1
|
Xue S, Guo X, He Y, Cai H, Li J, Zhu L, Ye C. Effects of future climate and land use changes on runoff in tropical regions of China. Sci Rep 2024; 14:30922. [PMID: 39730619 DOI: 10.1038/s41598-024-81754-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 11/28/2024] [Indexed: 12/29/2024] Open
Abstract
Climate change and human activities are the primary drivers influencing changes in runoff dynamics. However, current understanding of future hydrological processes under scenarios of gradual climate change and escalating human activities remains uncertain, particularly in tropical regions affected by deforestation. Based on this, we employed the SWAT model coupled with the near future (2021-2040) and middle future (2041-2060) global climate models (GCMs) under four shared socioeconomic pathways (SSP1-2.6 (SSP1 + RCP2.6), SSP2-4.5 (SSP2 + RCP4.5), SSP3-7.0 (SSP3 + RCP7.0), and SSP5-8.5 (SSP5 + RCP8.5)) from the CMIP6 and the CA-Markov model to evaluate the runoff response to future environmental changes in the Dingan River Basin (DRB). The quantification of the impacts of climate change and land use change on future runoff changes was conducted. The results revealed a non-significant increasing trend in precipitation during the historical period (1999-2018). Furthermore, all three future scenarios (SSP1-2.6, SSP3-7.0, and SSP5-8.5) exhibited an upward trend in precipitation from 2021 to 2060. Notably, the SSP5-8.5 scenario demonstrated a highly significant increase (P < 0.01), while the SSP2-4.5 scenario displayed a non-significant decreasing trend. The future precipitation pattern exhibits a decrease during spring and winter, while showing an increase in summer and autumn. The temperature exhibited a significant increase (P < 0.05) across the four future scenarios, with amplitudes of 0.24 °C/(10 years), 0.36 °C/(10 years), 0.36 °C/(10 years), and 0.50 °C/(10 years) for SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 respectively. The future trend of land use change entails a continuous increase in cultivated land and a corresponding decrease in artificial forest land. By 2032, the area of cultivated land is projected to witness a growth of 4.10%, while artificial forest coverage will experience a decline of 4.45%. Furthermore, by 2046, the extent of cultivated land is anticipated to expand by 4.41%, accompanied by a reduction in artificial forest cover amounting to 5.39%. The average annual runoff during the historical period was 53.35 m³/s, and the Mann-Kendall (MK) trend test showed that it exhibited a non-significant increasing trend. Compared with the historical period, the comprehensive impact of climate change and land use will cause changes in the runoff by 0.49%, 1.98%, - 3.13%, and 3.65% for the scenarios of SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 in the near future, and - 3.24%, 1.30%, - 3.75% and 18.24% in the middle future respectively. The intra-annual variations in future runoff suggest an earlier peak and a more concentrated distribution of runoff during the wet season (May to October). Compared to historical periods, the total runoff in the wet season under SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 scenarios increased by 6.53%, 8.91%, 7.17%, and 7.39%, respectively. The research findings offer significant insights into the future hydrological processes in tropical regions, while also serving as a valuable reference for watershed water resource management and disaster control.
Collapse
Affiliation(s)
- Shiyu Xue
- School of Ecology, Hainan University, Haikou, 570228, China
| | - Xiaohui Guo
- School of Ecology, Hainan University, Haikou, 570228, China
| | - Yanhu He
- Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Hao Cai
- School of Ecology, Hainan University, Haikou, 570228, China
| | - Jun Li
- School of Ecology, Hainan University, Haikou, 570228, China
| | - Lirong Zhu
- School of Tourism, Hainan University, Haikou, 570228, China
| | - Changqing Ye
- School of Ecology, Hainan University, Haikou, 570228, China.
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Haikou, 570228, China.
| |
Collapse
|
2
|
Francis Justine M, Kaiwen P, Tadesse Z, Hongyan Z, Lin Z. Cooling has stimulated soil carbon storage in forest ecosystems. ENVIRONMENTAL RESEARCH 2024; 245:118012. [PMID: 38154564 DOI: 10.1016/j.envres.2023.118012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/14/2023] [Accepted: 12/21/2023] [Indexed: 12/30/2023]
Abstract
The interactive effect of soil cooling and nitrogen (N) addition can accurately simulate climatic and anthropogenic effects on terrestrial and other land-based ecosystems, but direct empirical measurements on the effects of cooling and N addition on soil carbon (C) and N are lacking. Hence, transplanting soils into colder regions was used to evaluate the effects of cooling and N addition on soil C and N. We used PVCs of 30 cm in height and 8 cm in diameter to extract soil samples. Soil C and N were significantly (P < 0.05) increased by transplanting soils into colder regions. In contrast, cooling has insignificantly (P > 0.05) increased the soil dissolved organic C (DOC) and dissolved organic (DON), but the effect was negatively significant on soil pH compared to the C/N ratio. Similarly, N addition significantly increased the measured soil N stock. However, the effect was negatively significant on soil pH (P < 0.05) compared to the C/N ratio (P > 0.05). Nevertheless, the interaction of cooling and N addition did not affect the soil C and N storage. A similar effect was observed on the soil DOC and DON. The results presented here illustrate that transplanting soils into colder regions and N deposition has perfectly simulated the effects of climate-forcing factors on soil C and N storage in terrestrial and other land-based ecosystems. Accordingly, this study suggests that low temperatures have stimulated the accumulation of the measured soil organic and dissolved properties, but the effect is less consequential when low temperature interacts with N addition in high-elevation areas where ecosystem structures and functions are limited by temperature and may serve as a baseline for future research on land feedbacks to the climate system.
Collapse
Affiliation(s)
- Meta Francis Justine
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration of Biodiversity Conservation, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China; International College, University of Chinese Academy of Sciences, Beijing, 100049, China; Ministry of Environment and Forestry, Juba, South Sudan
| | - Pan Kaiwen
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration of Biodiversity Conservation, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Zebene Tadesse
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration of Biodiversity Conservation, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China; International College, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhou Hongyan
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration of Biodiversity Conservation, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China; International College, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhang Lin
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration of Biodiversity Conservation, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
| |
Collapse
|
3
|
Liu X, Lie Z, Reich PB, Zhou G, Yan J, Huang W, Wang Y, Peñuelas J, Tissue DT, Zhao M, Wu T, Wu D, Xu W, Li Y, Tang X, Zhou S, Meng Z, Liu S, Chu G, Zhang D, Zhang Q, He X, Liu J. Long-term warming increased carbon sequestration capacity in a humid subtropical forest. GLOBAL CHANGE BIOLOGY 2024; 30:e17072. [PMID: 38273547 DOI: 10.1111/gcb.17072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/03/2023] [Accepted: 11/09/2023] [Indexed: 01/27/2024]
Abstract
Tropical and subtropical forests play a crucial role in global carbon (C) pools, and their responses to warming can significantly impact C-climate feedback and predictions of future global warming. Despite earth system models projecting reductions in land C storage with warming, the magnitude of this response varies greatly between models, particularly in tropical and subtropical regions. Here, we conducted a field ecosystem-level warming experiment in a subtropical forest in southern China, by translocating mesocosms (ecosystem composed of soils and plants) across 600 m elevation gradients with temperature gradients of 2.1°C (moderate warming), to explore the response of ecosystem C dynamics of the subtropical forest to continuous 6-year warming. Compared with the control, the ecosystem C stock decreased by 3.8% under the first year of 2.1°C warming; but increased by 13.4% by the sixth year of 2.1°C warming. The increased ecosystem C stock by the sixth year of warming was mainly attributed to a combination of sustained increased plant C stock due to the maintenance of a high plant growth rate and unchanged soil C stock. The unchanged soil C stock was driven by compensating and offsetting thermal adaptation of soil microorganisms (unresponsive soil respiration and enzyme activity, and more stable microbial community), increased plant C input, and inhibitory C loss (decreased C leaching and inhibited temperature sensitivity of soil respiration) from soil drying. These results suggest that the humid subtropical forest C pool would not necessarily diminish consistently under future long-term warming. We highlight that differential and asynchronous responses of plant and soil C processes over relatively long-term periods should be considered when predicting the effects of climate warming on ecosystem C dynamics of subtropical forests.
Collapse
Affiliation(s)
- Xujun Liu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Zhiyang Lie
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Peter B Reich
- Institute for Global Change Biology and School for Environment and Sustainability, University of Michigan, Ann Arbor, Michigan, USA
| | - Guoyi Zhou
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Junhua Yan
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Wenjuan Huang
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, USA
- School of Integrative Plant Science, Cornell University, Ithaca, New York, USA
| | - Yingping Wang
- CSIRO Oceans and Atmosphere, Aspendale, Victoria, Australia
| | - Josep Peñuelas
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Catalonia, Spain
- CREAF, Barcelona, Catalonia, Spain
| | - David T Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Mengdi Zhao
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Ting Wu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Donghai Wu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Wenfang Xu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Yuelin Li
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Xuli Tang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Shuyidan Zhou
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Ze Meng
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Shizhong Liu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Guowei Chu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Deqiang Zhang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Qianmei Zhang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Xinhua He
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- School of Biological Sciences, University of Western Australia, Perth, Western Australia, Australia
- Department of Land, Air and Water Resources, University of California at Davis, Davis, California, USA
| | - Juxiu Liu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
4
|
Ngaba MJY, Uwiragiye Y, Bol R, de Vries W, Jian J, Zhou J. Global cross-biome patterns of soil respiration responses to individual and interactive effects of nitrogen addition, altered precipitation, and warming. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159808. [PMID: 36341851 DOI: 10.1016/j.scitotenv.2022.159808] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/12/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Anthropogenic activities have increased atmospheric N, precipitation, and temperature events in terrestrial ecosystems globally, with N deposition increasing by 3- to 5-fold during the previous century. Despite decades of scientific research, no consensus has been achieved on the impact of climate conditions on soil respiration (Rs). Here, we reconstructed 110 published studies across diverse biomes, magnitudes, and driving variables to evaluate how Rs responds to N addition, altered precipitation (both enhanced and reduced precipitation or precipitation changes), and warming. Our findings show that N addition significantly increased Rs by 44 % in forests and decreased it by 19 % and 26 % in croplands and grasslands, respectively (P < 0.05). In forests and croplands, altered precipitation significantly increased Rs by 51 % and 17 % (all, P < 0.05), respectively, whereas impacts on grassland were insignificant. In comparison, warming stimulated Rs by 62 % in forests but inhibited it by 10 % in croplands (all, P < 0.05), whereas impacts on grassland were again insignificant. In addition, across all biomes, the responses of Rs to altered precipitation and warming followed a Gaussian response, increasing up to a threshold of 1800 mm and 25 °C, respectively, above which respiration rates decreased with further increases in precipitation and temperature. Our work suggests that the dual interaction of warming × altered precipitation promotes belowground CO2 emission, thus enhancing global warming. In general, the interactive effect of N addition × altered precipitation decreases Rs. Soil moisture was identified as a primary driver of Rs. Given these findings, we recommend future research on warming vs. changed precipitation to better forecast and understand the interaction between Rs and climate change.
Collapse
Affiliation(s)
- Mbezele Junior Yannick Ngaba
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, China; Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Yves Uwiragiye
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, China; Faculty of Agriculture, Environmental management and Renewable Energy, University of Technology and Arts of Byumba, Rwanda
| | - Roland Bol
- Institute of Bio- and Geosciences, Agrosphere (IBG-3), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; School of Natural Sciences, Environment Centre Wales, Bangor University, Bangor, United Kingdom
| | - Wim de Vries
- Alterra, Wageningen University and Research Centre, P.O. Box 47, 6700 AA Wageningen, the Netherlands
| | - Jinshi Jian
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, China; Institute of Soil and Water Conservation, Chinese Academy of Sciences & Ministry of Water Resources, 26 Xinong Road, Xianyang 712100, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianbin Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, China.
| |
Collapse
|
5
|
Zhang K, Yan Z, Li M, Kang E, Li Y, Yan L, Zhang X, Wang J, Kang X. Divergent responses of CO 2 and CH 4 fluxes to changes in the precipitation regime on the Tibetan Plateau: Evidence from soil enzyme activities and microbial communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 801:149604. [PMID: 34467923 DOI: 10.1016/j.scitotenv.2021.149604] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/14/2021] [Accepted: 08/08/2021] [Indexed: 06/13/2023]
Abstract
Carbon fluxes (CO2 and CH4) are important indicators of the response of alpine meadow ecosystems to global climate change. Alpine meadows on the Qinghai-Tibet Plateau are sensitive to climate change. Although the temporal allocation of precipitation can vary, its intensity is expected to increase, and its frequency is expected to decrease in the future. In this study, a manipulative field experiment was conducted to investigate how carbon fluxes are altered in response to moderate and severe changes in the precipitation regime. Fluctuations in CH4 flux were large under a severely altered precipitation regime (range of -0.048-0.038 mg m-2 h-1). Severe changes in the precipitation regime significantly reduced soil CH4 uptake by approximately 54.3%. This was probably affected by the decrease in the dissolved organic carbon concentration and changes in the microbial community (mainly Gammaproteobacteria), which were induced by variation in soil water conditions under various precipitation regimes. Under moderate changes in the precipitation regime, the average value of CO2 fluxes (ecosystem respiration) was 698.21 ± 35.19 mg m-2 h-1, which was significantly decreased by 20.7% compared with the control. This likely stems from the suppression of enzyme activity (particularly α-1,4-glucosidase and β-1,4-glucosidase) and the alteration of microbial community structure in this treatment, which led to a decrease in organic matter breakdown and a reduction in the release of CO2 to the atmosphere. However, CO2 fluxes were slightly (i.e., not significantly) decreased under the severely altered precipitation regime. Such different responses of CO2 flux are probably driven by differences in microbial strategies. This study not only increases our understanding of the mechanisms underlying the adaptation of alpine meadow ecosystems to global climate change but also provides new insight into the carbon source/sink functions of alpine meadows.
Collapse
Affiliation(s)
- Kerou Zhang
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing 100091, China; Beijing Key Laboratory of Wetland Services and Restoration, Beijing 100091, China; Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, 624500, Sichuan, China
| | - Zhongqing Yan
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing 100091, China; Beijing Key Laboratory of Wetland Services and Restoration, Beijing 100091, China; Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, 624500, Sichuan, China
| | - Meng Li
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing 100091, China; Beijing Key Laboratory of Wetland Services and Restoration, Beijing 100091, China; Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, 624500, Sichuan, China
| | - Enze Kang
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing 100091, China; Beijing Key Laboratory of Wetland Services and Restoration, Beijing 100091, China; Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, 624500, Sichuan, China
| | - Yong Li
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing 100091, China; Beijing Key Laboratory of Wetland Services and Restoration, Beijing 100091, China; Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, 624500, Sichuan, China
| | - Liang Yan
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing 100091, China; Beijing Key Laboratory of Wetland Services and Restoration, Beijing 100091, China; Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, 624500, Sichuan, China
| | - Xiaodong Zhang
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing 100091, China; Beijing Key Laboratory of Wetland Services and Restoration, Beijing 100091, China; Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, 624500, Sichuan, China
| | - Jinzhi Wang
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing 100091, China; Beijing Key Laboratory of Wetland Services and Restoration, Beijing 100091, China; Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, 624500, Sichuan, China
| | - Xiaoming Kang
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing 100091, China; Beijing Key Laboratory of Wetland Services and Restoration, Beijing 100091, China; Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, 624500, Sichuan, China.
| |
Collapse
|
6
|
Wang B, Chen Y, Li Y, Zhang H, Yue K, Wang X, Ma Y, Chen J, Sun M, Chen Z, Wu Q. Differential effects of altered precipitation regimes on soil carbon cycles in arid versus humid terrestrial ecosystems. GLOBAL CHANGE BIOLOGY 2021; 27:6348-6362. [PMID: 34478579 DOI: 10.1111/gcb.15875] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/25/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
Changes in precipitation regimes have significant effects on soil carbon (C) cycles; however, these effects may vary in arid versus humid areas. Additionally, the corresponding details of soil C cycles in response to altered precipitation regimes have not been well documented. Here, a meta-analysis was performed using 845 pairwise observations (control vs. increased or decreased precipitation) from 214 published articles to quantify the responses of the input process of exogenous C, the contents of various forms of C in soil, and the soil-atmosphere C fluxes relative to increased or decreased precipitation. The results showed that the effects of altered precipitation regimes did not differ between rainfall and snowfall. Increased precipitation significantly enhanced the soil C inputs, pools and outputs by 18.17%, 18.50%, and 21.04%, respectively, while decreased precipitation led to a significant decline in these soil C parameters by 10.18%, 9.96%, and 17.98%, respectively. The effects of increased precipitation on soil C cycles were more significant in arid areas (where mean annual precipitation, MAP <500 mm), but the effects of decreased precipitation were more significant in humid areas (where MAP ≥500 mm), indicating that the original MAP partially determined the responses of the soil C cycles to altered precipitation regimes. This study implies that for the same of precipitation variation, soil C cycles respond at different magnitudes: not only should the direction (decrease vs. increase) be counted but also the region (arid vs. humid) should be considered. These results deepened our understanding on regional differentiation in soil C cycles under climate change scenarios.
Collapse
Affiliation(s)
- Bin Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Yali Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Yan Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Hui Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Kai Yue
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, China
| | - Xingchang Wang
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin, China
| | - Yuandan Ma
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Jian Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Meng Sun
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Zhuo Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Qiqian Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
7
|
Precipitation Pattern Regulates Soil Carbon Flux Responses to Nitrogen Addition in a Temperate Forest. Ecosystems 2021. [DOI: 10.1007/s10021-021-00606-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
8
|
Wei H, Chen X, Kong M, He J, Shen W. Three-year-period nitrogen additions did not alter soil organic carbon content and lability in soil aggregates in a tropical forest. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:37793-37803. [PMID: 33723778 DOI: 10.1007/s11356-021-13466-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/11/2021] [Indexed: 06/12/2023]
Abstract
Soil immobilizes a considerable proportion of carbon (C) as organic matter in terrestrial ecosystems and is thus critical to stabilize the global climate system. Atmospheric nitrogen (N) deposition could influence soil C storage and stabilization, but how N deposition changes soil organic C (SOC) fractions and lability remains elusive. We investigated the effects of 3-year-period N inputs on SOC fractions and lability along three soil depths (0-10, 10-20, and 20-40 cm) in a tropical forest of southern China. Results showed that N additions did not significantly change contents of SOC fractions and the C lability, either in bulk or aggregate-based soils at any of the three depths, and it showed no significant interaction with soil aggregate or soil depth. The SOC content was 43.7 ± 1.5, 18.2 ± 1.0, and 10.7 ± 0.4 mg g-1 at the three soil layers downwards, with the non-readily oxidizable SOC (NROC) contributing over 70% while the remaining SOC consisting of readily oxidizable SOC at each soil layer. Moreover, contents of SOC and NROC were consistently higher in small soil aggregates, but the C decrement with increasing size of soil aggregates declined along soil profile downwards. This scenario suggests that physical protection of the small soil aggregate is limited, but its greater specific surface area could obviously contribute to the SOC pattern among soil aggregates. These results indicate that the highly developed forests could be resistant to short-term N deposition, even with a high load, to maintain its SOC stabilization.
Collapse
Affiliation(s)
- Hui Wei
- College of Natural Resources and Environment, and Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| | - Xiaomei Chen
- School of Geography and Remote Sensing, Guangzhou University, Guangzhou, 510006, China
| | - Mimi Kong
- College of Natural Resources and Environment, and Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Jinhong He
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Weijun Shen
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| |
Collapse
|
9
|
Bai T, Wang P, Hall SJ, Wang F, Ye C, Li Z, Li S, Zhou L, Qiu Y, Guo J, Guo H, Wang Y, Hu S. Interactive global change factors mitigate soil aggregation and carbon change in a semi-arid grassland. GLOBAL CHANGE BIOLOGY 2020; 26:5320-5332. [PMID: 32533721 DOI: 10.1111/gcb.15220] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 05/18/2020] [Indexed: 06/11/2023]
Abstract
The ongoing global change is multi-faceted, but the interactive effects of multiple drivers on the persistence of soil carbon (C) are poorly understood. We examined the effects of warming, reactive nitrogen (N) inputs (12 g N m-2 year-1 ) and altered precipitation (+ or - 30% ambient) on soil aggregates and mineral-associated C in a 4 year manipulation experiment with a semi-arid grassland on China's Loess Plateau. Our results showed that in the absence of N inputs, precipitation additions significantly enhanced soil aggregation and promoted the coupling between aggregation and both soil fungal biomass and exchangeable Mg2+ . However, N inputs negated the promotional effects of increased precipitation, mainly through suppressing fungal growth and altering soil pH and clay-Mg2+ -OC bridging. Warming increased C content in the mineral-associated fraction, likely by increasing inputs of root-derived C, and reducing turnover of existing mineral-associated C due to suppression of fungal growth and soil respiration. Together, our results provide new insights into the potential mechanisms through which multiple global change factors control soil C persistence in arid and semi-arid grasslands. These findings suggest that the interactive effects among global change factors should be incorporated to predict the soil C dynamics under future global change scenarios.
Collapse
Affiliation(s)
- Tongshuo Bai
- Ecosystem Ecology Laboratory, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Peng Wang
- Ecosystem Ecology Laboratory, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Steven J Hall
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Fuwei Wang
- Ecosystem Ecology Laboratory, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Chenglong Ye
- Ecosystem Ecology Laboratory, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Zhen Li
- Ecosystem Ecology Laboratory, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Shijie Li
- Ecosystem Ecology Laboratory, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Luyao Zhou
- Ecosystem Ecology Laboratory, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yunpeng Qiu
- Ecosystem Ecology Laboratory, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jiuxin Guo
- Ecosystem Ecology Laboratory, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
- International Magnesium Institute, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hui Guo
- Ecosystem Ecology Laboratory, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yi Wang
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
| | - Shuijin Hu
- Ecosystem Ecology Laboratory, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
- Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
10
|
Dietzen CA, Larsen KS, Ambus PL, Michelsen A, Arndal MF, Beier C, Reinsch S, Schmidt IK. Accumulation of soil carbon under elevated CO 2 unaffected by warming and drought. GLOBAL CHANGE BIOLOGY 2019; 25:2970-2977. [PMID: 31095816 DOI: 10.1111/gcb.14699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/22/2019] [Accepted: 05/08/2019] [Indexed: 06/09/2023]
Abstract
Elevated atmospheric CO2 concentration and climate change may substantially alter soil carbon (C) dynamics, which in turn may impact future climate through feedback cycles. However, only very few field experiments worldwide have combined elevated CO2 (eCO2 ) with both warming and changes in precipitation in order to study the potential combined effects of changes in these fundamental drivers of C cycling in ecosystems. We exposed a temperate heath/grassland to eCO2 , warming, and drought, in all combinations for 8 years. At the end of the study, soil C stocks were on average 0.927 kg C/m2 higher across all treatment combinations with eCO2 compared to ambient CO2 treatments (equal to an increase of 0.120 ± 0.043 kg C m-2 year-1 ), and showed no sign of slowed accumulation over time. However, if observed pretreatment differences in soil C are taken into account, the annual rate of increase caused by eCO2 may be as high as 0.177 ± 0.070 kg C m-2 year-1 . Furthermore, the response to eCO2 was not affected by simultaneous exposure to warming and drought. The robust increase in soil C under eCO2 observed here, even when combined with other climate change factors, suggests that there is continued and strong potential for enhanced soil carbon sequestration in some ecosystems to mitigate increasing atmospheric CO2 concentrations under future climate conditions. The feedback between land C and climate remains one of the largest sources of uncertainty in future climate projections, yet experimental data under simulated future climate, and especially including combined changes, are still scarce. Globally coordinated and distributed experiments with long-term measurements of changes in soil C in response to the three major climate change-related global changes, eCO2 , warming, and changes in precipitation patterns, are, therefore, urgently needed.
Collapse
Affiliation(s)
- Christiana A Dietzen
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg C, Denmark
- School of Environmental and Forest Sciences, University of Washington, Seattle, Washington
| | - Klaus Steenberg Larsen
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg C, Denmark
| | - Per L Ambus
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen K, Denmark
| | - Anders Michelsen
- Department of Biology, University of Copenhagen, Copenhagen Ø, Denmark
| | - Marie Frost Arndal
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg C, Denmark
| | - Claus Beier
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg C, Denmark
| | - Sabine Reinsch
- Centre for Ecology & Hydrology, Environment Centre Wales, Bangor, UK
| | - Inger Kappel Schmidt
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
11
|
Eze S, Palmer SM, Chapman PJ. Negative effects of climate change on upland grassland productivity and carbon fluxes are not attenuated by nitrogen status. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 637-638:398-407. [PMID: 29753228 DOI: 10.1016/j.scitotenv.2018.05.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/02/2018] [Accepted: 05/03/2018] [Indexed: 06/08/2023]
Abstract
Effects of climate change on managed grassland carbon (C) fluxes and biomass production are not well understood. In this study, we investigated the individual and interactive effects of experimental warming (+3 °C above ambient summer daily range of 9-12 °C), supplemental precipitation (333 mm +15%) and drought (333 mm -23%) on plant biomass, microbial biomass C (MBC), net ecosystem exchange (NEE) and dissolved organic C (DOC) flux in soil cores from two upland grasslands of different soil nitrogen (N) status (0.54% and 0.37%) in the UK. After one month of acclimation to ambient summer temperature and precipitation, five replicate cores of each treatment were subjected to three months of experimental warming, drought and supplemental precipitation, based on the projected regional summer climate by the end of the 21st Century, in a fully factorial design. NEE and DOC flux were measured throughout the experimental duration, alongside other environmental variables including soil temperature and moisture. Plant biomass and MBC were determined at the end of the experiment. Results showed that warming plus drought resulted in a significant decline in belowground plant biomass (-29 to -37%), aboveground plant biomass (-35 to -77%) and NEE (-13 to -29%), regardless of the N status of the soil. Supplemental precipitation could not reverse the negative effects of warming on the net ecosystem C uptake and plant biomass production. This was attributed to physiological stress imposed by warming which suggests that future summer climate will reduce the C sink capacity of the grasslands. Due to the low moisture retention observed in this study, and to verify our findings, it is recommended that future experiments aimed at measuring soil C dynamics under climate change should be carried out under field conditions. Longer term experiments are recommended to account for seasonal and annual variability, and adaptive changes in biota.
Collapse
Affiliation(s)
- Samuel Eze
- School of Geography, Faculty of Environment, University of Leeds, LS2 9JT Leeds, UK.
| | - Sheila M Palmer
- School of Geography, Faculty of Environment, University of Leeds, LS2 9JT Leeds, UK.
| | - Pippa J Chapman
- School of Geography, Faculty of Environment, University of Leeds, LS2 9JT Leeds, UK.
| |
Collapse
|