1
|
Martinossi‐Allibert I, Wacker S, Aparicio Estalella C, Kvarnemo C, Amundsen T. A test of operational sex ratio theory across latitudes reveals temporal variation in sex-specific behavioural reaction norms. J Anim Ecol 2025; 94:642-656. [PMID: 39967037 PMCID: PMC11962243 DOI: 10.1111/1365-2656.14250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/13/2025] [Indexed: 02/20/2025]
Abstract
Predicting the strength and direction of sexual selection is a challenge, as the effects of ecological factors, social environment and behavioural plasticity all need to be considered. The operational sex ratio (OSR) is a key variable, which has been shown to (i) affect the strength and direction of mating competition, as a social environment cue, and (ii) be affected itself by ecological conditions through sex-specific environmental effects. Gaining a global view of (i) and (ii) in wild populations represents a necessary step for our understanding of sexual selection dynamics in the wild. Here, we address this challenge within the reaction norm framework. We conducted an extensive field study on the two-spotted goby Pomatoschistus flavescens, monitoring six populations along a latitudinal gradient during an entire breeding season. We compared the temporal trajectories in social environment and sexual displays across populations, which is unprecedented. Using a reaction norm framework based on OSR theory, we show that what appears to be great variation in sexual displays across populations and sampling times, follows consistent rules. Sexual display behaviour followed behavioural reaction norms in response to the social environment that were consistent across populations, but social environment fluctuations were specific to each population. Recording behaviour not only over time, but also along a latitudinal gradient where ecological conditions vary and in turn affect OSR, was necessary to reveal the relationship between social environment and sexual displays, which in turn contributes to sexual selection dynamics.
Collapse
Affiliation(s)
| | | | | | - Charlotta Kvarnemo
- Department of Biological & Environmental SciencesUniversity of GothenburgGöteborgSweden
| | - Trond Amundsen
- Department of BiologyNorwegian University of Science and Technology (NTNU)TrondheimNorway
| |
Collapse
|
2
|
Fujimoto S, Sumarto BKA, Murase I, Mokodongan DF, Myosho T, Yagi M, Ansai S, Kitano J, Takeda S, Yamahira K. Evolution of Size-Fecundity Relationship in Medaka Fish From Different Latitudes. Mol Ecol 2024; 33:e17578. [PMID: 39500716 PMCID: PMC11589666 DOI: 10.1111/mec.17578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/26/2024] [Accepted: 10/09/2024] [Indexed: 11/27/2024]
Abstract
In most fishes, the number of offspring increases with maternal body size. Although this size-fecundity relationship often varies among species as a result of the coevolution of life-history traits, the genetic basis of such size-fecundity relationships remains unclear. We explored the genetic basis underlying this size-fecundity relationship in two small medaka species, Oryzias latipes and O. sakaizumii. Our findings showed that O. sakaizumii has a higher fecundity than O. latipes, and quantitative trait locus analysis using interspecific F2 hybrids showed that chromosome 23 is linked to the size-fecundity relationship. In particular, the genes igf1 and lep-b in this region are known to be associated with life-history traits, including somatic growth, gonad maturation, and progeny numbers in various taxa. Because O. sakaizumii is distributed at higher latitudes and has a shorter spawning season than O. latipes in the wild, we propose that the relatively high fecundity observed in O. sakaizumii is an adaptation to high latitudes. We also discuss the potential ecological ramifications associated with the evolution of increased fecundity in this species.
Collapse
Affiliation(s)
- Shingo Fujimoto
- Integrated Technology CenterUniversity of the RyukyusOkinawaJapan
- Tropical Biosphere Research CenterUniversity of the RyukyusOkinawaJapan
| | | | - Iki Murase
- Tropical Biosphere Research CenterUniversity of the RyukyusOkinawaJapan
| | | | - Taijun Myosho
- Laboratory of Molecular Reproductive Biology, Institute for Environmental SciencesUniversity of ShizuokaShizuokaJapan
| | - Mitsuharu Yagi
- Graduate School of Fisheries and Environmental SciencesNagasaki UniversityNagasakiJapan
| | - Satoshi Ansai
- Department of Genomics and Evolutionary Biology, Ecological Genetics LaboratoryNational Institute of GeneticsMishimaJapan
- Ushimado Marine InstituteOkayama UniversitySetouchiJapan
| | - Jun Kitano
- Department of Genomics and Evolutionary Biology, Ecological Genetics LaboratoryNational Institute of GeneticsMishimaJapan
| | - Satoshi Takeda
- Research Center for Marine Biology, Graduate School of Life SciencesTohoku UniversityAomoriJapan
| | - Kazunori Yamahira
- Tropical Biosphere Research CenterUniversity of the RyukyusOkinawaJapan
| |
Collapse
|
3
|
Londoño-Nieto C, García-Roa R, Garcia-Co C, González P, Carazo P. Thermal phenotypic plasticity of pre- and post-copulatory male harm buffers sexual conflict in wild Drosophila melanogaster. eLife 2023; 12:e84759. [PMID: 37102499 PMCID: PMC10191624 DOI: 10.7554/elife.84759] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 04/26/2023] [Indexed: 04/28/2023] Open
Abstract
Strong sexual selection frequently leads to sexual conflict and ensuing male harm, whereby males increase their reproductive success at the expense of harming females. Male harm is a widespread evolutionary phenomenon with a strong bearing on population viability. Thus, understanding how it unfolds in the wild is a current priority. Here, we sampled a wild Drosophila melanogaster population and studied male harm across the normal range of temperatures under which it reproduces optimally in nature by comparing female lifetime reproductive success and underlying male harm mechanisms under monogamy (i.e. low male competition/harm) vs. polyandry (i.e. high male competition/harm). While females had equal lifetime reproductive success across temperatures under monogamy, polyandry resulted in a maximum decrease of female fitness at 24°C (35%), reducing its impact at both 20°C (22%), and 28°C (10%). Furthermore, female fitness components and pre- (i.e. harassment) and post-copulatory (i.e. ejaculate toxicity) mechanisms of male harm were asymmetrically affected by temperature. At 20°C, male harassment of females was reduced, and polyandry accelerated female actuarial aging. In contrast, the effect of mating on female receptivity (a component of ejaculate toxicity) was affected at 28°C, where the mating costs for females decreased and polyandry mostly resulted in accelerated reproductive aging. We thus show that, across a natural thermal range, sexual conflict processes and their effects on female fitness components are plastic and complex. As a result, the net effect of male harm on overall population viability is likely to be lower than previously surmised. We discuss how such plasticity may affect selection, adaptation and, ultimately, evolutionary rescue under a warming climate.
Collapse
Affiliation(s)
- Claudia Londoño-Nieto
- Ethology Lab, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of ValenciaValenciaSpain
| | - Roberto García-Roa
- Ethology Lab, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of ValenciaValenciaSpain
- Department of Biology, Lund UniversityLundSweden
| | - Clara Garcia-Co
- Ethology Lab, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of ValenciaValenciaSpain
| | - Paula González
- Ethology Lab, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of ValenciaValenciaSpain
| | - Pau Carazo
- Ethology Lab, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of ValenciaValenciaSpain
| |
Collapse
|
4
|
Ramos L, Antunes A. Decoding sex: Elucidating sex determination and how high-quality genome assemblies are untangling the evolutionary dynamics of sex chromosomes. Genomics 2022; 114:110277. [PMID: 35104609 DOI: 10.1016/j.ygeno.2022.110277] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 12/22/2021] [Accepted: 01/26/2022] [Indexed: 11/28/2022]
Abstract
Sexual reproduction is a diverse and widespread process. In gonochoristic species, the differentiation of sexes occurs through diverse mechanisms, influenced by environmental and genetic factors. In most vertebrates, a master-switch gene is responsible for triggering a sex determination network. However, only a few genes have acquired master-switch functions, and this process is associated with the evolution of sex-chromosomes, which have a significant influence in evolution. Additionally, their highly repetitive regions impose challenges for high-quality sequencing, even using high-throughput, state-of-the-art techniques. Here, we review the mechanisms involved in sex determination and their role in the evolution of species, particularly vertebrates, focusing on sex chromosomes and the challenges involved in sequencing these genomic elements. We also address the improvements provided by the growth of sequencing projects, by generating a massive number of near-gapless, telomere-to-telomere, chromosome-level, phased assemblies, increasing the number and quality of sex-chromosome sequences available for further studies.
Collapse
Affiliation(s)
- Luana Ramos
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal; Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Agostinho Antunes
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal; Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal.
| |
Collapse
|
5
|
Outomuro D, Golab MJ, Johansson F, Sniegula S. Body and wing size, but not wing shape, vary along a large-scale latitudinal gradient in a damselfly. Sci Rep 2021; 11:18642. [PMID: 34545136 PMCID: PMC8452623 DOI: 10.1038/s41598-021-97829-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/24/2021] [Indexed: 11/09/2022] Open
Abstract
Large-scale latitudinal studies that include both north and south edge populations and address sex differences are needed to understand how selection has shaped trait variation. We quantified the variation of flight-related morphological traits (body size, wing size, ratio between wing size and body size, and wing shape) along the whole latitudinal distribution of the damselfly Lestes sponsa, spanning over 2700 km. We tested predictions of geographic variation in the flight-related traits as a signature of: (1) stronger natural selection to improve dispersal in males and females at edge populations; (2) stronger sexual selection to improve reproduction (fecundity in females and sexual behaviors in males) at edge populations. We found that body size and wing size showed a U-shaped latitudinal pattern, while wing ratio showed the inverse shape. However, wing shape varied very little along the latitudinal gradient. We also detected sex-differences in the latitudinal patterns of variation. We discuss how latitudinal differences in natural and sexual selection regimes can lead to the observed quadratic patterns of variation in body and wing morphology via direct or indirect selection. We also discuss the lack of latitudinal variation in wing shape, possibly due to aerodynamic constraints.
Collapse
Affiliation(s)
- David Outomuro
- Department of Biological Sciences, University of Cincinnati, Rieveschl Hall, Cincinnati, OH, 45221, USA. .,Section for Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden.
| | - Maria J Golab
- Institute of Nature Conservation, Polish Academy of Sciences, Kraków, Poland
| | - Frank Johansson
- Section for Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden
| | - Szymon Sniegula
- Institute of Nature Conservation, Polish Academy of Sciences, Kraków, Poland.
| |
Collapse
|
6
|
Pilakouta N, Ålund M. Editorial: Sexual selection and environmental change: what do we know and what comes next? Curr Zool 2021; 67:293-298. [PMID: 34616921 PMCID: PMC8488989 DOI: 10.1093/cz/zoab021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2021] [Indexed: 12/02/2022] Open
Affiliation(s)
- Natalie Pilakouta
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 3FX, UK
| | - Murielle Ålund
- Department of Ecology and Genetics, Animal Ecology, Evolutionary Biology Centre (EBC), Uppsala University, Norbyvägen 18D 75236 Uppsala, Sweden
| |
Collapse
|
7
|
Mendes T, Gomes C, Monteiro N, Antunes A. Strong Sexual Selection Does Not Induce Population Differentiation in a Fish Species with High Dispersal Potential: The Curious Case of the Worm Pipefish Nerophis lumbriciformis (Teleostei: Syngnathidae). J Hered 2020; 111:585-592. [PMID: 33313855 DOI: 10.1093/jhered/esaa052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 12/05/2020] [Indexed: 11/13/2022] Open
Abstract
High levels of population differentiation are a common demographic pattern in syngnathids, even at small geographical scales. This is probably the end result of the common life history traits observed within the family, involving limited dispersal capabilities and strong habitat dependency. The worm pipefish, Nerophis lumbriciformis, which displays all these characteristics, also presents an additional variable potentially able to promote population differentiation: high sexual selection intensity, especially at the extremes of its distribution. Nevertheless, an early life pelagic stage, which presumably allows for admixture, could prevent population structuring. Here, we assessed the phylogeography of N. lumbriciformis through the amplification of the cytochrome b, 12S, and 16S rDNA mitochondrial markers as well as the rhodopsin nuclear marker, performed upon 119 individuals. We observed a genetically homogeneous population with indications of extensive gene flow. We tentatively attribute this finding to the dispersal potential of the species' pelagic larvae, supported by marine currents acting as major dispersal vectors. We also detected a signal of expansion towards the poles, consistent with the current climate change scenario. Despite the marked latitudinal differences in the phenotype of reproducing worm pipefish, the absence of clear population structuring suggests that phenotypic plasticity can have a significant role in the expression of sexual selection-related traits.
Collapse
Affiliation(s)
- Tito Mendes
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, Porto, Portugal.,Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, Porto, Portugal
| | - Cidália Gomes
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, Porto, Portugal
| | - Nuno Monteiro
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, Porto, Portugal.,CIBIO (InBio), Centro de Investigação em Biodiversidade e Recursos Genéticos, Rua Padre Armando Quintas, Vairão, Portugal.,Faculdade de Ciências da Saúde, CEBIMED, Universidade Fernando Pessoa, Rua Carlos da Maia, Porto, Portugal
| | - Agostinho Antunes
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, Porto, Portugal.,Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, Porto, Portugal
| |
Collapse
|
8
|
García-Roa R, Garcia-Gonzalez F, Noble DWA, Carazo P. Temperature as a modulator of sexual selection. Biol Rev Camb Philos Soc 2020; 95:1607-1629. [PMID: 32691483 DOI: 10.1111/brv.12632] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 06/10/2020] [Accepted: 06/12/2020] [Indexed: 12/25/2022]
Abstract
A central question in ecology and evolution is to understand why sexual selection varies so much in strength across taxa; it has long been known that ecological factors are crucial to this. Temperature is a particularly salient abiotic ecological factor that modulates a wide range of physiological, morphological and behavioural traits, impacting individuals and populations at a global taxonomic scale. Furthermore, temperature exhibits substantial temporal variation (e.g. daily, seasonally and inter-seasonally), and hence for most species in the wild sexual selection will regularly unfold in a dynamic thermal environment. Unfortunately, studies have so far almost completely neglected the role of temperature as a modulator of sexual selection. Here, we outline the main pathways through which temperature can affect the intensity and form (i.e. mechanisms) of sexual selection, via: (i) direct effects on secondary sexual traits and preferences (i.e. trait variance, opportunity for selection and trait-fitness covariance), and (ii) indirect effects on key mating parameters, sex-specific reproductive costs/benefits, trade-offs, demography and correlated abiotic factors. Building upon this framework, we show that, by focusing exclusively on the first-order effects that environmental temperature has on traits linked with individual fitness and population viability, current global warming studies may be ignoring eco-evolutionary feedbacks mediated by sexual selection. Finally, we tested the general prediction that temperature modulates sexual selection by conducting a meta-analysis of available studies experimentally manipulating temperature and reporting effects on the variance of male/female reproductive success and/or traits under sexual selection. Our results show a clear association between temperature and sexual selection measures in both sexes. In short, we suggest that studying the feedback between temperature and sexual selection processes may be vital to developing a better understanding of variation in the strength of sexual selection in nature, and its consequences for population viability in response to environmental change (e.g. global warming).
Collapse
Affiliation(s)
- Roberto García-Roa
- Behaviour and Evolution, Ethology Lab, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, C/Catedrático José Beltrán 2, Paterna, Valencia, 46980, Spain
| | - Francisco Garcia-Gonzalez
- Doñana Biological Station, Spanish Research Council CSIC, c/Americo Vespucio, 26, Isla de la Cartuja, Sevilla, 41092, Spain.,Centre for Evolutionary Biology, School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia, 6009, Australia
| | - Daniel W A Noble
- Ecology and Evolution Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, 2052, Australia.,Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, 2061, Australia
| | - Pau Carazo
- Behaviour and Evolution, Ethology Lab, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, C/Catedrático José Beltrán 2, Paterna, Valencia, 46980, Spain
| |
Collapse
|
9
|
Cunha M, Macedo N, Wilson J, Rosenqvist G, Berglund A, Monteiro N. Reduced sexual size dimorphism in a pipefish population where males do not prefer larger females. Ecol Evol 2019; 9:12826-12835. [PMID: 31788217 PMCID: PMC6875581 DOI: 10.1002/ece3.5760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/26/2019] [Accepted: 09/25/2019] [Indexed: 11/09/2022] Open
Abstract
Within a species' distribution, populations are often exposed to diverse environments and may thus experience different sources of both natural and sexual selection. These differences are likely to impact the balance between costs and benefits to individuals seeking reproduction, thus entailing evolutionary repercussions. Here, we look into an unusual population (Baltic Sea) of the broadnosed pipefish, Syngnathus typhle, where males do not seem to select females based on size and hypothesize that this pattern may derive from a reduction in direct benefits to the male. We further hypothesize that if larger females do not persistently secure a higher reproductive success, either through pre- or postcopulatory sexual selection, a decrease in sexual size dimorphism in the Baltic population should be apparent, especially when contrasted with a well-studied population, inhabiting similar latitudes (Swedish west coast), where males prefer larger females. We found that, in the Baltic population, variation in female quality is low. We were unable to find differences in abortion rates or protein concentration in oocytes produced by females of contrasting sizes. Direct benefits from mating with large partners seem, thus, reduced in the Baltic population. We also found no evidence of any postcopulatory mechanism that could favor larger mothers as embryo development was unrelated to female size. While female size can still be selected through intrasexual competition or fecundity selection, the pressure for large female body size seems to be lower in the Baltic. Accordingly, we found a noticeable decrease in sexual size dimorphism in the Baltic population. We conclude that, although far from negating the significance of other selective processes, sexual selection seems to have a decisive role in supporting pipefish sexual size asymmetries.
Collapse
Affiliation(s)
- Mário Cunha
- CIBIO/InBIOCentro de Investigação em Biodiversidade e Recursos GenéticosUniversidade do PortoVairãoPortugal
| | - Nídia Macedo
- CIBIO/InBIOCentro de Investigação em Biodiversidade e Recursos GenéticosUniversidade do PortoVairãoPortugal
| | - Jonathan Wilson
- CIIMARCentro Interdisciplinar de Investigação Marinha e AmbientalUniversidade do PortoPortoPortugal
- Wilfrid Laurier UniversityWaterlooOntarioCanada
| | - Gunilla Rosenqvist
- Department of BiologyCBD, NTNUTrondheimNorway
- Department of Earth SciencesBlue Centre GotlandUppsala UniversityUppsalaSweden
| | - Anders Berglund
- Department of Ecology and Genetics/Animal EcologyUppsala UniversityUppsalaSweden
| | - Nuno Monteiro
- CIBIO/InBIOCentro de Investigação em Biodiversidade e Recursos GenéticosUniversidade do PortoVairãoPortugal
- Departamento de BiologiaFaculdade de Ciências da Universidade do PortoPortoPortugal
- Faculdade de Ciências da SaúdeCEBIMEDUniversidade Fernando PessoaPortoPortugal
| |
Collapse
|
10
|
García‐Roa R, Chirinos V, Carazo P. The ecology of sexual conflict: Temperature variation in the social environment can drastically modulate male harm to females. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13275] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Roberto García‐Roa
- Behaviour and Evolution Group, Ethology Lab, Cavanilles Institute of Biodiversity and Evolutionary Biology University of Valencia Valencia Spain
| | - Valeria Chirinos
- Behaviour and Evolution Group, Ethology Lab, Cavanilles Institute of Biodiversity and Evolutionary Biology University of Valencia Valencia Spain
| | - Pau Carazo
- Behaviour and Evolution Group, Ethology Lab, Cavanilles Institute of Biodiversity and Evolutionary Biology University of Valencia Valencia Spain
| |
Collapse
|
11
|
Mück I, Heubel KU. Ecological variation along the salinity gradient in the Baltic Sea Area and its consequences for reproduction in the common goby. Curr Zool 2018; 64:259-270. [PMID: 30402067 PMCID: PMC5905452 DOI: 10.1093/cz/zoy006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 01/13/2018] [Indexed: 11/27/2022] Open
Abstract
Although it has become clear that sexual selection may shape mating systems and drive speciation, the potential constraints of environmental factors on processes and outcomes of sexual selection are largely unexplored. Here, we investigate the geographic variation of such environmental factors, more precisely the quality and quantity of nest resources (bivalve shells) along a salinity gradient in the Baltic Sea Area (Baltic Sea, Sounds and Belts, and Kattegat). We further test whether we find any salinity-associated morphological differences in body size between populations of common gobies Pomatoschistus microps, a small marine fish with a resource-based mating system. In a geographically expansive field study, we sampled 5 populations of P. microps occurring along the salinity gradient (decreasing from West to East) in the Baltic Sea Area over 3 consecutive years. Nest resource quantity and quality decreased from West to East, and a correlation between mussel size and male body size was detected. Population density, sex ratios, mating- and reproductive success as well as brood characteristics also differed between populations but with a less clear relation to salinity. With this field study we shed light on geographic variation of distinct environmental parameters possibly acting on population differentiation. We provide insights on relevant ecological variation, and draw attention to its importance in the framework of context-dependent plasticity of sexual selection.
Collapse
Affiliation(s)
- Isabel Mück
- Department of Biology, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Katja U Heubel
- Department of Biology, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
- Institute for Zoology, Ecological Research Station Rees, University of Cologne, Grietherbusch 3a, D-46459 Rees, Germany
- Tvärminne Zoological Station, University of Helsinki, J.A. Palménin tie 260, 10900 Hanko, Finland
| | | |
Collapse
|
12
|
Pregnant pipefish with a simple brooding surface loose less weight when carrying heavier eggs: evidence of compensation for low oocyte quality? Acta Ethol 2017. [DOI: 10.1007/s10211-017-0268-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|