1
|
Roitberg ES, Recknagel H, Elmer KR, Braña F, Rodríguez Díaz T, Žagar A, Kuranova VN, Epova LA, Bauwens D, Giovine G, Orlova VF, Bulakhova NA, Eplanova GV, Arribas OJ. Viviparity is associated with larger female size and higher sexual size dimorphism in a reproductively bimodal lizard. J Anim Ecol 2025; 94:244-258. [PMID: 39225034 DOI: 10.1111/1365-2656.14170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024]
Abstract
Squamate reptiles are central for studying phenotypic correlates of evolutionary transitions from oviparity to viviparity because these transitions are numerous, with many of them being recent. Several models of life-history theory predict that viviparity is associated with increased female size, and thus more female-biased sexual size dimorphism (SSD). Yet, the corresponding empirical evidence is overall weak and inconsistent. The lizard Zootoca vivipara, which occupies a major part of Northern Eurasia and includes four viviparous and two non-sister oviparous lineages, represents an excellent model for testing these predictions. We analysed how sex-specific body size and SSD is associated with parity mode, using body length data for nearly 14,000 adult individuals from 97 geographically distinct populations, which cover almost the entire species' range and represent all six lineages. Our analyses controlled for lineage identity, climatic seasonality (the strongest predictor of geographic body size variation in previous studies of this species) and several aspects of data heterogeneity. Parity mode, lineage and seasonality are significantly associated with female size and SSD; the first two predictors accounted for 14%-26% of the total variation each, while seasonality explained 5%-7%. Viviparous populations exhibited a larger female size than oviparous populations, with no concomitant differences in male size. The variation of male size was overall low and poorly explained by our predictors. Albeit fully expected from theory, the strong female bias of the body size differences between oviparous and viviparous populations found in Z. vivipara is not evident from available data on three other lizard systems of closely related lineages differing in parity mode. We confront this pattern with the data on female reproductive traits in the considered systems and the frequencies of evolutionary changes of parity mode in the corresponding lizard families and speculate why the life-history correlates of live-bearing in Z. vivipara are distinct. Comparing conspecific populations, our study provides the most direct evidence for the predicted effect of parity mode on adult body size but also demonstrates that the revealed pattern may not be general. This might explain why across squamates, viviparity is only weakly associated with larger size.
Collapse
Affiliation(s)
- Evgeny S Roitberg
- Leibniz Institute for the Analysis of Biodiversity Change, Museum Koenig, Bonn, Germany
| | - Hans Recknagel
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Kathryn R Elmer
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Florentino Braña
- Departamento de Biología de Organismos y Sistemas, Universidad de Oviedo, Oviedo, Spain
| | - Tania Rodríguez Díaz
- Departamento de Biología de Organismos y Sistemas, Universidad de Oviedo, Oviedo, Spain
| | - Anamarija Žagar
- Department of Organisms and Ecosystems Research, National Institute of Biology, Ljubljana, Slovenia
| | | | | | - Dirk Bauwens
- Department of Biology, Laboratory of Functional Morphology, University of Antwerp, Wilrijk, Belgium
| | - Giovanni Giovine
- Stazione Sperimentale Regionale per Lo Studio e la Conservazione Degli Anfibi in Lombardia-Lago di Endine, Lovere, Italy
| | | | | | | | | |
Collapse
|
2
|
Cicero C, Mason NA, Oong Z, Title PO, Morales ME, Feldheim KA, Koo MS, Bowie RCK. Deep ecomorphological and genetic divergence in Steller's Jays ( Cyanocitta stelleri, Aves: Corvidae). Ecol Evol 2022; 12:e9517. [PMID: 36466137 PMCID: PMC9712489 DOI: 10.1002/ece3.9517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 09/27/2022] [Accepted: 10/04/2022] [Indexed: 12/05/2022] Open
Abstract
The relationship between ecology and morphology is a cornerstone of evolutionary biology, and quantifying variation across environments can shed light on processes that give rise to biodiversity. Three morphotypes of the Steller's Jay (Cyanocitta stelleri) occupy different ecoregions in western North America, which vary in climate and landcover. These morphotypes (Coastal, Interior, Rocky Mountain) differ in size, plumage coloration, and head pattern. We sampled 1080 Steller's Jays from 68 populations (plus 11 outgroups) to address three main questions using data on morphology, plumage, genetics (mtDNA, microsatellites), and ecological niches: (1) How do phenotypic and genetic traits vary within and among populations, morphotypes, and ecoregions? (2) How do population-level differences in Steller's Jays compare with other sister species pairs of North American birds? (3) What can we infer about the population history of Steller's Jays in relation to past climates, paleoecology, and niche evolution? We found substantial morphological, genetic, and ecological differentiation among morphotypes. The greatest genetic divergence separated Coastal and Interior morphotypes from the Rocky Mountain morphotype, which was associated with warmer, drier, and more open habitats. Microsatellites revealed additional structure between Coastal and Interior groups. The deep mtDNA split between Coastal/Interior and Rocky Mountain lineages of Steller's Jay (ND2 ~ 7.8%) is older than most North American avian sister species and dates to approximately 4.3 mya. Interior and Rocky Mountain morphotypes contact across a narrow zone with steep clines in traits and reduced gene flow. The distribution of the three morphotypes coincides with divergent varieties of ponderosa pine and Douglas fir. Species distribution models support multiple glacial refugia for Steller's Jays. Our integrative dataset combined with extensive geographic sampling provides compelling evidence for recognizing at least two species of Steller's Jay.
Collapse
Affiliation(s)
- Carla Cicero
- Museum of Vertebrate ZoologyUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Nicholas A. Mason
- Museum of Vertebrate ZoologyUniversity of CaliforniaBerkeleyCaliforniaUSA
- Museum of Natural Science and Department of Biological SciencesLouisiana State UniversityBaton RougeLouisianaUSA
| | - Zheng Oong
- Museum of Vertebrate ZoologyUniversity of CaliforniaBerkeleyCaliforniaUSA
- Bell Museum of Natural History and Department of Ecology, Evolution and BehaviorUniversity of MinnesotaSaint PaulMinnesotaUSA
| | - Pascal O. Title
- Environmental Resilience InstituteIndiana UniversityBloomingtonIndianaUSA
- Department of Ecology & EvolutionStony Brook UniversityStony BrookNew YorkUSA
| | - Melissa E. Morales
- Museum of Vertebrate ZoologyUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Kevin A. Feldheim
- Pritzker Laboratory for Molecular Systematics and Evolution, Negaunee Integrative Research CenterField Museum of Natural HistoryChicagoIllinoisUSA
| | - Michelle S. Koo
- Museum of Vertebrate ZoologyUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Rauri C. K. Bowie
- Museum of Vertebrate ZoologyUniversity of CaliforniaBerkeleyCaliforniaUSA
- Department of Integrative BiologyUniversity of CaliforniaBerkeleyCaliforniaUSA
| |
Collapse
|
3
|
Morphological Variation and Its Environmental Correlates in the Taihangshan Swelled-Vented Frog across the Qinling Mountains. Animals (Basel) 2022; 12:ani12182328. [PMID: 36139189 PMCID: PMC9495075 DOI: 10.3390/ani12182328] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/24/2022] [Accepted: 09/04/2022] [Indexed: 01/01/2023] Open
Abstract
Simple Summary Amphibians have weak dispersal abilities and are sensitive to environmental changes, resulting in their disproportionately high risk of extinction, with many species’ populations rapidly declining. Therefore, it is critical for amphibian conservation to understand their adaptive potential by exploring how amphibians respond to environmental changes based on morphological variations. Our results showed that morphological traits of Feirana taihangnica significantly differed among ages. Along with the increase in annual mean temperature, snout-vent length showed an anti-hump trend, indicating no support for Bergmann’s rule. Mean ultraviolet-B of the highest and lowest months were positively and negatively correlated with head width, thigh length and tibia width, respectively. The present study can help understand the effects of environmental changes on morphological variations of this mountain frog species and its adaptive potential, providing important implications for species conservation. Abstract The Taihangshan swelled-vented frog (Feirana taihangnica), an endemic species to the Qinling Mountains, central China, has experienced a dramatic population decline over the last few decades. The aim of this work was to quantify morphological variation in F. taihangnica across the Qinling Mountains and examine environmental correlates of this variation of morphological traits. We implemented a hierarchical partitioning to estimate the independent contribution of each environmental variable on morphological variations. Temperature seasonality was the greatest contributor in variations of snout-vent length (SVL) and head width, and ultraviolet-B (UV-B) radiation of the lowest month was the most influential on both thigh length and tibia width. Then, we used generalized additive models to analyze the relationship between each environmental factor and morphological trait variations. Along the increasing of annual mean temperature, SVL decreased firstly and then increased, indicating no support for Bergmann’s rule. Furthermore, SVL was negatively correlated with annual precipitation, while positively with temperature seasonality. The mean UV-B of the highest and lowest months was positively and negatively correlated with head width, thigh length and tibia width, respectively. The results of this study help us to understand adaptive potential of this mountain frog species via morphological variations in the light of environmental changes.
Collapse
|
4
|
Brambilla M, Rubolini D, Appukuttan O, Calvi G, Karger DN, Kmecl P, Mihelič T, Sattler T, Seaman B, Teufelbauer N, Wahl J, Celada C. Identifying climate refugia for high-elevation Alpine birds under current climate warming predictions. GLOBAL CHANGE BIOLOGY 2022; 28:4276-4291. [PMID: 35441422 PMCID: PMC9546033 DOI: 10.1111/gcb.16187] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/26/2022] [Accepted: 03/30/2022] [Indexed: 05/22/2023]
Abstract
Identifying climate refugia is key to effective biodiversity conservation under a changing climate, especially for mountain-specialist species adapted to cold conditions and highly threatened by climate warming. We combined species distribution models (SDMs) with climate forecasts to identify climate refugia for high-elevation bird species (Lagopus muta, Anthus spinoletta, Prunella collaris, Montifringilla nivalis) in the European Alps, where the ecological effects of climate changes are particularly evident and predicted to intensify. We considered future (2041-2070) conditions (SSP585 scenario, four climate models) and identified three types of refugia: (1) in-situ refugia potentially suitable under both current and future climate conditions, ex-situ refugia suitable (2) only in the future according to all future conditions, or (3) under at least three out of four future conditions. SDMs were based on a very large, high-resolution occurrence dataset (2901-12,601 independent records for each species) collected by citizen scientists. SDMs were fitted using different algorithms, balancing statistical accuracy, ecological realism and predictive/extrapolation ability. We selected the most reliable ones based on consistency between training and testing data and extrapolation over distant areas. Future predictions revealed that all species (with the partial exception of A. spinoletta) will undergo a range contraction towards higher elevations, losing 17%-59% of their current range (larger losses in L. muta). We identified ~15,000 km2 of the Alpine region as in-situ refugia for at least three species, of which 44% are currently designated as protected areas (PAs; 18%-66% among countries). Our findings highlight the usefulness of spatially accurate data collected by citizen scientists, and the importance of model testing by extrapolating over independent areas. Climate refugia, which are only partly included within the current PAs system, should be priority sites for the conservation of Alpine high-elevation species and habitats, where habitat degradation/alteration by human activities should be prevented to ensure future suitability for alpine species.
Collapse
Affiliation(s)
- Mattia Brambilla
- Lipu/BirdLife ItaliaParmaItaly
- MUSE–Museo delle Scienze, Sezione Zoologia dei VertebratiTrentoItaly
- Fondazione Lombardia per l’Ambiente, Settore Biodiversità e aree protetteMilanoItaly
- Dipartimento di Scienze e Politiche AmbientaliUniversità degli Studi di MilanoMilanoItaly
| | - Diego Rubolini
- Dipartimento di Scienze e Politiche AmbientaliUniversità degli Studi di MilanoMilanoItaly
- Istituto di Ricerca sulle Acque, IRSA‐CNRBrugherioItaly
| | - Ojan Appukuttan
- Dipartimento di Scienze e Politiche AmbientaliUniversità degli Studi di MilanoMilanoItaly
| | | | - Dirk Nikolaus Karger
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL)BirmensdorfSwitzerland
| | | | | | | | | | | | - Johannes Wahl
- Dachverband Deutscher Avifaunisten (DDA)MünsterGermany
| | | |
Collapse
|
5
|
Sinnott‐Armstrong MA, Deanna R, Pretz C, Liu S, Harris JC, Dunbar‐Wallis A, Smith SD, Wheeler LC. How to approach the study of syndromes in macroevolution and ecology. Ecol Evol 2022; 12:e8583. [PMID: 35342598 PMCID: PMC8928880 DOI: 10.1002/ece3.8583] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/23/2021] [Accepted: 12/31/2021] [Indexed: 11/12/2022] Open
Abstract
Syndromes, wherein multiple traits evolve convergently in response to a shared selective driver, form a central concept in ecology and evolution. Recent work has questioned the existence of some classic syndromes, such as pollination and seed dispersal syndromes. Here, we discuss some of the major issues that have afflicted research into syndromes in macroevolution and ecology. First, correlated evolution of traits and hypothesized selective drivers is often relied on as the only evidence for adaptation of those traits to those hypothesized drivers, without supporting evidence. Second, the selective driver is often inferred from a combination of traits without explicit testing. Third, researchers often measure traits that are easy for humans to observe rather than measuring traits that are suited to testing the hypothesis of adaptation. Finally, species are often chosen for study because of their striking phenotypes, which leads to the illusion of syndromes and divergence. We argue that these issues can be avoided by combining studies of trait variation across entire clades or communities with explicit tests of adaptive hypotheses and that taking this approach will lead to a better understanding of syndrome-like evolution and its drivers.
Collapse
Affiliation(s)
- Miranda A. Sinnott‐Armstrong
- Department of Ecology and Evolutionary BiologyUniversity of Colorado‐BoulderBoulderColoradoUSA
- Department of ChemistryUniversity of CambridgeCambridgeUK
| | - Rocio Deanna
- Department of Ecology and Evolutionary BiologyUniversity of Colorado‐BoulderBoulderColoradoUSA
- Instituto Multidisciplinario de Biología VegetalIMBIV (CONICET‐UNC)CórdobaArgentina
- Departamento de Ciencias FarmacéuticasFacultad de Ciencias Químicas (FCQ, UNC)CórdobaArgentina
| | - Chelsea Pretz
- Department of Ecology and Evolutionary BiologyUniversity of Colorado‐BoulderBoulderColoradoUSA
| | - Sukuan Liu
- Department of Ecology and Evolutionary BiologyUniversity of Colorado‐BoulderBoulderColoradoUSA
| | - Jesse C. Harris
- Department of Ecology and Evolutionary BiologyUniversity of Colorado‐BoulderBoulderColoradoUSA
| | - Amy Dunbar‐Wallis
- Department of Ecology and Evolutionary BiologyUniversity of Colorado‐BoulderBoulderColoradoUSA
| | - Stacey D. Smith
- Department of Ecology and Evolutionary BiologyUniversity of Colorado‐BoulderBoulderColoradoUSA
| | - Lucas C. Wheeler
- Department of Ecology and Evolutionary BiologyUniversity of Colorado‐BoulderBoulderColoradoUSA
| |
Collapse
|
6
|
Onley IR, Moseby KE, Austin JJ, Sherratt E. Morphological variation in skull shape and size across extinct and extant populations of the greater stick-nest rat (Leporillus conditor): implications for translocation. AUSTRALIAN MAMMALOGY 2022. [DOI: 10.1071/am21047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Physical and ecological isolation contribute to maintain genetic differentiation between fire salamander subspecies. Heredity (Edinb) 2021; 126:776-789. [PMID: 33536637 PMCID: PMC8102559 DOI: 10.1038/s41437-021-00405-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 01/05/2021] [Accepted: 01/05/2021] [Indexed: 01/30/2023] Open
Abstract
Landscape features shape patterns of gene flow among populations, ultimately determining where taxa lay along the continuum between panmixia to complete reproductive isolation. Gene flow can be restricted, leading to population differentiation in two non-exclusive ways: "physical isolation", in which geographic distance in combination with the landscape features restricts movement of individuals promoting genetic drift, and "ecological isolation", in which adaptive mechanisms constrain gene flow between different environments via divergent natural selection. In central Iberia, two fire salamander subspecies occur in parapatry across elevation gradients along the Iberian Central System mountains, while in the adjacent Montes de Toledo Region only one of them occurs. By integrating population and landscape genetic analyses, we show a ubiquitous role of physical isolation between and within mountain ranges, with unsuitable landscapes increasing differentiation between populations. However, across the Iberian Central System, we found strong support for a significant contribution of ecological isolation, with low genetic differentiation in environmentally homogeneous areas, but high differentiation across sharp transitions in precipitation seasonality. These patterns are consistent with a significant contribution of ecological isolation in restricting gene flow among subspecies. Overall, our results suggest that ecological divergence contributes to reduce genetic admixture, creating an opportunity for lineages to follow distinct evolutionary trajectories.
Collapse
|
8
|
Zhang P, Grenouillet G, Dong X, Zheng Y, Lek S, Chang J. Capturing response differences of species distribution to climate and human pressures by incorporating local adaptation: Implications for the conservation of a critically endangered species. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 284:111998. [PMID: 33540195 DOI: 10.1016/j.jenvman.2021.111998] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 01/05/2021] [Accepted: 01/14/2021] [Indexed: 06/12/2023]
Abstract
Considering local adaptation has been increasingly involved in forecasting species distributions under climate change and the management of species conservation. Herein, we take the critically endangered Chinese giant salamander (Andrias davidianus) that has both a low dispersal ability and distinct population divergence in different regions as an example. Basin-scale models that represent different populations in the Huanghe River Basin (HRB), the Yangtze River Basin (YRB), and the Pearl River Basin (PRB) were established using ensemble species distribution models. The species ranges under the future human population density (HPD) and climate change were predicted, and the range loss was evaluated for local basins in 2050 and 2070. Our results showed that the predominant factors affecting species distributions differed among basins, and the responses of the species occurrence to HPD and climate factors were distinctly different from northern to southern basins. Future HPD changes would be the most influential factor that engenders negative impacts on the species distribution in all three basins, especially in the HRB. Climate change will likely be less prominent in decreasing the species range, excluding in the YRB and PRB under the highest-emissions scenario in 2050. Overall, the high-emissions scenario would more significantly aggravate the negative impacts produced by HPD change in both 2050 and 2070, with maximum losses of species ranges in the HRB, YRB, and PRB of 83.4%, 60.0%, and 53.5%, respectively, under the scenarios of the combined impacts of HPD and climate changes. We proposed adapted conservation policies to effectively protect the habitat of this critically endangered animal in different basins based on the outcomes. Our research addresses the importance of incorporating local adaptation into species distribution modeling to inform conservation and management decisions.
Collapse
Affiliation(s)
- Peng Zhang
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, 430072, China; Laboratoire Evolution et Diversité Biologique, UMR5174, Université de Toulouse III Paul Sabatier, CNRS, IRD, Toulouse, 31062, France.
| | - Gaël Grenouillet
- Laboratoire Evolution et Diversité Biologique, UMR5174, Université de Toulouse III Paul Sabatier, CNRS, IRD, Toulouse, 31062, France; Institut Universitaire de France, Paris, 75231, France
| | - Xianghong Dong
- Laboratoire Evolution et Diversité Biologique, UMR5174, Université de Toulouse III Paul Sabatier, CNRS, IRD, Toulouse, 31062, France; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yichen Zheng
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, 430072, China
| | - Sovan Lek
- Laboratoire Evolution et Diversité Biologique, UMR5174, Université de Toulouse III Paul Sabatier, CNRS, IRD, Toulouse, 31062, France
| | - Jianbo Chang
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
9
|
Lunghi E, Giachello S, Zhao Y, Corti C, Ficetola GF, Manenti R. Photographic database of the European cave salamanders, genus Hydromantes. Sci Data 2020; 7:171. [PMID: 32504009 PMCID: PMC7275050 DOI: 10.1038/s41597-020-0513-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/27/2020] [Indexed: 11/23/2022] Open
Abstract
European Hydromantes are a group of eight salamander species often occurring in subterranean habitats, which are a difficult environment to explore. All Hydromantes are strictly protected species and thus, low-impact methodologies to study these salamanders are strongly needed. Here we used a photographic technique to produce a large dataset of European Hydromantes, providing standardised pictures of 1,052 individuals belonging to the eight species, including hybrids as well. With our methodology we were able to reduce the handling time of individuals, and produce high quality pictures useful to investigate multiple life traits of these endangered species. Furthermore, the standardised photos provided here can be used for future comparisons of individuals from the surveyed populations.
Collapse
Affiliation(s)
- Enrico Lunghi
- Key Laboratory of the Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Museo di Storia Naturale dell'Università degli Studi di Firenze, Museo "La Specola", Firenze, Italy
| | - Simone Giachello
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Milano, Italy.
| | - Yahui Zhao
- Key Laboratory of the Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| | - Claudia Corti
- Museo di Storia Naturale dell'Università degli Studi di Firenze, Museo "La Specola", Firenze, Italy
| | - Gentile Francesco Ficetola
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Milano, Italy
- Univ. Grenoble Alpes, CNRS, Univ. Savoie Mont Blanc, LECA, Laboratoire d'Ecologie Alpine, F-38000, Grenoble, France
| | - Raoul Manenti
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
10
|
Roitberg ES, Orlova VF, Bulakhova NA, Kuranova VN, Eplanova GV, Zinenko OI, Arribas O, Kratochvíl L, Ljubisavljević K, Starikov VP, Strijbosch H, Hofmann S, Leontyeva OA, Böhme W. Variation in body size and sexual size dimorphism in the most widely ranging lizard: testing the effects of reproductive mode and climate. Ecol Evol 2020; 10:4531-4561. [PMID: 32551042 PMCID: PMC7297768 DOI: 10.1002/ece3.6077] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/07/2020] [Accepted: 01/13/2020] [Indexed: 11/23/2022] Open
Abstract
Reproductive mode, ancestry, and climate are hypothesized to determine body size variation in reptiles but their effects have rarely been estimated simultaneously, especially at the intraspecific level. The common lizard (Zootoca vivipara) occupies almost the entire Northern Eurasia and includes viviparous and oviparous lineages, thus representing an excellent model for such studies. Using body length data for >10,000 individuals from 72 geographically distinct populations over the species' range, we analyzed how sex-specific adult body size and sexual size dimorphism (SSD) is associated with reproductive mode, lineage identity, and several climatic variables. Variation in male size was low and poorly explained by our predictors. In contrast, female size and SSD varied considerably, demonstrating significant effects of reproductive mode and particularly seasonality. Populations of the western oviparous lineage (northern Spain, south-western France) exhibited a smaller female size and less female-biased SSD than those of the western viviparous (France to Eastern Europe) and the eastern viviparous (Eastern Europe to Far East) lineages; this pattern persisted even after controlling for climatic effects. The phenotypic response to seasonality was complex: across the lineages, as well as within the eastern viviparous lineage, female size and SSD increase with increasing seasonality, whereas the western viviparous lineage followed the opposing trends. Altogether, viviparous populations seem to follow a saw-tooth geographic cline, which might reflect the nonmonotonic relationship of body size at maturity in females with the length of activity season. This relationship is predicted to arise in perennial ectotherms as a response to environmental constraints caused by seasonality of growth and reproduction. The SSD allometry followed the converse of Rensch's rule, a rare pattern for amniotes. Our results provide the first evidence of opposing body size-climate relationships in intraspecific units.
Collapse
Affiliation(s)
| | - Valentina F. Orlova
- Zoological Research MuseumMoscow M.V. Lomonosov State UniversityMoscowRussia
| | - Nina A. Bulakhova
- Institute of Biological Problems of the NorthMagadanRussia
- Research Institute of Biology and BiophysicsTomsk State UniversityTomskRussia
| | | | | | | | | | | | | | | | | | - Sylvia Hofmann
- Helmholtz‐Centre for Environmental Research – UfZLeipzigGermany
| | - Olga A. Leontyeva
- Department of BiogeographyMoscow M. V. Lomonosov State UniversityMoscowRussia
| | | |
Collapse
|
11
|
Falaschi M, Manenti R, Thuiller W, Ficetola GF. Continental-scale determinants of population trends in European amphibians and reptiles. GLOBAL CHANGE BIOLOGY 2019; 25:3504-3515. [PMID: 31220393 DOI: 10.1111/gcb.14739] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 05/29/2019] [Accepted: 06/13/2019] [Indexed: 06/09/2023]
Abstract
The continuous decline of biodiversity is determined by the complex and joint effects of multiple environmental drivers. Still, a large part of past global change studies reporting and explaining biodiversity trends have focused on a single driver. Therefore, we are often unable to attribute biodiversity changes to different drivers, since a multivariable design is required to disentangle joint effects and interactions. In this work, we used a meta-regression within a Bayesian framework to analyze 843 time series of population abundance from 17 European amphibian and reptile species over the last 45 years. We investigated the relative effects of climate change, alien species, habitat availability, and habitat change in driving trends of population abundance over time, and evaluated how the importance of these factors differs across species. A large number of populations (54%) declined, but differences between species were strong, with some species showing positive trends. Populations declined more often in areas with a high number of alien species, and in areas where climate change has caused loss of suitability. Habitat features showed small variation over the last 25 years, with an average loss of suitable habitat of 0.1%/year per population. Still, a strong interaction between habitat availability and the richness of alien species indicated that the negative impact of alien species was particularly strong for populations living in landscapes with less suitable habitat. Furthermore, when excluding the two commonest species, habitat loss was the main correlate of negative population trends for the remaining species. By analyzing trends for multiple species across a broad spatial scale, we identify alien species, climate change, and habitat changes as the major drivers of European amphibian and reptile decline.
Collapse
Affiliation(s)
- Mattia Falaschi
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milan, Italy
| | - Raoul Manenti
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milan, Italy
| | - Wilfried Thuiller
- Laboratoire d'Écologie Alpine (LECA), Université Grenoble Alpes, University of Savoie Mont Blanc, CNRS, Grenoble, France
| | - Gentile Francesco Ficetola
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milan, Italy
- Laboratoire d'Écologie Alpine (LECA), Université Grenoble Alpes, University of Savoie Mont Blanc, CNRS, Grenoble, France
| |
Collapse
|
12
|
Environmental stress shapes life-history variation in the swelled-vented frog (Feirana quadranus). Evol Ecol 2019. [DOI: 10.1007/s10682-019-09980-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
McEntire KD, Maerz JC. Integrating Ecophysiological and Agent-Based Models to Simulate How Behavior Moderates Salamander Sensitivity to Climate. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
14
|
Bonett RM, Phillips JG, Ledbetter NM, Martin SD, Lehman L. Rapid phenotypic evolution following shifts in life cycle complexity. Proc Biol Sci 2019; 285:rspb.2017.2304. [PMID: 29343600 DOI: 10.1098/rspb.2017.2304] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 12/11/2017] [Indexed: 01/18/2023] Open
Abstract
Life cycle strategies have evolved extensively throughout the history of metazoans. The expression of disparate life stages within a single ontogeny can present conflicts to trait evolution, and therefore may have played a major role in shaping metazoan forms. However, few studies have examined the consequences of adding or subtracting life stages on patterns of trait evolution. By analysing trait evolution in a clade of closely related salamander lineages we show that shifts in the number of life cycle stages are associated with rapid phenotypic evolution. Specifically, salamanders with an aquatic-only (paedomorphic) life cycle have frequently added vertebrae to their trunk skeleton compared with closely related lineages with a complex aquatic-to-terrestrial (biphasic) life cycle. The rate of vertebral column evolution is also substantially lower in biphasic lineages, which may reflect the functional compromise of a complex cycle. This study demonstrates that the consequences of life cycle evolution can be detected at very fine scales of divergence. Rapid evolutionary responses can result from shifts in selective regimes following changes in life cycle complexity.
Collapse
Affiliation(s)
- Ronald M Bonett
- Department of Biological Science, University of Tulsa, Tulsa, OK 74104, USA
| | - John G Phillips
- Department of Biological Science, University of Tulsa, Tulsa, OK 74104, USA
| | | | - Samuel D Martin
- Department of Biological Science, University of Tulsa, Tulsa, OK 74104, USA
| | - Luke Lehman
- Department of Biological Science, University of Tulsa, Tulsa, OK 74104, USA
| |
Collapse
|
15
|
Baar Y, Friedman ALL, Meiri S, Scharf I. Little effect of climate change on body size of herbivorous beetles. INSECT SCIENCE 2018; 25:309-316. [PMID: 28028893 DOI: 10.1111/1744-7917.12420] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 10/08/2016] [Accepted: 11/01/2016] [Indexed: 06/06/2023]
Abstract
Ongoing climate change affects various aspects of an animal's life, with important effects on distribution range and phenology. The relationship between global warming and body size changes in mammals and birds has been widely studied, with most findings indicating a decline in body size over time. Nevertheless, little data exist on similar size change patterns of invertebrates in general and insects in particular, and it is unclear whether insects should decrease in size or not with climate warming. We measured over 4000 beetle specimens, belonging to 29 beetle species in 8 families, collected in Israel during the last 100 years. The sampled species are all herbivorous. We examined whether beetle body size had changed over the years, while also investigating the relationships between body size and annual temperature, precipitation, net primary productivity (NPP) at the collection site and collection month. None of the environmental variables, including the collection year, was correlated with the size of most of the studied beetle species, while there were strong interactions of all variables with species. Our results, though mostly negative, suggest that the effect of climate change on insect body size is species-specific and by no means a general macro-ecological rule. They also suggest that the intrapopulation variance in body size of insects collected as adults in the field is large enough to conceal intersite environmental effects on body size, such as the effect of temperature and NPP.
Collapse
Affiliation(s)
- Yuval Baar
- Department of Zoology, Faculty of Life Sciences & Steinhardt Museum of Natural History and National Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Ariel Leib Leonid Friedman
- Department of Zoology, Faculty of Life Sciences & Steinhardt Museum of Natural History and National Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Shai Meiri
- Department of Zoology, Faculty of Life Sciences & Steinhardt Museum of Natural History and National Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Inon Scharf
- Department of Zoology, Faculty of Life Sciences & Steinhardt Museum of Natural History and National Research Center, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
16
|
Xing S, Cheng W, Nakamura A, Tang CC, Huang S, Odell E, Goodale E, Goodale UM, Bonebrake TC. Elevational clines in morphological traits of subtropical and tropical butterfly assemblages. Biol J Linn Soc Lond 2018. [DOI: 10.1093/biolinnean/blx159] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Shuang Xing
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Wenda Cheng
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Akihiro Nakamura
- Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yunnan, China
| | - Chin Cheung Tang
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Shuyin Huang
- Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yunnan, China
| | - Erica Odell
- Griffith School of the Environment & Environmental Futures Research Institute, Griffith University, Nathan, Australia
| | - Eben Goodale
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi, China
| | - Uromi M Goodale
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi, China
| | - Timothy C Bonebrake
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
17
|
Translating MC2 DGVM Results into Ecosystem Services for Climate Change Mitigation and Adaptation. CLIMATE 2017. [DOI: 10.3390/cli6010001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
18
|
Evidence for complex life cycle constraints on salamander body form diversification. Proc Natl Acad Sci U S A 2017; 114:9936-9941. [PMID: 28851828 DOI: 10.1073/pnas.1703877114] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Metazoans display a tremendous diversity of developmental patterns, including complex life cycles composed of morphologically disparate stages. In this regard, the evolution of life cycle complexity promotes phenotypic diversity. However, correlations between life cycle stages can constrain the evolution of some structures and functions. Despite the potential macroevolutionary consequences, few studies have tested the impacts of life cycle evolution on broad-scale patterns of trait diversification. Here we show that larval and adult salamanders with a simple, aquatic-only (paedomorphic) life cycle had an increased rate of vertebral column and body form diversification compared to lineages with a complex, aquatic-terrestrial (biphasic) life cycle. These differences in life cycle complexity explain the variations in vertebral number and adult body form better than larval ecology. In addition, we found that lineages with a simple terrestrial-only (direct developing) life cycle also had a higher rate of adult body form evolution than biphasic lineages, but still 10-fold lower than aquatic-only lineages. Our analyses demonstrate that prominent shifts in phenotypic evolution can follow long-term transitions in life cycle complexity, which may reflect underlying stage-dependent constraints.
Collapse
|
19
|
Brambilla M, Caprio E, Assandri G, Scridel D, Bassi E, Bionda R, Celada C, Falco R, Bogliani G, Pedrini P, Rolando A, Chamberlain D. A spatially explicit definition of conservation priorities according to population resistance and resilience, species importance and level of threat in a changing climate. DIVERS DISTRIB 2017. [DOI: 10.1111/ddi.12572] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
- Mattia Brambilla
- Museo delle Scienze, Sezione Zoologia dei Vertebrati; Corso della Scienza e del Lavoro; Trento Italy
- Fondazione Lombardia per l'Ambiente; Settore Biodiversità e Aree protette; Seveso Italy
| | - Enrico Caprio
- Dipartimento di Scienze della Vita e Biologia dei Sistemi; Università di Torino; Torino Italy
| | - Giacomo Assandri
- Museo delle Scienze, Sezione Zoologia dei Vertebrati; Corso della Scienza e del Lavoro; Trento Italy
- Dipartimento di Scienze della Terra e dell'Ambiente; Università degli Studi di Pavia; Pavia Italy
| | - Davide Scridel
- Museo delle Scienze, Sezione Zoologia dei Vertebrati; Corso della Scienza e del Lavoro; Trento Italy
- Dipartimento di Scienze della Terra e dell'Ambiente; Università degli Studi di Pavia; Pavia Italy
| | - Enrico Bassi
- Parco Nazionale dello Stelvio; Ufficio Faunistico; Bormio Italy
| | - Radames Bionda
- Parco Naturale Alpe Veglia e Devero - Alta Valle Antrona; Varzo Italy
| | - Claudio Celada
- Lega Italiana Protezione Uccelli (LIPU/BirdLife Italia); Parma Italy
| | - Riccardo Falco
- Fondazione Lombardia per l'Ambiente; Settore Biodiversità e Aree protette; Seveso Italy
| | - Giuseppe Bogliani
- Dipartimento di Scienze della Terra e dell'Ambiente; Università degli Studi di Pavia; Pavia Italy
| | - Paolo Pedrini
- Museo delle Scienze, Sezione Zoologia dei Vertebrati; Corso della Scienza e del Lavoro; Trento Italy
| | - Antonio Rolando
- Dipartimento di Scienze della Vita e Biologia dei Sistemi; Università di Torino; Torino Italy
| | - Dan Chamberlain
- Dipartimento di Scienze della Vita e Biologia dei Sistemi; Università di Torino; Torino Italy
| |
Collapse
|