key Laboratory of Alpine Vegetation Ecological Security in Tibet, Nyingchi, Tibet 860000, China
| | - Liangna Guo
- Research Institute of Tibet Plateau Ecology, Tibet Agricultureal & Animal Husbandry University, Nyingchi, Tibet 860000, China; Key Laboratory of Forest Ecology in Tibet Plateau, Ministry of Education, Nyingchi, Tibet 860000, China; National Key Station of Field Scientific Observation & Experiment, Nyingchi, Tibet 860000, China; Key Laboratory of Alpine Vegetation Ecological Security in Tibet, Nyingchi, Tibet 860000, China
| | - Jieting Li
- Research Institute of Tibet Plateau Ecology, Tibet Agricultureal & Animal Husbandry University, Nyingchi, Tibet 860000, China; Key Laboratory of Forest Ecology in Tibet Plateau, Ministry of Education, Nyingchi, Tibet 860000, China; National Key Station of Field Scientific Observation & Experiment, Nyingchi, Tibet 860000, China; Key Laboratory of Alpine Vegetation Ecological Security in Tibet, Nyingchi, Tibet 860000, China
| | - Yibo Zhang
- Research Institute of Tibet Plateau Ecology, Tibet Agricultureal & Animal Husbandry University, Nyingchi, Tibet 860000, China; Key Laboratory of Forest Ecology in Tibet Plateau, Ministry of Education, Nyingchi, Tibet 860000, China; National Key Station of Field Scientific Observation & Experiment, Nyingchi, Tibet 860000, China; Key Laboratory of Alpine Vegetation Ecological Security in Tibet, Nyingchi, Tibet 860000, China
| | - Jiangrong Li
- Research Institute of Tibet Plateau Ecology, Tibet Agricultureal & Animal Husbandry University, Nyingchi, Tibet 860000, China; Key Laboratory of Forest Ecology in Tibet Plateau, Ministry of Education, Nyingchi, Tibet 860000, China; National Key Station of Field Scientific Observation & Experiment, Nyingchi, Tibet 860000, China; Key Laboratory of Alpine Vegetation Ecological Security in Tibet, Nyingchi, Tibet 860000, China; State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
14
|
Li Z, Sun L, Liu S, Lei P, Wang R, Li S, Gu Y. Interkingdom network analyses reveal microalgae and protostomes as keystone taxa involved in nutrient cycling in large freshwater lake sediment. FEMS Microbiol Ecol 2023; 99:fiad111. [PMID: 37715306 DOI: 10.1093/femsec/fiad111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/26/2023] [Accepted: 09/14/2023] [Indexed: 09/17/2023] Open
Abstract
Few studies have explored the role of interkingdom interactions between bacteria and microeukaryotes in nutrient cycling in lake ecosystems. We conducted sediment sampling from 40 locations covering Hongze Lake and analyzed their chemical properties. Intra- and interkingdom networks were constructed using 16S and 18S rRNA gene amplicon sequencing. Microeukaryotic intranetworks were more complex in spring than in autumn, while no clear variation in the complexity of bacterial intranetworks was found between autumn and spring. Larger and more complex bacterial-microeukaryotic bipartite networks emerged in spring than in autumn, correlated with lower carbon, nitrogen, and phosphorus levels in spring, likely resulting in intense microbial competition. Bacteria and microeukaryotes played different topological roles in interkingdom networks, with microeukaryotes contributing to the networks' greater complexity. Seven keystone modules were identified in spring and autumn nutrient cycling. Importantly, keystone taxa in these modules belonged to photoautotrophic microalgae or predatory protostomes, indicating that these organisms are key drivers in lake sediment nutrient cycling. Our results suggested that nutrient content variation in autumn and spring changes interkingdom networks' topological structure between bacteria and microeukaryotes. Microalgae and protostomes are essential in freshwater lake nutrient cycling and may be targeted to modulate nutrient cycling in large freshwater ecosystems.
Collapse
Affiliation(s)
- Zhidan Li
- College of Biological and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P.R. China
| | - Liang Sun
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, P.R. China
| | - Sijie Liu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, P.R. China
| | - Peng Lei
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, P.R. China
| | - Rui Wang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, P.R. China
| | - Sha Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, P.R. China
| | - Yian Gu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, P.R. China
| |
Collapse
|
15
|
Jiang M, Tian Y, Guo R, Li S, Guo J, Zhang T. Effects of warming and nitrogen addition on soil fungal and bacterial community structures in a temperate meadow. Front Microbiol 2023; 14:1231442. [PMID: 37502394 PMCID: PMC10369075 DOI: 10.3389/fmicb.2023.1231442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023] Open
Abstract
Soil microbial communities have been influenced by global changes, which might negatively regulate aboveground communities and affect nutrient resource cycling. However, the influence of warming and nitrogen (N) addition and their combined effects on soil microbial community composition and structure are still not well understood. To explore the effect of warming and N addition on the composition and structure of soil microbial communities, a five-year field experiment was conducted in a temperate meadow. We examined the responses of soil fungal and bacterial community compositions and structures to warming and N addition using ITS gene and 16S rRNA gene MiSeq sequencing methods, respectively. Warming and N addition not only increased the diversity of soil fungal species but also affected the soil fungal community structure. Warming and N addition caused significant declines in soil bacterial richness but had few impacts on bacterial community structure. The changes in plant species richness affected the soil fungal community structure, while the changes in plant cover also affected the bacterial community structure. The response of the soil bacterial community structure to warming and N addition was lower than that of the fungal community structure. Our results highlight that the influence of global changes on soil fungal and bacterial community structures might be different, and which also might be determined, to some extent, by plant community, soil physicochemical properties, and climate characteristics at the regional scale.
Collapse
Affiliation(s)
- Ming Jiang
- College of Life Science and Technology, Mudanjiang Normal University, Mudanjiang, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Changchun, China
| | - Yibo Tian
- Key Laboratory of Vegetation Ecology, Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Changchun, China
| | - Rui Guo
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Key Laboratory of Dryland Agriculture, Ministry of Agriculture, Beijing, China
| | - Shuying Li
- Forestry and Grassland Bureau of Aohan Banner, Chifeng, China
| | - Jixun Guo
- Key Laboratory of Vegetation Ecology, Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Changchun, China
| | - Tao Zhang
- Key Laboratory of Vegetation Ecology, Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Changchun, China
| |
Collapse
|
16
|
Fu F, Li J, Li Y, Chen W, Ding H, Xiao S. Simulating the effect of climate change on soil microbial community in an Abies georgei var. smithii forest. Front Microbiol 2023; 14:1189859. [PMID: 37333631 PMCID: PMC10272780 DOI: 10.3389/fmicb.2023.1189859] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/11/2023] [Indexed: 06/20/2023] Open
Abstract
Qinghai-Tibet Plateau is considered a region vulnerable to the effects of climate change. Studying the effects of climate change on the structure and function of soil microbial communities will provide insight into the carbon cycle under climate change. However, to date, changes in the successional dynamics and stability of microbial communities under the combined effects of climate change (warming or cooling) remain unknown, which limits our ability to predict the consequences of future climate change. In this study, in situ soil columns of an Abies georgei var. smithii forest at 4,300 and 3,500 m elevation in the Sygera Mountains were incubated in pairs for 1 year using the PVC tube method to simulate climate warming and cooling, corresponding to a temperature change of ±4.7°C. Illumina HiSeq sequencing was applied to study alterations in soil bacterial and fungal communities of different soil layers. Results showed that warming did not significantly affect the fungal and bacterial diversity of the 0-10 cm soil layer, but the fungal and bacterial diversity of the 20-30 cm soil layer increased significantly after warming. Warming changed the structure of fungal and bacterial communities in all soil layers (0-10 cm, 10-20 cm, and 20-30 cm), and the effect increased with the increase of soil layers. Cooling had almost no significant effect on fungal and bacterial diversity in all soil layers. Cooling changed the structure of fungal communities in all soil layers, but it showed no significant effect on the structure of bacterial communities in all soil layers because fungi are more adapted than bacteria to environments with high soil water content (SWC) and low temperatures. Redundancy analysis (RDA) and hierarchical analysis showed that changes in soil bacterial community structure were primarily related to soil physical and chemical properties, whereas changes in soil fungal community structure primarily affected SWC and soil temperature (Soil Temp). The specialization ratio of fungi and bacteria increased with soil depth, and fungi were significantly higher than bacteria, indicating that climate change has a greater impact on microorganisms in deeper soil layers, and fungi are more sensitive to climate change. Furthermore, a warmer climate could create more ecological niches for microbial species to coexist and increase the strength of microbial interactions, whereas a cooler climate could have the opposite effect. However, we found differences in the intensity of microbial interactions in response to climate change in different soil layers. This study provides new insights to understand and predict future effects of climate change on soil microbes in alpine forest ecosystems.
Collapse
Affiliation(s)
- Fangwei Fu
- Research Institute of Tibet Plateau Ecology, Tibet Agriculture and Animal Husbandry University, Nyingchi, Tibet, China
- Key Laboratory of Forest Ecology in Tibet Plateau, Ministry of Education, Nyingchi, Tibet, China
- National Key Station of Field Scientific Observation and Experiment, Nyingchi, Tibet, China
- Key Laboratory of Alpine Vegetation Ecological Security in Tibet, Nyingchi, Tibet, China
| | - Jiangrong Li
- Research Institute of Tibet Plateau Ecology, Tibet Agriculture and Animal Husbandry University, Nyingchi, Tibet, China
- Key Laboratory of Forest Ecology in Tibet Plateau, Ministry of Education, Nyingchi, Tibet, China
- National Key Station of Field Scientific Observation and Experiment, Nyingchi, Tibet, China
- Key Laboratory of Alpine Vegetation Ecological Security in Tibet, Nyingchi, Tibet, China
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Yueyao Li
- Research Institute of Tibet Plateau Ecology, Tibet Agriculture and Animal Husbandry University, Nyingchi, Tibet, China
- Key Laboratory of Forest Ecology in Tibet Plateau, Ministry of Education, Nyingchi, Tibet, China
- National Key Station of Field Scientific Observation and Experiment, Nyingchi, Tibet, China
- Key Laboratory of Alpine Vegetation Ecological Security in Tibet, Nyingchi, Tibet, China
| | - Wensheng Chen
- Research Institute of Tibet Plateau Ecology, Tibet Agriculture and Animal Husbandry University, Nyingchi, Tibet, China
- Key Laboratory of Forest Ecology in Tibet Plateau, Ministry of Education, Nyingchi, Tibet, China
- National Key Station of Field Scientific Observation and Experiment, Nyingchi, Tibet, China
- Key Laboratory of Alpine Vegetation Ecological Security in Tibet, Nyingchi, Tibet, China
| | - Huihui Ding
- Research Institute of Tibet Plateau Ecology, Tibet Agriculture and Animal Husbandry University, Nyingchi, Tibet, China
- Key Laboratory of Forest Ecology in Tibet Plateau, Ministry of Education, Nyingchi, Tibet, China
- National Key Station of Field Scientific Observation and Experiment, Nyingchi, Tibet, China
- Key Laboratory of Alpine Vegetation Ecological Security in Tibet, Nyingchi, Tibet, China
| | - Siying Xiao
- Research Institute of Tibet Plateau Ecology, Tibet Agriculture and Animal Husbandry University, Nyingchi, Tibet, China
- Key Laboratory of Forest Ecology in Tibet Plateau, Ministry of Education, Nyingchi, Tibet, China
- National Key Station of Field Scientific Observation and Experiment, Nyingchi, Tibet, China
- Key Laboratory of Alpine Vegetation Ecological Security in Tibet, Nyingchi, Tibet, China
| |
Collapse
|
17
|
Baldrian P, López-Mondéjar R, Kohout P. Forest microbiome and global change. Nat Rev Microbiol 2023:10.1038/s41579-023-00876-4. [PMID: 36941408 DOI: 10.1038/s41579-023-00876-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2023] [Indexed: 03/23/2023]
Abstract
Forests influence climate and mitigate global change through the storage of carbon in soils. In turn, these complex ecosystems face important challenges, including increases in carbon dioxide, warming, drought and fire, pest outbreaks and nitrogen deposition. The response of forests to these changes is largely mediated by microorganisms, especially fungi and bacteria. The effects of global change differ among boreal, temperate and tropical forests. The future of forests depends mostly on the performance and balance of fungal symbiotic guilds, saprotrophic fungi and bacteria, and fungal plant pathogens. Drought severely weakens forest resilience, as it triggers adverse processes such as pathogen outbreaks and fires that impact the microbial and forest performance for carbon storage and nutrient turnover. Nitrogen deposition also substantially affects forest microbial processes, with a pronounced effect in the temperate zone. Considering plant-microorganism interactions would help predict the future of forests and identify management strategies to increase ecosystem stability and alleviate climate change effects. In this Review, we describe the impact of global change on the forest ecosystem and its microbiome across different climatic zones. We propose potential approaches to control the adverse effects of global change on forest stability, and present future research directions to understand the changes ahead.
Collapse
Affiliation(s)
- Petr Baldrian
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | - Rubén López-Mondéjar
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
- Department of Soil and Water Conservation and Waste Management, CEBAS-CSIC, Campus Universitario de Espinardo, Murcia, Spain
| | - Petr Kohout
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
- Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
18
|
Wahdan SFM, Ji L, Schädler M, Wu YT, Sansupa C, Tanunchai B, Buscot F, Purahong W. Future climate conditions accelerate wheat straw decomposition alongside altered microbial community composition, assembly patterns, and interaction networks. THE ISME JOURNAL 2023; 17:238-251. [PMID: 36352255 PMCID: PMC9860053 DOI: 10.1038/s41396-022-01336-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/11/2022]
Abstract
Although microbial decomposition of plant litter plays a crucial role in nutrient cycling and soil fertility, we know less about likely links of specific microbial traits and decomposition, especially in relation to climate change. We study here wheat straw decomposition under ambient and manipulated conditions simulating a future climate scenario (next 80 years) in agroecosystems, including decay rates, macronutrient dynamics, enzyme activity, and microbial communities. We show that future climate will accelerate straw decay rates only during the early phase of the decomposition process. Additionally, the projected climate change will increase the relative abundance of saprotrophic fungi in decomposing wheat straw. Moreover, the impact of future climate on microbial community assembly and molecular ecological networks of both bacteria and fungi will strongly depend on the decomposition phase. During the early phase of straw decomposition, stochastic processes dominated microbial assembly under ambient climate conditions, whereas deterministic processes highly dominated bacterial and fungal communities under simulated future climate conditions. In the later decomposition phase, similar assembly processes shaped the microbial communities under both climate scenarios. Furthermore, over the early phases of decomposition, simulated future climate enhanced the complexity of microbial interaction networks. We concluded that the impact of future climate on straw decay rate and associated microbial traits like assembly processes and inter-community interactions is restricted to the early phase of decomposition.
Collapse
Affiliation(s)
- Sara Fareed Mohamed Wahdan
- grid.7492.80000 0004 0492 3830Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Halle (Saale), Germany ,grid.33003.330000 0000 9889 5690Department of Botany & Microbiology, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Li Ji
- grid.7492.80000 0004 0492 3830Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Halle (Saale), Germany ,grid.440660.00000 0004 1761 0083School of Forestry, Central South University of Forestry and Technology, Changsha, PR China
| | - Martin Schädler
- grid.421064.50000 0004 7470 3956German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany ,grid.7492.80000 0004 0492 3830Department of Community Ecology, UFZ-Helmholtz Centre for Environmental Research, Halle (Saale), Germany
| | - Yu-Ting Wu
- grid.412083.c0000 0000 9767 1257Department of Forestry, National Pingtung University of Science and Technology, Pingtung, Taiwan ,grid.412019.f0000 0000 9476 5696Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC
| | - Chakriya Sansupa
- grid.7132.70000 0000 9039 7662Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Benjawan Tanunchai
- grid.7492.80000 0004 0492 3830Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Halle (Saale), Germany
| | - François Buscot
- grid.7492.80000 0004 0492 3830Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Halle (Saale), Germany ,grid.421064.50000 0004 7470 3956German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Witoon Purahong
- grid.7492.80000 0004 0492 3830Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Halle (Saale), Germany
| |
Collapse
|
19
|
Romero-Olivares AL, Frey SD, Treseder KK. Tracking fungal species-level responses in soil environments exposed to long-term warming and associated drying. FEMS Microbiol Lett 2023; 370:fnad128. [PMID: 38059856 DOI: 10.1093/femsle/fnad128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/26/2023] [Accepted: 12/05/2023] [Indexed: 12/08/2023] Open
Abstract
Climate change is affecting fungal communities and their function in terrestrial ecosystems. Despite making progress in the understanding of how the fungal community responds to global change drivers in natural ecosystems, little is known on how fungi respond at the species level. Understanding how fungal species respond to global change drivers, such as warming, is critical, as it could reveal adaptation pathways to help us to better understand ecosystem functioning in response to global change. Here, we present a model study to track species-level responses of fungi to warming-and associated drying-in a decade-long global change field experiment; we focused on two free-living saprotrophic fungi which were found in high abundance in our site, Mortierella and Penicillium. Using microbiological isolation techniques, combined with whole genome sequencing of fungal isolates, and community level metatranscriptomics, we investigated transcription-level differences of functional categories and specific genes involved in catabolic processes, cell homeostasis, cell morphogenesis, DNA regulation and organization, and protein biosynthesis. We found that transcription-level responses were mostly species-specific but that under warming, both fungi consistently invested in the transcription of critical genes involved in catabolic processes, cell morphogenesis, and protein biosynthesis, likely allowing them to withstand a decade of chronic stress. Overall, our work supports the idea that fungi that invest in maintaining their catabolic rates and processes while growing and protecting their cells may survive under global climate change.
Collapse
Affiliation(s)
| | - Serita D Frey
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, NH 03824, Unites States
| | - Kathleen K Treseder
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, United States
| |
Collapse
|
20
|
Ma T, Zhang X, Wang R, Liu R, Shao X, Li J, Wei Y. Linkages and key factors between soil bacterial and fungal communities along an altitudinal gradient of different slopes on mount Segrila, Tibet, China. Front Microbiol 2022; 13:1024198. [PMID: 36386611 PMCID: PMC9649828 DOI: 10.3389/fmicb.2022.1024198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 10/11/2022] [Indexed: 12/04/2022] Open
Abstract
Soil microbes are of great significance to many energy flow and material circulation processes in alpine forest ecosystems. The distribution pattern of soil microbial community along altitudinal gradients is an essential research topic for the Tibetan Plateau. Yet our understanding of linkages between soil microbial communities and key factors along an altitudinal gradient of different slopes remains limited. Here, the diversity, composition and interaction of bacterial and fungal communities and in response to environmental factors were compared across five elevation sites (3,500 m, 3,700 m, 3,900 m, 4,100 m, 4,300 m) on the eastern and western slopes of Mount Segrila, by using Illumina MiSeq sequencing. Our results showed that microbial community composition and diversity were distinct at different elevations, being mainly influenced by soil total nitrogen and carbonate. Structural equation models indicated that elevation had a greater influence than slope upon the soil microbial community. Co-occurrence network analysis suggested that fungi were stable but bacteria contributed more to among interactions of bacterial and fungal communities. Ascomycota was identified as a key hub for the internal interactions of microbial community, which might affect the soil microbial co-occurrence network resilience of alpine forest ecosystems on the Tibetan Plateau.
Collapse
Affiliation(s)
- Tiantian Ma
- Institute of Tibet Plateau Ecology, Tibet Agricultural and Animal Husbandry University, Key Laboratory of Forest Ecology in Tibet Plateau, Ministry of Education, Nyingchi, Tibet, China
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, China
| | - Xinjun Zhang
- Institute of Tibet Plateau Ecology, Tibet Agricultural and Animal Husbandry University, Key Laboratory of Forest Ecology in Tibet Plateau, Ministry of Education, Nyingchi, Tibet, China
- *Correspondence: Xinjun Zhang,
| | - Ruihong Wang
- Institute of Tibet Plateau Ecology, Tibet Agricultural and Animal Husbandry University, Key Laboratory of Forest Ecology in Tibet Plateau, Ministry of Education, Nyingchi, Tibet, China
| | - Rui Liu
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, China
| | - Xiaoming Shao
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, China
| | - Ji Li
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, China
- Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou, China
| | - Yuquan Wei
- Institute of Tibet Plateau Ecology, Tibet Agricultural and Animal Husbandry University, Key Laboratory of Forest Ecology in Tibet Plateau, Ministry of Education, Nyingchi, Tibet, China
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, China
- Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou, China
- Yuquan Wei,
| |
Collapse
|
21
|
Yakovleva EV, Gabov DN. Temporal Changes in the Content of Polyarenes in Samples of the Seasonally Thawed Layer from Tundra Peatlands during a Model Experiment. BIOL BULL+ 2022. [DOI: 10.1134/s1062359022050211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
22
|
Cai L, Kuo CJ. Epsilon poly-L-lysine as a novel antifungal agent for sustainable wood protection. Front Microbiol 2022; 13:908541. [PMID: 36160267 PMCID: PMC9490314 DOI: 10.3389/fmicb.2022.908541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/09/2022] [Indexed: 11/18/2022] Open
Abstract
There has been a growing interest in seeking natural and biobased preservatives to prevent the wood from deteriorating during its service life, thereby prolonging carbon storage in buildings. This study aims to assess the in vitro and in vivo antifungal properties of epsilon poly-L-lysine (EPL), a secondary metabolite from Actinomyces, against four common wood-inhabiting fungi, including two brown-rot fungi, Gloeophyllum trabeum (GT) and Rhodonia placenta (RP), and two white-rot fungi, Trametes versicolor (TV) and Irpex lacteus (IL), which has rarely been reported. Our results indicate that these fungi responded differently due to EPL treatment. From the in vitro study, the minimal inhibitory concentration of EPL against GT, TV, and IL was determined to be 3 mg/ml, while that of RP was 5 mg/ml. EPL treatment also affects the morphology of fungal hyphae, changing from a smooth surface with a tubular structure to twisted and deformed shapes. Upon EPL treatment with wood samples (in vivo), it was found that EPL could possibly form hydrogen bonds with the hydroxy groups in wood and was uniformly distributed across the transverse section of the wood samples, as indicated by Fourier transform infrared spectroscopy and fluorescence microscopy analyses, respectively. Compared with control wood samples with a mass loss of over 15% across different fungi, wood samples treated with 1% EPL showed negligible or very low (<8%) mass loss. In addition, the thermal stability of EPL-treated wood was also improved by 50%. This study suggests that EPL could be a promising alternative to traditional metallic-based wood preservatives.
Collapse
Affiliation(s)
- Lili Cai
- Department of Forest, Rangeland and Fire Sciences, University of Idaho, Moscow, ID, United States
| | | |
Collapse
|
23
|
Adnan M, Islam W, Gang L, Chen HYH. Advanced research tools for fungal diversity and its impact on forest ecosystem. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:45044-45062. [PMID: 35460003 DOI: 10.1007/s11356-022-20317-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
Fungi are dominant ecological participants in the forest ecosystems, which play a major role in recycling organic matter and channeling nutrients across trophic levels. Fungal populations are shaped by plant communities and environmental parameters, and in turn, fungal communities also impact the forest ecosystem through intrinsic participation of different fungal guilds. Mycorrhizal fungi result in conservation and stability of forest ecosystem, while pathogenic fungi can bring change in forest ecosystem, by replacing the dominant plant species with new or exotic plant species. Saprotrophic fungi, being ecological regulators in the forest ecosystem, convert dead tree logs into reusable constituents and complete the ecological cycles of nitrogen and carbon. However, fungal communities have not been studied in-depth with respect to functional, spatiotemporal, or environmental parameters. Previously, fungal diversity and its role in shaping the forest ecosystem were studied by traditional and laborious cultural methods, which were unable to achieve real-time results and draw a conclusive picture of fungal communities. This review highlights the latest advances in biological methods such as next-generation sequencing and meta'omics for observing fungal diversity in the forest ecosystem, the role of different fungal groups in shaping forest ecosystem, forest productivity, and nutrient cycling at global scales.
Collapse
Affiliation(s)
- Muhammad Adnan
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, Shenzhen, 518060, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Waqar Islam
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liu Gang
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Han Y H Chen
- Faculty of Forestry and the Forest Environment, Lakehead University, 955 Oliver Rd, Thunder Bay, ON, P7B 5E1, Canada.
| |
Collapse
|
24
|
Kwatcho Kengdo S, Peršoh D, Schindlbacher A, Heinzle J, Tian Y, Wanek W, Borken W. Long-term soil warming alters fine root dynamics and morphology, and their ectomycorrhizal fungal community in a temperate forest soil. GLOBAL CHANGE BIOLOGY 2022; 28:3441-3458. [PMID: 35253326 DOI: 10.1111/gcb.16155] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 02/22/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Climate warming is predicted to affect temperate forests severely, but the response of fine roots, key to plant nutrition, water uptake, soil carbon, and nutrient cycling is unclear. Understanding how fine roots will respond to increasing temperature is a prerequisite for predicting the functioning of forests in a warmer climate. We studied the response of fine roots and their ectomycorrhizal (EcM) fungal and root-associated bacterial communities to soil warming by 4°C in a mixed spruce-beech forest in the Austrian Limestone Alps after 8 and 14 years of soil warming, respectively. Fine root biomass (FRB) and fine root production were 17% and 128% higher in the warmed plots, respectively, after 14 years. The increase in FRB (13%) was not significant after 8 years of treatment, whereas specific root length, specific root area, and root tip density were significantly higher in warmed plots at both sampling occasions. Soil warming did not affect EcM exploration types and diversity, but changed their community composition, with an increase in the relative abundance of Cenoccocum at 0-10 cm soil depth, a drought-stress-tolerant genus, and an increase in short- and long-distance exploration types like Sebacina and Boletus at 10-20 cm soil depth. Warming increased the root-associated bacterial diversity but did not affect their community composition. Soil warming did not affect nutrient concentrations of fine roots, though we found indications of limited soil phosphorus (P) and potassium (K) availability. Our findings suggest that, in the studied ecosystem, global warming could persistently increase soil carbon inputs due to accelerated fine root growth and turnover, and could simultaneously alter fine root morphology and EcM fungal community composition toward improved nutrient foraging.
Collapse
Affiliation(s)
- Steve Kwatcho Kengdo
- Department of Soil Ecology, Bayreuth Center of Ecology and Environmental Research (BAYCEER), University of Bayreuth, Bayreuth, Germany
| | - Derek Peršoh
- Department of Geobotany, Ruhr-Universität Bochum, Bochum, Germany
| | - Andreas Schindlbacher
- Department of Forest Ecology and Soil, Federal Research and Training Centre for Forests, Natural Hazards and Landscape-BFW, Vienna, Austria
| | - Jakob Heinzle
- Department of Forest Ecology and Soil, Federal Research and Training Centre for Forests, Natural Hazards and Landscape-BFW, Vienna, Austria
| | - Ye Tian
- Division of Terrestrial Ecosystem Research, Department of Microbiology and Ecosystem Science, Center of Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Wolfgang Wanek
- Division of Terrestrial Ecosystem Research, Department of Microbiology and Ecosystem Science, Center of Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Werner Borken
- Department of Soil Ecology, Bayreuth Center of Ecology and Environmental Research (BAYCEER), University of Bayreuth, Bayreuth, Germany
| |
Collapse
|
25
|
Zhou Y, Sun B, Xie B, Feng K, Zhang Z, Zhang Z, Li S, Du X, Zhang Q, Gu S, Song W, Wang L, Xia J, Han G, Deng Y. Warming reshaped the microbial hierarchical interactions. GLOBAL CHANGE BIOLOGY 2021; 27:6331-6347. [PMID: 34544207 DOI: 10.1111/gcb.15891] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 09/05/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
Global warming may alter microbially mediated ecosystem functions through reshaping of microbial diversity and modified microbial interactions. Here, we examined the effects of 5-year experimental warming on different microbial hierarchical groups in a coastal nontidal soil ecosystem, including prokaryotes (i.e., bacteria and archaea), fungi, and Cercozoa, which is a widespread phylum of protists. Warming significantly altered the diversity and structure of prokaryotic and fungal communities in soil and additionally decreased the complexity of the prokaryotic network and fragmented the cercozoan network. By using the Inter-Domain Ecological Network approach, the cross-trophic interactions among prokaryotes, fungi, and Cercozoa were further investigated. Under warming, cercozoan-prokaryotic and fungal-prokaryotic bipartite networks were simplified, whereas the cercozoan-fungal network became slightly more complex. Despite simplification of the fungal-prokaryotic network, the strengthened synergistic interactions between saprotrophic fungi and certain prokaryotic groups, such as the Bacteroidetes, retained these phyla within the network under warming. In addition, the interactions within the fungal community were quite stable under warming conditions, which stabilized the interactions between fungi and prokaryotes or protists. Additionally, we found the microbial hierarchical interactions were affected by environmental stress (i.e., salinity and pH) and soil nutrients. Interestingly, the relevant microbial groups could respond to different soil properties under ambient conditions, whereas under warming these two groups tended to respond to similar soil properties, suggesting network hub species responded to certain environmental changes related to warming, and then transferred this response to their partners through trophic interactions. Finally, warming strengthened the network modules' negative association with soil organic matters through some fungal hub species, which might trigger soil carbon loss in this ecosystem. Our study provides new insights into the response and feedback of microbial hierarchical interactions under warming scenario.
Collapse
Affiliation(s)
- Yuqi Zhou
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Baoyu Sun
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- State Key Laboratory of Estuarine and Coastal Research, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
- Yellow River Delta Field Observation and Research Station of Coastal Wetland Ecosystem, Chinese Academy of Sciences, Yantai, China
| | - Baohua Xie
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- Yellow River Delta Field Observation and Research Station of Coastal Wetland Ecosystem, Chinese Academy of Sciences, Yantai, China
| | - Kai Feng
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Zhaojing Zhang
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Zheng Zhang
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Shuzhen Li
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian, China
| | - Xiongfeng Du
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Qi Zhang
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Songsong Gu
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Wen Song
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Linlin Wang
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Jianyang Xia
- State Key Laboratory of Estuarine and Coastal Research, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Guangxuan Han
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- Yellow River Delta Field Observation and Research Station of Coastal Wetland Ecosystem, Chinese Academy of Sciences, Yantai, China
| | - Ye Deng
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
26
|
Kaufmann C, Cassin-Sackett L. Fine-Scale Spatial Structure of Soil Microbial Communities in Burrows of a Keystone Rodent Following Mass Mortality. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.758348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Soil microbial communities both reflect and influence biotic and abiotic processes occurring at or near the soil surface. Ecosystem engineers that physically alter the soil surface, such as burrowing ground squirrels, are expected to influence the distribution of soil microbial communities. Black-tailed prairie dogs (Cynomys ludovicianus) construct complex burrows in which activities such as nesting, defecating, and dying are partitioned spatially into different chambers. Prairie dogs also experience large-scale die-offs due to sylvatic plague, caused by the bacterium Yersinia pestis, which lead to mass mortality events with potential repercussions on microbial communities. We used 16S sequencing to examine microbial communities in soil that was excavated by prairie dogs from different burrow locations, and surface soil that was used in the construction of burrow entrances, in populations that experienced plague die-offs. Following the QIIME2 pipeline, we assessed microbial diversity at several taxonomic levels among burrow regions. To do so, we computed community similarity metrics (Bray–Curtis, Jaccard, and weighted and unweighted UniFrac) among samples and community diversity indexes (Shannon and Faith phylogenetic diversity indexes) within each sample. Microbial communities differed across burrow regions, and several taxa exhibited spatial variation in relative abundance. Microbial ecological diversity (Shannon index) was highest in soil recently excavated from within burrows and soils associated with dead animals, and was lowest in soils associated with scat. Phylogenetic diversity varied only marginally within burrows, but the trends paralleled those for Shannon diversity. Yersinia was detected in four samples from one colony, marking the first time the genus has been sampled from soil on prairie dog colonies. The presence of Yersinia was a significant predictor of five bacterial families and eight microbial genera, most of which were rare taxa found in higher abundance in the presence of Yersinia, and one of which, Dictyostelium, has been proposed as an enzootic reservoir of Y. pestis. This study demonstrates that mammalian modifications to soil structure by physical alterations and by mass mortality can influence the distribution and diversity of microbial communities.
Collapse
|
27
|
Faticov M, Abdelfattah A, Roslin T, Vacher C, Hambäck P, Blanchet FG, Lindahl BD, Tack AJM. Climate warming dominates over plant genotype in shaping the seasonal trajectory of foliar fungal communities on oak. THE NEW PHYTOLOGIST 2021; 231:1770-1783. [PMID: 33960441 DOI: 10.1111/nph.17434] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 04/15/2021] [Indexed: 05/13/2023]
Abstract
Leaves interact with a wealth of microorganisms. Among these, fungi are highly diverse and are known to contribute to plant health, leaf senescence and early decomposition. However, patterns and drivers of the seasonal dynamics of foliar fungal communities are poorly understood. We used a multifactorial experiment to investigate the influence of warming and tree genotype on the foliar fungal community on the pedunculate oak Quercus robur across one growing season. Fungal species richness increased, evenness tended to decrease, and community composition strongly shifted during the growing season. Yeasts increased in relative abundance as the season progressed, while putative fungal pathogens decreased. Warming decreased species richness, reduced evenness and changed community composition, especially at the end of the growing season. Warming also negatively affected putative fungal pathogens. We only detected a minor imprint of tree genotype and warming × genotype interactions on species richness and community composition. Overall, our findings demonstrate that warming plays a larger role than plant genotype in shaping the seasonal dynamics of the foliar fungal community on oak. These warming-induced shifts in the foliar fungal community may have a pronounced impact on plant health, plant-fungal interactions and ecosystem functions.
Collapse
Affiliation(s)
- Maria Faticov
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Svante Arrhenius väg 20A, Stockholm, SE-106 91, Sweden
| | - Ahmed Abdelfattah
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, Graz, A-8010, Austria
| | - Tomas Roslin
- Department of Ecology, Swedish University of Agricultural Sciences, PO Box 7044, Uppsala, SE-756 51, Sweden
| | | | - Peter Hambäck
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Svante Arrhenius väg 20A, Stockholm, SE-106 91, Sweden
| | - F Guillaume Blanchet
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, 2500 Boulevard Université, Sherbrooke, QC, J1K 2R1, Canada
- Département de Mathématique, Faculté des Sciences, Université de Sherbrooke, 2500 Boulevard Université, Sherbrooke, QC, J1K 2R1, Canada
- Département des Sciences de la Santé Communautaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, QC, J1H 5N4, Canada
| | - Björn D Lindahl
- Department of Soil and Environment, Swedish University of Agricultural Sciences, PO Box 7014, Uppsala, SE-750 07, Sweden
| | - Ayco J M Tack
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Svante Arrhenius väg 20A, Stockholm, SE-106 91, Sweden
| |
Collapse
|
28
|
Gorfer M, Mayer M, Berger H, Rewald B, Tallian C, Matthews B, Sandén H, Katzensteiner K, Godbold DL. High Fungal Diversity but Low Seasonal Dynamics and Ectomycorrhizal Abundance in a Mountain Beech Forest. MICROBIAL ECOLOGY 2021; 82:243-256. [PMID: 33755773 PMCID: PMC8282586 DOI: 10.1007/s00248-021-01736-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 03/10/2021] [Indexed: 05/05/2023]
Abstract
Forests on steep slopes constitute a significant proportion of European mountain areas and are important as production and protection forests. This study describes the soil fungal community structure in a European beech-dominated mountain forest stands in the Northern Calcareous Alps and investigates how it is determined by season and soil properties. Samples were collected at high spatial resolution in an area of ca. 100 m × 700 m in May (spring) and August (summer). Illumina MiSeq high-throughput sequencing of the ITS2-region revealed distinct patterns for the soil fungal communities. In contrast to other studies from temperate European beech forest stands, Ascomycota dominated the highly diverse fungal community, while ectomycorrhizal fungi were of lower abundance. Russulaceae, which are often among the dominant ectomycorrhizal fungi associated with European beech, were absent from all samples. Potentially plant pathogenic fungi were more prevalent than previously reported. Only subtle seasonal differences were found between fungal communities in spring and summer. Especially, dominant saprotrophic taxa were largely unaffected by season, while slightly stronger effects were observed for ectomycorrhizal fungi. Soil characteristics like pH and organic carbon content, on the other hand, strongly shaped abundant taxa among the saprotrophic fungal community.
Collapse
Affiliation(s)
- Markus Gorfer
- Bioresources Unit, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Vienna, Austria
| | - Mathias Mayer
- Forest Ecology, Dept. of Forest and Soil Sciences, University of Natural Resources and Life Sciences (BOKU), Peter-Jordan-Strasse 82, 1190, Vienna, Austria
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland
| | | | - Boris Rewald
- Forest Ecology, Dept. of Forest and Soil Sciences, University of Natural Resources and Life Sciences (BOKU), Peter-Jordan-Strasse 82, 1190, Vienna, Austria.
| | - Claudia Tallian
- Bioresources Unit, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Vienna, Austria
| | - Bradley Matthews
- Forest Ecology, Dept. of Forest and Soil Sciences, University of Natural Resources and Life Sciences (BOKU), Peter-Jordan-Strasse 82, 1190, Vienna, Austria
- Environment Agency Austria, Vienna, Austria
| | - Hans Sandén
- Forest Ecology, Dept. of Forest and Soil Sciences, University of Natural Resources and Life Sciences (BOKU), Peter-Jordan-Strasse 82, 1190, Vienna, Austria
| | - Klaus Katzensteiner
- Forest Ecology, Dept. of Forest and Soil Sciences, University of Natural Resources and Life Sciences (BOKU), Peter-Jordan-Strasse 82, 1190, Vienna, Austria
| | - Douglas L Godbold
- Forest Ecology, Dept. of Forest and Soil Sciences, University of Natural Resources and Life Sciences (BOKU), Peter-Jordan-Strasse 82, 1190, Vienna, Austria
| |
Collapse
|
29
|
Qu ZL, Santalahti M, Köster K, Berninger F, Pumpanen J, Heinonsalo J, Sun H. Soil Fungal Community Structure in Boreal Pine Forests: From Southern to Subarctic Areas of Finland. Front Microbiol 2021; 12:653896. [PMID: 34122368 PMCID: PMC8188478 DOI: 10.3389/fmicb.2021.653896] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/22/2021] [Indexed: 11/13/2022] Open
Abstract
The boreal forest environment plays an important role in the global C cycle due to its high carbon storage capacity. However, relatively little is known about the forest fungal community at a regional scale in boreal forests. In the present study, we have re-analyzed the data from our previous studies and highlighted the core fungal community composition and potential functional groups in three forests dominated by Scots pine (Pinus sylvestris L.) in Finland, and identified the fungal generalists that appear across geographic locations despite differences in local conditions. The three forests represent subarctic, northern and southern boreal forest, and are all in an un-managed state without human interference or management. The subarctic and northern areas are subject to reindeer grazing. The results showed that the three locations formed distinct fungal community structures (P < 0.05). Compared to the two northern locations, the southern boreal forest harbored a greater abundance of Zygomycota, Lactarius, Mortierella Umbelopsis, and Tylospora, in which aspect there were no differences between the two northern forests. Cortinarius, Piloderma, and Suillus were the core fungal genera in the boreal Scots pine forest. Functionally, the southern boreal forest harbored a greater abundance of saprotroph, endophytes and fungal parasite-lichen, whereas a greater abundance of ectomycorrhizal fungi was observed in the northern boreal forests. Moreover, the pathotroph and wood saprotrophs were commonly present in these three regions. The three locations formed two distinct fungal community functional structures, by which the southern forest was clearly separated from the two northern forests, suggesting a distance–decay relationship via geographic location. This study provides useful information for better understanding the common fungal communities and functions in boreal forests in different geographical locations.
Collapse
Affiliation(s)
- Zhao-Lei Qu
- Collaborative Innovation Center of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Minna Santalahti
- Faculty of Agriculture and Forestry, Institute for Atmospheric and Earth System Research/Forest Sciences, University of Helsinki, Helsinki, Finland
| | - Kajar Köster
- Faculty of Agriculture and Forestry, Institute for Atmospheric and Earth System Research/Forest Sciences, University of Helsinki, Helsinki, Finland
| | - Frank Berninger
- Department of Environmental and Biological Science, University of Eastern Finland, Kuopio, Finland
| | - Jukka Pumpanen
- Department of Environmental and Biological Science, University of Eastern Finland, Kuopio, Finland
| | - Jussi Heinonsalo
- Faculty of Agriculture and Forestry, Institute for Atmospheric and Earth System Research/Forest Sciences, University of Helsinki, Helsinki, Finland.,Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Hui Sun
- Collaborative Innovation Center of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China.,Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| |
Collapse
|
30
|
Pec GJ, Diepen LTA, Knorr M, Grandy AS, Melillo JM, DeAngelis KM, Blanchard JL, Frey SD. Fungal community response to long‐term soil warming with potential implications for soil carbon dynamics. Ecosphere 2021. [DOI: 10.1002/ecs2.3460] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Gregory J. Pec
- Department of Natural Resources and the Environment University of New Hampshire Durham New Hampshire03824USA
| | - Linda T. A. Diepen
- Department of Ecosystem Science and Management University of Wyoming Laramie Wyoming82071USA
| | - Melissa Knorr
- Department of Natural Resources and the Environment University of New Hampshire Durham New Hampshire03824USA
| | - A. Stuart Grandy
- Department of Natural Resources and the Environment University of New Hampshire Durham New Hampshire03824USA
| | - Jerry M. Melillo
- The Ecosystems Center Marine Biological Laboratory Woods Hole Massachusetts02543USA
| | - Kristen M. DeAngelis
- Department of Microbiology University of Massachusetts Amherst Massachusetts01003USA
| | | | - Serita D. Frey
- Department of Natural Resources and the Environment University of New Hampshire Durham New Hampshire03824USA
| |
Collapse
|
31
|
Bui A, Orr D, Lepori-Bui M, Konicek K, Young HS, Moeller HV. Soil fungal community composition and functional similarity shift across distinct climatic conditions. FEMS Microbiol Ecol 2021; 96:5909968. [PMID: 32960210 DOI: 10.1093/femsec/fiaa193] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/18/2020] [Indexed: 11/15/2022] Open
Abstract
A large part of ecosystem function in woodland systems depends on soil fungal communities. However, global climate change has the potential to fundamentally alter these communities as fungal species are filtered with changing environmental conditions. In this study, we examined the potential effects of climate on host-associated (i.e. tree-associated) soil fungal communities at climatically distinct sites in the Tehachapi Mountains in California, where more arid conditions represent likely regional climate futures. We found that soil fungal community composition changes strongly across sites, with species richness and diversity being highest at the most arid site. However, host association may buffer the effects of climate on community composition, as host-associated fungal communities are more similar to each other across climatically distinct sites than the whole fungal community. Lastly, an examination of functional traits for ectomycorrhizal fungi, a well-studied guild of fungal mutualist species, showed that stress-tolerant traits were more abundant at arid sites than mesic sites, providing a mechanistic understanding of these community patterns. Taken together, our results indicate that fungal community composition will likely shift with future climate change but that host association may buffer these effects, with shifts in functional traits having implications for future ecosystem function.
Collapse
Affiliation(s)
- An Bui
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA 93106-9620, USA
| | - Devyn Orr
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA 93106-9620, USA
| | - Michelle Lepori-Bui
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA 93106-9620, USA
| | - Kelli Konicek
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA 93106-9620, USA
| | - Hillary S Young
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA 93106-9620, USA
| | - Holly V Moeller
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA 93106-9620, USA
| |
Collapse
|
32
|
Fitzgerald JL, Stuble KL, Nichols LM, Diamond SE, Wentworth TR, Pelini SL, Gotelli NJ, Sanders NJ, Dunn RR, Penick CA. Abundance of spring‐ and winter‐active arthropods declines with warming. Ecosphere 2021. [DOI: 10.1002/ecs2.3473] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Jacquelyn L. Fitzgerald
- Plant Biology and Conservation Northwestern University Evanston Illinois60201USA
- Negaunee Institute for Plant Conservation Science & Action Chicago Botanic Garden Glencoe Illinois60022USA
- Department of Applied Ecology North Carolina State University Raleigh North Carolina27695USA
| | | | - Lauren M. Nichols
- Department of Applied Ecology North Carolina State University Raleigh North Carolina27695USA
| | - Sarah E. Diamond
- Department of Biology Case Western Reserve University Cleveland Ohio44106USA
| | - Thomas R. Wentworth
- Department of Plant and Microbial Biology North Carolina State University Raleigh North Carolina27695USA
| | - Shannon L. Pelini
- Department of Biological Sciences Bowling Green State University Bowling Green Ohio43403USA
| | | | - Nathan J. Sanders
- Environmental Program Rubenstein School of Environment and Natural Resources University of Vermont Burlington Vermont05405USA
| | - Robert R. Dunn
- Department of Applied Ecology North Carolina State University Raleigh North Carolina27695USA
- Center for Evolutionary Hologenomics University of Copenhagen CopenhagenDK‐2100Denmark
| | - Clint A. Penick
- Department of Ecology, Evolution & Organismal Biology Kennesaw State University Kennesaw Georgia30144USA
| |
Collapse
|
33
|
Ocampo-Chavira P, Eaton-Gonzalez R, Riquelme M. Of Mice and Fungi: Coccidioides spp. Distribution Models. J Fungi (Basel) 2020; 6:jof6040320. [PMID: 33261168 PMCID: PMC7712536 DOI: 10.3390/jof6040320] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/18/2020] [Accepted: 11/25/2020] [Indexed: 12/25/2022] Open
Abstract
The continuous increase of Coccidioidomycosis cases requires reliable detection methods of the causal agent, Coccidioides spp., in its natural environment. This has proven challenging because of our limited knowledge on the distribution of this soil-dwelling fungus. Knowing the pathogen’s geographic distribution and its relationship with the environment is crucial to identify potential areas of risk and to prevent disease outbreaks. The maximum entropy (Maxent) algorithm, Geographic Information System (GIS) and bioclimatic variables were combined to obtain current and future potential distribution models (DMs) of Coccidioides and its putative rodent reservoirs for Arizona, California and Baja California. We revealed that Coccidioides DMs constructed with presence records from one state are not well suited to predict distribution in another state, supporting the existence of distinct phylogeographic populations of Coccidioides. A great correlation between Coccidioides DMs and United States counties with high Coccidioidomycosis incidence was found. Remarkably, under future scenarios of climate change and high concentration of greenhouse gases, the probability of habitat suitability for Coccidioides increased. Overlap analysis between the DMs of rodents and Coccidioides, identified Neotoma lepida as one of the predominant co-occurring species in all three states. Considering rodents DMs would allow to implement better surveillance programs to monitor disease spread.
Collapse
Affiliation(s)
- Pamela Ocampo-Chavira
- Department of Microbiology, Centro de Investigación Científica y Educación Superior de Ensenada (CICESE), Ctra. Ensenada-Tijuana No. 3918, Ensenada, Baja California 22860, Mexico;
| | - Ricardo Eaton-Gonzalez
- Academic Unit of Ensenada, Universidad Tecnológica de Tijuana, Ctra. a la Bufadora KM. 1, Maneadero Parte Alta, Ensenada, Baja California 22790, Mexico;
| | - Meritxell Riquelme
- Department of Microbiology, Centro de Investigación Científica y Educación Superior de Ensenada (CICESE), Ctra. Ensenada-Tijuana No. 3918, Ensenada, Baja California 22860, Mexico;
- Correspondence:
| |
Collapse
|
34
|
Mimicking climate warming effects on Alaskan soil microbial communities via gradual temperature increase. Sci Rep 2020; 10:8533. [PMID: 32444824 PMCID: PMC7244726 DOI: 10.1038/s41598-020-65329-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 04/27/2020] [Indexed: 12/03/2022] Open
Abstract
Climate change can trigger shifts in community structure and may therefore pose a severe threat to soil microbial communities, especially in high northern latitudes such as the Arctic. Arctic soils are covered by snow and ice throughout most of the year. This insulation shields them from high temperature variability and low surface temperatures. If this protective layer thaws, these soils are predicted to warm up at 1.5x to 4x the rate of other terrestrial biomes. In this study, we sampled arctic soils from sites with different elevations in Alaska, incubated them for 5 months with a simulated, gradual or abrupt temperature increase of +5 °C, and compared bacterial and fungal community compositions after the incubation. We hypothesized that the microbial communities would not significantly change with a gradual temperature treatment, whereas an abrupt temperature increase would decrease microbial diversity and shift community composition. The only differences in community composition that we observed were, however, related to the two elevations. The abrupt and gradual temperature increase treatments did not change the microbial community composition as compared to the control indicating resistance of the microbial community to changes in temperature. This points to the potential importance of microbial dormancy and resting stages in the formation of a “buffer” against elevated temperatures. Microbial resting stages might heavily contribute to microbial biomass and thus drive the responsiveness of arctic ecosystems to climate change.
Collapse
|
35
|
Canini F, Zucconi L, Pacelli C, Selbmann L, Onofri S, Geml J. Vegetation, pH and Water Content as Main Factors for Shaping Fungal Richness, Community Composition and Functional Guilds Distribution in Soils of Western Greenland. Front Microbiol 2019; 10:2348. [PMID: 31681213 PMCID: PMC6797927 DOI: 10.3389/fmicb.2019.02348] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 09/26/2019] [Indexed: 01/29/2023] Open
Abstract
Fungi are the most abundant and one of the most diverse components of arctic soil ecosystems, where they are fundamental drivers of plant nutrient acquisition and recycling. Nevertheless, few studies have focused on the factors driving the diversity and functionality of fungal communities associated with these ecosystems, especially in the scope of global warming that is particularly affecting Greenland and is leading to shrub expansion, with expected profound changes of soil microbial communities. We used soil DNA metabarcoding to compare taxonomic and functional composition of fungal communities in three habitats [bare ground (BG), biological soil crusts (BSC), and vascular vegetation (VV) coverage] in Western Greenland. Fungal richness increased with the increasing complexity of the coverage, but BGs and BSCs samples showed the highest number of unique OTUs. Differences in both fungal community composition and distribution of functional guilds identified were correlated with edaphic factors (mainly pH and water content), in turn connected with the different type of coverage. These results suggest also possible losses of diversity connected to the expansion of VV and possible interactions among the members of different functional guilds, likely due to the nutrient limitation, with potential effects on elements recycling.
Collapse
Affiliation(s)
- Fabiana Canini
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
- Biodiversity Dynamics, Naturalis Biodiversity Center, Leiden, Netherlands
| | - Laura Zucconi
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Claudia Pacelli
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Laura Selbmann
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
- Section of Mycology, Italian National Antarctic Museum (MNA), Genoa, Italy
| | - Silvano Onofri
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - József Geml
- Biodiversity Dynamics, Naturalis Biodiversity Center, Leiden, Netherlands
- Faculty of Science, Leiden University, Leiden, Netherlands
| |
Collapse
|
36
|
Host availability drives distributions of fungal endophytes in the imperilled boreal realm. Nat Ecol Evol 2019; 3:1430-1437. [PMID: 31548643 DOI: 10.1038/s41559-019-0975-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 08/02/2019] [Indexed: 01/03/2023]
Abstract
Boreal forests represent the world's largest terrestrial biome and provide ecosystem services of global importance. Highly imperilled by climate change, these forests host Earth's greatest phylogenetic diversity of endophytes, a hyperdiverse group of symbionts that are defined by their occurrence within living, symptomless plant and lichen tissues. Endophytes shape the ecological and evolutionary trajectories of plants and are therefore key to the function and resilience of terrestrial ecosystems. A critical step in linking the ecological functions of endophytes with those of their hosts is to understand the distributions of these symbionts at the global scale; however, turnover in host taxa with geography and climate can confound insights into endophyte biogeography. As a result, global drivers of endophyte diversity and distributions are not known. Here, we leverage sampling from phylogenetically diverse boreal plants and lichens across North America and Eurasia to show that host filtering in distinctive environments, rather than turnover with geographical or environmental distance, is the main determinant of the community composition and diversity of endophytes. We reveal the distinctiveness of boreal endophytes relative to soil fungi worldwide and endophytes from diverse temperate biomes, highlighting a high degree of global endemism. Overall, the distributions of endophytes are directly linked to the availability of compatible hosts, highlighting the role of biotic interactions in shaping fungal communities across large spatial scales, and the threat that climate change poses to biological diversity and function in the imperilled boreal realm.
Collapse
|
37
|
Birnbaum C, Hopkins AJM, Fontaine JB, Enright NJ. Soil fungal responses to experimental warming and drying in a Mediterranean shrubland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 683:524-536. [PMID: 31146058 DOI: 10.1016/j.scitotenv.2019.05.222] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/28/2019] [Accepted: 05/15/2019] [Indexed: 06/09/2023]
Abstract
Implications of a drying and warming climate have been investigated for aboveground vegetation across a range of biomes yet below-ground effects on microorganisms have received considerably less attention, especially in Mediterranean Type Ecosystems (MTE) that are predicted to be negatively impacted by climate change. We experimentally reduced rainfall and increased temperature across two contrasting study sites (deep sand dune vs shallow sand swale) to test how projected future climate conditions may impact soil fungal composition, richness and diversity. We also assessed fungal OTU warming responses and putative functions of 100 most abundant OTUs and 120 OTUs that either increased or decreased based on their presence/absence across treatments. We found a significant effect of study site, treatment and canopy species on fungal composition. Soil fungal diversity increased under warming treatment in swale plots as compared to control plots indicating a positive effect of warming on fungal diversity. In dunes, significantly more OTUs responded to drought than warming treatment. Among the most abundant soil fungal putative functional groups were endophytes, ericoid mycorrhizas, yeasts and ectomycorrhizas consistent with previous studies. Plant pathogens were found to increase across dunes and swales, while ericoid mycorrhizae decreased. In summary, our study revealed that it is critical to understand belowground microbial patterns as a result of climate change treatments for our ability to better predict how ecosystems may respond to global environmental changes in the future.
Collapse
Affiliation(s)
- Christina Birnbaum
- Environmental and Conservation Sciences, School of Veterinary and Life Sciences, Murdoch University, 90 South Street, Western Australia 6150, Australia.
| | - Anna J M Hopkins
- Environmental and Conservation Sciences, School of Veterinary and Life Sciences, Murdoch University, 90 South Street, Western Australia 6150, Australia; Centre for Ecosystem Management, School of Science, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027, Australia
| | - Joseph B Fontaine
- Environmental and Conservation Sciences, School of Veterinary and Life Sciences, Murdoch University, 90 South Street, Western Australia 6150, Australia
| | - Neal J Enright
- Environmental and Conservation Sciences, School of Veterinary and Life Sciences, Murdoch University, 90 South Street, Western Australia 6150, Australia
| |
Collapse
|
38
|
Zheng Q, Hu Y, Zhang S, Noll L, Böckle T, Dietrich M, Herbold CW, Eichorst SA, Woebken D, Richter A, Wanek W. Soil multifunctionality is affected by the soil environment and by microbial community composition and diversity. SOIL BIOLOGY & BIOCHEMISTRY 2019; 136:107521. [PMID: 31700196 PMCID: PMC6837881 DOI: 10.1016/j.soilbio.2019.107521] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Microorganisms are critical in mediating carbon (C) and nitrogen (N) cycling processes in soils. Yet, it has long been debated whether the processes underlying biogeochemical cycles are affected by the composition and diversity of the soil microbial community or not. The composition and diversity of soil microbial communities can be influenced by various environmental factors, which in turn are known to impact biogeochemical processes. The objectives of this study were to test effects of multiple edaphic drivers individually and represented as the multivariate soil environment interacting with microbial community composition and diversity, and concomitantly on multiple soil functions (i.e. soil enzyme activities, soil C and N processes). We employed high-throughput sequencing (Illumina MiSeq) to analyze bacterial/archaeal and fungal community composition by targeting the 16S rRNA gene and the ITS1 region of soils collected from three land uses (cropland, grassland and forest) deriving from two bedrock forms (silicate and limestone). Based on this data set we explored single and combined effects of edaphic variables on soil microbial community structure and diversity, as well as on soil enzyme activities and several soil C and N processes. We found that both bacterial/archaeal and fungal communities were shaped by the same edaphic factors, with most single edaphic variables and the combined soil environment representation exerting stronger effects on bacterial/archaeal communities than on fungal communities, as demonstrated by (partial) Mantel tests. We also found similar edaphic controls on the bacterial/archaeal/fungal richness and diversity. Soil C processes were only directly affected by the soil environment but not affected by microbial community composition. In contrast, soil N processes were significantly related to bacterial/archaeal community composition and bacterial/archaeal/fungal richness/diversity but not directly affected by the soil environment. This indicates direct control of the soil environment on soil C processes and indirect control of the soil environment on soil N processes by structuring the microbial communities. The study further highlights the importance of edaphic drivers and microbial communities (i.e. composition and diversity) on important soil C and N processes.
Collapse
Affiliation(s)
- Qing Zheng
- University of Vienna, Center for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Terrestrial Ecosystem Research, Althanstrasse 14, 1090 Vienna, Austria
| | - Yuntao Hu
- University of Vienna, Center for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Terrestrial Ecosystem Research, Althanstrasse 14, 1090 Vienna, Austria
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Shasha Zhang
- University of Vienna, Center for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Terrestrial Ecosystem Research, Althanstrasse 14, 1090 Vienna, Austria
| | - Lisa Noll
- University of Vienna, Center for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Terrestrial Ecosystem Research, Althanstrasse 14, 1090 Vienna, Austria
| | - Theresa Böckle
- University of Vienna, Center for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Terrestrial Ecosystem Research, Althanstrasse 14, 1090 Vienna, Austria
| | - Marlies Dietrich
- University of Vienna, Center for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, Althanstrasse 14, 1090 Vienna, Austria
| | - Craig W. Herbold
- University of Vienna, Center for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, Althanstrasse 14, 1090 Vienna, Austria
| | - Stephanie A. Eichorst
- University of Vienna, Center for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, Althanstrasse 14, 1090 Vienna, Austria
| | - Dagmar Woebken
- University of Vienna, Center for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, Althanstrasse 14, 1090 Vienna, Austria
| | - Andreas Richter
- University of Vienna, Center for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Terrestrial Ecosystem Research, Althanstrasse 14, 1090 Vienna, Austria
| | - Wolfgang Wanek
- University of Vienna, Center for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Terrestrial Ecosystem Research, Althanstrasse 14, 1090 Vienna, Austria
| |
Collapse
|
39
|
Romero-Olivares AL, Meléndrez-Carballo G, Lago-Lestón A, Treseder KK. Soil Metatranscriptomes Under Long-Term Experimental Warming and Drying: Fungi Allocate Resources to Cell Metabolic Maintenance Rather Than Decay. Front Microbiol 2019; 10:1914. [PMID: 31551941 PMCID: PMC6736569 DOI: 10.3389/fmicb.2019.01914] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 08/05/2019] [Indexed: 11/29/2022] Open
Abstract
Earth’s temperature is rising, and with this increase, fungal communities are responding and affecting soil carbon processes. At a long-term soil-warming experiment in a boreal forest in interior Alaska, warming and warming-associated drying alters the function of microbes, and thus, decomposition of carbon. But what genetic mechanisms and resource allocation strategies are behind these community shifts and soil carbon changes? Here, we evaluate fungal resource allocation efforts under long-term experimental warming (including associated drying) using soil metatranscriptomics. We profiled resource allocation efforts toward decomposition and cell metabolic maintenance, and we characterized community composition. We found that under the warming treatment, fungi allocate resources to cell metabolic maintenance at the expense of allocating resources to decomposition. In addition, we found that fungal orders that house taxa with stress-tolerant traits were more abundant under the warmed treatment compared to control conditions. Our results suggest that the warming treatment elicits an ecological tradeoff in resource allocation in the fungal communities, with potential to change ecosystem-scale carbon dynamics. Fungi preferentially invest in mechanisms that will ensure survival under warming and drying, such as cell metabolic maintenance, rather than in decomposition. Through metatranscriptomes, we provide mechanistic insight behind the response of fungi to climate change and consequences to soil carbon processes.
Collapse
Affiliation(s)
- Adriana L Romero-Olivares
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA, United States
| | - Germán Meléndrez-Carballo
- Department of Electronics and Telecommunications, Ensenada Center for Scientific Research and Higher Education, Ensenada, Mexico
| | - Asunción Lago-Lestón
- Department of Medical Innovation, Ensenada Center for Scientific Research and Higher Education, Ensenada, Mexico
| | - Kathleen K Treseder
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
40
|
Rosenstock N, Ellström M, Oddsdottir E, Sigurdsson BD, Wallander H. Carbon sequestration and community composition of ectomycorrhizal fungi across a geothermal warming gradient in an Icelandic spruce forest. FUNGAL ECOL 2019. [DOI: 10.1016/j.funeco.2018.05.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
41
|
Quan Q, Tian D, Luo Y, Zhang F, Crowther TW, Zhu K, Chen HYH, Zhou Q, Niu S. Water scaling of ecosystem carbon cycle feedback to climate warming. SCIENCE ADVANCES 2019; 5:eaav1131. [PMID: 31457076 PMCID: PMC6703863 DOI: 10.1126/sciadv.aav1131] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 07/15/2019] [Indexed: 05/22/2023]
Abstract
It has been well established by field experiments that warming stimulates either net ecosystem carbon uptake or release, leading to negative or positive carbon cycle-climate change feedback, respectively. This variation in carbon-climate feedback has been partially attributed to water availability. However, it remains unclear under what conditions water availability enhances or weakens carbon-climate feedback or even changes its direction. Combining a field experiment with a global synthesis, we show that warming stimulates net carbon uptake (negative feedback) under wet conditions, but depresses it (positive feedback) under very dry conditions. This switch in carbon-climate feedback direction arises mainly from scaling effects of warming-induced decreases in soil water content on net ecosystem productivity. This water scaling of warming effects offers generalizable mechanisms not only to help explain varying magnitudes and directions of observed carbon-climate feedback but also to improve model prediction of ecosystem carbon dynamics in response to climate change.
Collapse
Affiliation(s)
- Quan Quan
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Yuquanlu, Beijing 100049, China
| | - Dashuan Tian
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Yiqi Luo
- Center for Ecosystem Science and Society, Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
- Department of Earth System Science, Tsinghua University, Beijing 100084, China
| | - Fangyue Zhang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Yuquanlu, Beijing 100049, China
| | - Tom W. Crowther
- Institute of Integrative Biology, ETH-Zürich, Universitätstrasse 16, 8006 Zürich, Switzerland
| | - Kai Zhu
- Department of Environmental Studies, University of California, Santa Cruz, CA 95060, USA
| | - Han Y. H. Chen
- Faculty of Natural Resources Management, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou 350007, China
| | - Qingping Zhou
- Institute of Qinghai-Tibetan Plateau, Southwest University for Nationalities, Chengdu 610041, China
| | - Shuli Niu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Yuquanlu, Beijing 100049, China
- Corresponding author.
| |
Collapse
|
42
|
Tian B, Yu Z, Pei Y, Zhang Z, Siemann E, Wan S, Ding J. Elevated temperature reduces wheat grain yield by increasing pests and decreasing soil mutualists. PEST MANAGEMENT SCIENCE 2019; 75:466-475. [PMID: 29998550 DOI: 10.1002/ps.5140] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 07/06/2018] [Accepted: 07/06/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Climate warming is known to affect species' phenology, abundance, and their interactions with other species. Understanding how cultivated plants, their associated community members (including pest insects, natural enemies, soil microbes), and their interactions respond to warming to influence crop yields is critical to current and future food security. We conducted a two-year field study on the effects of elevated temperature on winter wheat growth and grain quality, insect pests, natural enemies, ground arthropods, weeds, and arbuscular mycorrhizal fungi (AMF). RESULTS Elevated temperature shortened the period of wheat growth, decreased grain yield, and reduced grain quality by increasing fiber and decreasing wet gluten, protein, total soluble sugars, and starch. Elevated temperature also increased aphid abundance while decreasing AMF colonization rates. Structural equation modeling indicated that the direct negative effect of warming on wheat yield was augmented by indirect negative effects via increased aphid and weed abundances along with decreased AMF colonization. CONCLUSION Climate change can potentially affect crop production and quality both directly and indirectly by modifying interactions with aboveground and belowground organisms. Future studies on the effects of climate change on crops should consider the responses of aboveground and belowground biotic community members and their interactions with crop plants. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Baoliang Tian
- College of Life Sciences, Henan University, Kaifeng, China
| | - Zhenzhen Yu
- College of Life Sciences, Henan University, Kaifeng, China
| | - Yingchun Pei
- College of Life Sciences, Henan University, Kaifeng, China
| | - Zhen Zhang
- College of Life Sciences, Henan University, Kaifeng, China
| | - Evan Siemann
- Biosciences Department, Rice University, Houston, TX, USA
| | - Shiqiang Wan
- College of Life Sciences, Henan University, Kaifeng, China
| | - Jianqing Ding
- College of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
43
|
Alzarhani AK, Clark DR, Underwood GJC, Ford H, Cotton TEA, Dumbrell AJ. Are drivers of root-associated fungal community structure context specific? ISME JOURNAL 2019; 13:1330-1344. [PMID: 30692628 PMCID: PMC6474305 DOI: 10.1038/s41396-019-0350-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 11/22/2018] [Accepted: 12/25/2018] [Indexed: 12/01/2022]
Abstract
The composition and structure of plant-root-associated fungal communities are determined by local abiotic and biotic conditions. However, the relative influence and identity of relationships to abiotic and biotic factors may differ across environmental and ecological contexts, and fungal functional groups. Thus, understanding which aspects of root-associated fungal community ecology generalise across contexts is the first step towards a more predictive framework. We investigated how the relative importance of biotic and abiotic factors scale across environmental and ecological contexts using high-throughput sequencing (ca. 55 M Illumina metabarcoding sequences) of >260 plant-root-associated fungal communities from six UK salt marshes across two geographic regions (South-East and North-West England) in winter and summer. Levels of root-associated fungal diversity were comparable with forests and temperate grasslands, quadrupling previous estimates of salt-marsh fungal diversity. Whilst abiotic variables were generally most important, a range of site- and spatial scale-specific abiotic and biotic drivers of diversity and community composition were observed. Consequently, predictive models of diversity trained on one site, extrapolated poorly to others. Fungal taxa from the same functional groups responded similarly to the specific drivers of diversity and composition. Thus site, spatial scale and functional group are key factors that, if accounted for, may lead to a more predictive understanding of fungal community ecology.
Collapse
Affiliation(s)
- A Khuzaim Alzarhani
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK.,Faculty of Science, Northern Border University, Arar, Saudi Arabia
| | - Dave R Clark
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK
| | - Graham J C Underwood
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK
| | - Hilary Ford
- School of Environment, Natural Resources and Geography, Thoday buildings, Bangor University, Bangor, LL57 2DG, UK
| | - T E Anne Cotton
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK.,Department of Animal and Plant Sciences, The University of Sheffield, Alfred Denny Building, Sheffield, SY, S10 2TN, UK
| | - Alex J Dumbrell
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK.
| |
Collapse
|
44
|
|
45
|
Patterns in Ectomycorrhizal Diversity, Community Composition, and Exploration Types in European Beech, Pine, and Spruce Forests. FORESTS 2018. [DOI: 10.3390/f9080445] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Ectomycorrhizal (EM) fungi are pivotal drivers of ecosystem functioning in temperate and boreal forests. They constitute an important pathway for plant-derived carbon into the soil and facilitate nitrogen and phosphorus acquisition. However, the mechanisms that drive ectomycorrhizal diversity and community composition are still subject to discussion. We investigated patterns in ectomycorrhizal diversity, community composition, and exploration types on root tips in Fagus sylvatica,Picea abies, and Pinus sylvestris stands across Europe. Host tree species is the most important factor shaping the ectomycorrhizal community as well as the distribution of exploration types. Moreover, abiotic factors such as soil properties, N deposition, temperature, and precipitation, were found to significantly influence EM diversity and community composition. A clear differentiation into functional traits by means of exploration types was shown for all ectomycorrhizal communities across the three analyzed tree species. Contact and short-distance exploration types were clearly significantly more abundant than cord- or rhizomorph-forming long-distance exploration types of EM fungi. Medium-distance exploration types were significantly lower in abundance than contact and short-distance types, however they were the most frequent EM taxa and constituted nearly half of the EM community. Furthermore, EM taxa exhibit distinct ecological ranges, and the type of soil exploration seemed to determine whether EM taxa have small or rather big environmental ranges.
Collapse
|
46
|
Acclimation of Fine Root Systems to Soil Warming: Comparison of an Experimental Setup and a Natural Soil Temperature Gradient. Ecosystems 2018. [DOI: 10.1007/s10021-018-0280-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
47
|
Zhao Z, Dong S, Jiang X, Zhao J, Liu S, Yang M, Han Y, Sha W. Are land use and short time climate change effective on soil carbon compositions and their relationships with soil properties in alpine grassland ecosystems on Qinghai-Tibetan Plateau? THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 625:539-546. [PMID: 29291568 DOI: 10.1016/j.scitotenv.2017.12.206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/12/2017] [Accepted: 12/19/2017] [Indexed: 06/07/2023]
Abstract
Fencing and grass plantation are two key interventions to preserve the degraded grassland on the Qinghai-Tibetan Plateau (QTP). Climate warming and N deposition have substantially affected the alpine grassland ecosystems. However, molecular composition of soil organic carbon (SOC), the indicator of degradation of SOC, and its responses to climate change are still largely unclear. In this study, we conducted the experiments in three types of land use on the QTP: alpine meadow (AM), alpine steppe (AS), and cultivated grassland (CG) under 2°C climatic warming, 5 levels of nitrogen deposition rates at 8, 24, 40, 56, and 72kg N ha-1year-1, as well as a combination of climatic warming and N deposition (8kg N ha-1year-1). Our findings indicate that all three types of land use were dominated by O-alkyl carbon. The alkyl/O-alkyl ratio, aromaticity and hydrophobicity index of the CG were larger than those of the AM and AS, and this difference was generally stable under different treatments. Most of the SOC in the alpine grasslands was derived from fresh plants, and the carbon in the CG was more stable than that in the AM and AS. The compositions of all the alpine ecosystems were stable under short-term climatic changes, suggesting the short-term climate warming and nitrogen deposition likely did not affect the molecular composition of the SOC in the restored grasslands.
Collapse
Affiliation(s)
- Zhenzhen Zhao
- State key laboratory of water environment simulation, School of Envrionment, Beijing Normal University, 100875, Beijing, China
| | - Shikui Dong
- State key laboratory of water environment simulation, School of Envrionment, Beijing Normal University, 100875, Beijing, China.
| | - Xiaoman Jiang
- State key laboratory of water environment simulation, School of Envrionment, Beijing Normal University, 100875, Beijing, China
| | - Jinbo Zhao
- State key laboratory of water environment simulation, School of Envrionment, Beijing Normal University, 100875, Beijing, China
| | - Shiliang Liu
- State key laboratory of water environment simulation, School of Envrionment, Beijing Normal University, 100875, Beijing, China
| | - Mingyue Yang
- State key laboratory of water environment simulation, School of Envrionment, Beijing Normal University, 100875, Beijing, China
| | - Yuhui Han
- State key laboratory of water environment simulation, School of Envrionment, Beijing Normal University, 100875, Beijing, China
| | - Wei Sha
- State key laboratory of water environment simulation, School of Envrionment, Beijing Normal University, 100875, Beijing, China
| |
Collapse
|
48
|
Bhatnagar JM, Peay KG, Treseder KK. Litter chemistry influences decomposition through activity of specific microbial functional guilds. ECOL MONOGR 2018. [DOI: 10.1002/ecm.1303] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - Kabir G. Peay
- Department of Biology Stanford University Stanford California 94305 USA
| | - Kathleen K. Treseder
- Department of Ecology and Evolutionary Biology University of California, Irvine Irvine California 92697 USA
| |
Collapse
|
49
|
León-Sánchez L, Nicolás E, Goberna M, Prieto I, Maestre FT, Querejeta JI. Poor plant performance under simulated climate change is linked to mycorrhizal responses in a semiarid shrubland. THE JOURNAL OF ECOLOGY 2018; 106:960-976. [PMID: 30078910 PMCID: PMC6071827 DOI: 10.1111/1365-2745.12888] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Warmer and drier conditions associated with ongoing climate change will increase abiotic stress for plants and mycorrhizal fungi in drylands worldwide, thereby potentially reducing vegetation cover and productivity and increasing the risk of land degradation and desertification. Rhizosphere microbial interactions and feedbacks are critical processes that could either mitigate or aggravate the vulnerability of dryland vegetation to forecasted climate change.We conducted a four-year manipulative study in a semiarid shrubland in the Iberian Peninsula to assess the effects of warming (~2.5ºC; W), rainfall reduction (~30%; RR) and their combination (W+RR) on the performance of native shrubs (Helianthemum squamatum) and their associated mycorrhizal fungi.Warming (W and W+RR) decreased the net photosynthetic rates of H. squamatum shrubs by ~31% despite concurrent increases in stomatal conductance (~33%), leading to sharp decreases (~50%) in water use efficiency. Warming also advanced growth phenology, decreased leaf nitrogen and phosphorus contents per unit area, reduced shoot biomass production by ~36% and decreased survival during a dry year in both W and W+RR plants. Plants under RR showed more moderate decreases (~10-20%) in photosynthesis, stomatal conductance and shoot growth.Warming, RR and W+RR altered ectomycorrhizal fungal (EMF) community structure and drastically reduced the relative abundance of EMF sequences obtained by high-throughput sequencing, a response associated with decreases in the leaf nitrogen, phosphorus and dry matter contents of their host plants. In contrast to EMF, the community structure and relative sequence abundances of other non-mycorrhizal fungal guilds were not significantly affected by the climate manipulation treatments.Synthesis: Our findings highlight the vulnerability of both native plants and their symbiotic mycorrhizal fungi to climate warming and drying in semiarid shrublands, and point to the importance of a deeper understanding of plant-soil feedbacks to predict dryland vegetation responses to forecasted aridification. The interdependent responses of plants and ectomycorrhizal fungi to warming and rainfall reduction may lead to a detrimental feedback loop on vegetation productivity and nutrient pool size, which could amplify the adverse impacts of forecasted climate change on ecosystem functioning in EMF-dominated drylands.
Collapse
Affiliation(s)
- Lupe León-Sánchez
- Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Murcia, Spain
| | - Emilio Nicolás
- Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Murcia, Spain
| | - Marta Goberna
- Centro de Investigaciones sobre Desertificación (CIDE-CSIC, UVEG, GV), Moncada, Valencia, Spain
| | - Iván Prieto
- Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Murcia, Spain
| | - Fernando T. Maestre
- Departamento de Biología y Geología, Física y Química Inorgánica, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, Móstoles, Spain
| | | |
Collapse
|
50
|
Seasonal Effects on Microbial Community Structure and Nitrogen Dynamics in Temperate Forest Soil. FORESTS 2018. [DOI: 10.3390/f9030153] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|