1
|
Edwards JD, Kazenel MR, Luo Y, Lynn JS, McCulley RL, Souza L, Young C, Rudgers JA, Kivlin SN. Warming Disrupts Plant-Fungal Endophyte Symbiosis More Severely in Leaves Than Roots. GLOBAL CHANGE BIOLOGY 2025; 31:e70207. [PMID: 40285541 DOI: 10.1111/gcb.70207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/19/2025] [Accepted: 04/05/2025] [Indexed: 04/29/2025]
Abstract
Disruptions to functionally important symbionts with global change will negatively impact plant fitness, with broader consequences for species' abundances, distribution, and community composition. Fungal endophytes that live inside plant leaves and roots could potentially mitigate plant heat stress from global warming. Conversely, disruptions of these symbioses could exacerbate the negative impacts of warming. To better understand the consistency and strength of warming-induced changes to fungal endophytes, we examined fungal leaf and root endophytes in three grassland warming experiments in the US ranging from 2 to 25 years and spanning 2000 km, 12°C of mean annual temperature, and 600 mm of precipitation. We found that experimental warming disrupted symbiosis between plants and fungal endophytes. Colonization of plant tissues by septate fungi decreased in response to warming by 90% in plant leaves and 35% in roots. Warming also reduced fungal diversity and changed community composition in plant leaves, but not roots. The strength, but not direction, of warming effects on fungal endophytes varied by up to 75% among warming experiments. Finally, warming decoupled fungal endophytes from host metabolism by decreasing the correlation between endophyte community and host metabolome dissimilarity. These effects were strongest in the shorter-term experiment, suggesting endophyte-host metabolome function may acclimate to warming over decades. Overall, warming-driven disruption of fungal endophyte community structure and function suggests that this symbiosis may not be a reliable mechanism to promote plant resilience and ameliorate stress responses under global change.
Collapse
Affiliation(s)
- Joseph D Edwards
- Department of Ecology and Evolutionary Biology, The University of Tennessee, Knoxville, Tennessee, USA
| | - Melanie R Kazenel
- Department of Biology, The University of New Mexico, Albuquerque, New Mexico, USA
- Rocky Mountain Biological Laboratory, Crested Butte, Colorado, USA
- Department of Biology, Earlham College, Richmond, Indiana, USA
| | - Yiqi Luo
- Soil and Crop Sciences Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, USA
| | - Joshua S Lynn
- Department of Biology, The University of New Mexico, Albuquerque, New Mexico, USA
- Rocky Mountain Biological Laboratory, Crested Butte, Colorado, USA
- Department of Earth and Environmental Sciences, The University of Manchester, Manchester, UK
| | - Rebecca L McCulley
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Lara Souza
- Rocky Mountain Biological Laboratory, Crested Butte, Colorado, USA
- School of Biological Sciences, University of Oklahoma, Norman, Oklahoma, USA
| | - Carolyn Young
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, USA
| | - Jennifer A Rudgers
- Department of Biology, The University of New Mexico, Albuquerque, New Mexico, USA
- Rocky Mountain Biological Laboratory, Crested Butte, Colorado, USA
| | - Stephanie N Kivlin
- Department of Ecology and Evolutionary Biology, The University of Tennessee, Knoxville, Tennessee, USA
- Department of Biology, The University of New Mexico, Albuquerque, New Mexico, USA
- Rocky Mountain Biological Laboratory, Crested Butte, Colorado, USA
| |
Collapse
|
2
|
Hemraj DA, Carstensen J. Towards ecosystem-based techniques for tipping point detection. Biol Rev Camb Philos Soc 2025; 100:892-919. [PMID: 39564927 DOI: 10.1111/brv.13167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 11/08/2024] [Accepted: 11/08/2024] [Indexed: 11/21/2024]
Abstract
An ecosystem shifts to an alternative stable state when a threshold of accumulated pressure (i.e. direct impact of environmental change or human activities) is exceeded. Detecting this threshold in empirical data remains a challenge because ecosystems are governed by complex interlinkages and feedback loops between their components and pressures. In addition, multiple feedback mechanisms exist that can make an ecosystem resilient to state shifts. Therefore, unless a broad ecological perspective is used to detect state shifts, it remains questionable to what extent current detection methods really capture ecosystem state shifts and whether inferences made from smaller scale analyses can be implemented into ecosystem management. We reviewed the techniques currently used for retrospective detection of state shifts detection from empirical data. We show that most techniques are not suitable for taking a broad ecosystem perspective because approximately 85% do not combine intervariable non-linear relationships and high-dimensional data from multiple ecosystem variables, but rather tend to focus on one subsystem of the ecosystem. Thus, our perception of state shifts may be limited by methods that are often used on smaller data sets, unrepresentative of whole ecosystems. By reviewing the characteristics, advantages, and limitations of the current techniques, we identify methods that provide the potential to incorporate a broad ecosystem-based approach. We therefore provide perspectives into developing techniques better suited for detecting ecosystem state shifts that incorporate intervariable interactions and high-dimensionality data.
Collapse
Affiliation(s)
- Deevesh Ashley Hemraj
- Department of Ecoscience, Aarhus University, Frederiksborgvej 399, Roskilde, DK-4000, Denmark
| | - Jacob Carstensen
- Department of Ecoscience, Aarhus University, Frederiksborgvej 399, Roskilde, DK-4000, Denmark
| |
Collapse
|
3
|
Li D, Zhang Y, Yu F, Wang J, Zhang X, Feng L, Lang T, Yang F. Vadose-zone characteristic pollutants distribution, microbial community structure and functionality changes in response to long-term leachate pollution of an informal landfill site. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174596. [PMID: 38997023 DOI: 10.1016/j.scitotenv.2024.174596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/26/2024] [Accepted: 07/05/2024] [Indexed: 07/14/2024]
Abstract
The study embarked on a comprehensive examination of the evolution and diversity of microorganisms within long-term leachate pollution environments, with a focus on varying depths and levels of contamination, and its linkage to soil characteristics and the presence of heavy metals. It was observed that microbial diversity presented distinct cross-depth trend, where archaeal communities were found to be particularly sensitive to alterations in soil depth. Noteworthily, Euryarchaeota increased by 4.82 %, 7.64 % and 9.87 % compared with topsoil. The abundance of Tahumarchaeota was successively reduced by 5.79 %, 9.58 %, and 12.66 %. The bacterial community became more sensitive to leachate pollution, and the abundance of Protebacteria in contaminated soil decreased by 10.27 %, while the abundance of Firmicutes increased by 7.46 %. The bacterial genus Gemmobacter, Chitinophaga and Rheinheimera; the archaeal genus Methanomassiliicoccus and Nitrosopumilus; along with the fungal genus Goffeauzyma, Gibberella, and Setophaeosphaeria emerged as pivotal biological markers for their respective domains, underpinning the biogeochemical dynamics of these environments. Furthermore, the study highlighted that geochemical factors, specifically nitrate (NO₃--N) levels and humic acid (HA) fractions, played crucial roles in modulating the composition and metabolic potential of these communities. Predictive analyses of functional potentials suggested that the N functional change of archaea was more pronounced, with anaerobic ammonia oxidation and nitrification decreased by 15.78 % and 14.62 %, respectively. Overall, soil characteristics alone explained 57.9 % of the total variation in the bacterial community structure. For fungal communities within contaminated soil, HMs were the primary contributors, explaining 46.9 % of the variability, while soil depth accounting for 6.4 % of the archaeal variation. This research enriches the understanding of the complex interrelations between heavy metal pollution, soil attributes, and microbial communities, paving the way for informed strategies in managing informal landfill sites effectively.
Collapse
Affiliation(s)
- Dong Li
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China; College of New Energy and Environment, Jilin University, Changchun 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, China
| | - Yuling Zhang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China; College of New Energy and Environment, Jilin University, Changchun 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, China.
| | - Furong Yu
- North China University of Water Resources and Electric Power, Zhengzhou 450046, China
| | - Jili Wang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China; College of New Energy and Environment, Jilin University, Changchun 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, China
| | - Xinying Zhang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China; College of New Energy and Environment, Jilin University, Changchun 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, China
| | - Liuyuan Feng
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China; College of New Energy and Environment, Jilin University, Changchun 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, China
| | - Tao Lang
- North China University of Water Resources and Electric Power, Zhengzhou 450046, China
| | - Fengtian Yang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China; College of New Energy and Environment, Jilin University, Changchun 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, China.
| |
Collapse
|
4
|
Wang S, Du Y, Liu S, Pan J, Wu F, Wang Y, Wang Y, Li H, Dong Y, Wang Z, Liu Z, Wang G, Xu Z. Response of C:N:P stoichiometry to long-term drainage of peatlands: Evidence from plant, soil, and enzyme. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170688. [PMID: 38320702 DOI: 10.1016/j.scitotenv.2024.170688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/24/2024] [Accepted: 02/02/2024] [Indexed: 02/17/2024]
Abstract
Drought induced by climate warming and human activities regulates carbon (C) cycling of peatlands by changing plant community composition and soil properties. Estimating the responses of peatlands C cycling to environmental changes requires further study of C: nitrogen (N): phosphorus (P) stoichiometric ratios of soil, plants, and enzyme activities. However, systematic studies on the stoichiometry of above-ground and below-ground ecosystems of peatlands post drainage remain scarce. This study compared stoichimetric ratios of plant and soil and stoichimetric ratios of enzyme activities with different functions in two different parts of a minerotrophic peatland, a natural undisturbed part and a part that had been drained for almost 50 years, in Northern China. For the shrub plants, the average C:N:P ratios of leaf in natural and drained peatland were 448:17:1 and 393:15:1, respectively. This indicated that the growth rate of shrub plants is higher in the drained peatland than in the natural peatland, which makes P element more concentrated in the photosynthetic site. However, from the perspective of the dominant plant, the mean C:N:P ratio of Carex leaf was 650:25:1 in the natural peatland, but was 1028:50:1 for Dasiphora fruticosa in drained peatland. This indicated that the intensification of P-limitation of plant growth after drainage. Soil C:N:P ratios of above water table depth (AWT) were 238:15:1 and 277:12:1, but were 383:17:1 and 404:19:1 for below water table depth (BWT) in the natural and the drained peatland, respectively. Soil C:P ratios were greater than the threshold elemental ratio of C:P (174:1), but the soil C:N ratios were less than the threshold elemental ratio of C:N (23:1), which suggested that P was the most limiting nutrient of soil. The soil microbial activities were co-limited by C&P in Baijianghe peatlands. However, the microbial metabolic P limitation was intensified, but the C limitation was weakened for the above water table depth soil after long-term drainage. There are connection between plant-microbe P limitation in peatlands. The P limitation of microbial metabolism was significant positively correlated with soil C:N but negatively with soil moisture. The increase in the lignocelluloses index suggested considerable decomposition of soil organic matter after peatland drainage. These results of stoichiometric ratios from above- to below ground could provide scientific base for the C cycling of peatland undergone climate change.
Collapse
Affiliation(s)
- Shengzhong Wang
- Key Laboratory of Geographical Processes and Ecological Security of Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun 130024, China; State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Northeast Normal University, Changchun 130024, China; Jilin Provincial Key Laboratory for Wetland Ecological Processes and Environmental Change in the Changbai Mountains, Institute for Peat and Mire Research, Northeast Normal University, Changchun 130024, China
| | - Yaoyao Du
- Key Laboratory of Geographical Processes and Ecological Security of Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun 130024, China
| | - Shasha Liu
- Key Laboratory of Geographical Processes and Ecological Security of Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun 130024, China; State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Northeast Normal University, Changchun 130024, China; Jilin Provincial Key Laboratory for Wetland Ecological Processes and Environmental Change in the Changbai Mountains, Institute for Peat and Mire Research, Northeast Normal University, Changchun 130024, China
| | - Junxiao Pan
- Earth Critical Zone and Flux Research Station of Xing'an Mountains (Xing'an CZO), Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Science, Beijing 100101, China
| | - Fan Wu
- Key Laboratory of Geographical Processes and Ecological Security of Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun 130024, China; State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Northeast Normal University, Changchun 130024, China; Jilin Provincial Key Laboratory for Wetland Ecological Processes and Environmental Change in the Changbai Mountains, Institute for Peat and Mire Research, Northeast Normal University, Changchun 130024, China
| | - Yingzhuo Wang
- Key Laboratory of Geographical Processes and Ecological Security of Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun 130024, China
| | - Yuting Wang
- Key Laboratory of Geographical Processes and Ecological Security of Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun 130024, China; State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Northeast Normal University, Changchun 130024, China; Jilin Provincial Key Laboratory for Wetland Ecological Processes and Environmental Change in the Changbai Mountains, Institute for Peat and Mire Research, Northeast Normal University, Changchun 130024, China
| | - Hongkai Li
- Key Laboratory of Geographical Processes and Ecological Security of Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun 130024, China; State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Northeast Normal University, Changchun 130024, China; Jilin Provincial Key Laboratory for Wetland Ecological Processes and Environmental Change in the Changbai Mountains, Institute for Peat and Mire Research, Northeast Normal University, Changchun 130024, China
| | - Yanmin Dong
- Key Laboratory of Geographical Processes and Ecological Security of Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun 130024, China; State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Northeast Normal University, Changchun 130024, China; Jilin Provincial Key Laboratory for Wetland Ecological Processes and Environmental Change in the Changbai Mountains, Institute for Peat and Mire Research, Northeast Normal University, Changchun 130024, China
| | - Zucheng Wang
- Key Laboratory of Geographical Processes and Ecological Security of Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun 130024, China; State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Northeast Normal University, Changchun 130024, China; Jilin Provincial Key Laboratory for Wetland Ecological Processes and Environmental Change in the Changbai Mountains, Institute for Peat and Mire Research, Northeast Normal University, Changchun 130024, China
| | - Ziping Liu
- Key Laboratory of Geographical Processes and Ecological Security of Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun 130024, China
| | - Guodong Wang
- Northeast Institute of Geography and Agroecology, Chiese Academy of Sciences, Changhchun 130102, China
| | - Zhiwei Xu
- Key Laboratory of Geographical Processes and Ecological Security of Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun 130024, China; State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Northeast Normal University, Changchun 130024, China; Jilin Provincial Key Laboratory for Wetland Ecological Processes and Environmental Change in the Changbai Mountains, Institute for Peat and Mire Research, Northeast Normal University, Changchun 130024, China.
| |
Collapse
|
5
|
Gios E, Verbruggen E, Audet J, Burns R, Butterbach-Bahl K, Espenberg M, Fritz C, Glatzel S, Jurasinski G, Larmola T, Mander Ü, Nielsen C, Rodriguez AF, Scheer C, Zak D, Silvennoinen HM. Unraveling microbial processes involved in carbon and nitrogen cycling and greenhouse gas emissions in rewetted peatlands by molecular biology. BIOGEOCHEMISTRY 2024; 167:609-629. [PMID: 38707517 PMCID: PMC11068585 DOI: 10.1007/s10533-024-01122-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 01/22/2024] [Indexed: 05/07/2024]
Abstract
Restoration of drained peatlands through rewetting has recently emerged as a prevailing strategy to mitigate excessive greenhouse gas emissions and re-establish the vital carbon sequestration capacity of peatlands. Rewetting can help to restore vegetation communities and biodiversity, while still allowing for extensive agricultural management such as paludiculture. Belowground processes governing carbon fluxes and greenhouse gas dynamics are mediated by a complex network of microbial communities and processes. Our understanding of this complexity and its multi-factorial controls in rewetted peatlands is limited. Here, we summarize the research regarding the role of soil microbial communities and functions in driving carbon and nutrient cycling in rewetted peatlands including the use of molecular biology techniques in understanding biogeochemical processes linked to greenhouse gas fluxes. We emphasize that rapidly advancing molecular biology approaches, such as high-throughput sequencing, are powerful tools helping to elucidate the dynamics of key biogeochemical processes when combined with isotope tracing and greenhouse gas measuring techniques. Insights gained from the gathered studies can help inform efficient monitoring practices for rewetted peatlands and the development of climate-smart restoration and management strategies. Supplementary Information The online version contains supplementary material available at 10.1007/s10533-024-01122-6.
Collapse
Affiliation(s)
- Emilie Gios
- NINA, Norwegian Institute for Nature Research, PO Box 5685, Torgarden, NO-7485 Trondheim, Norway
| | - Erik Verbruggen
- Plants and Ecosystems Research Group, Department of Biology, University of Antwerp, Universiteitsplein 1, Wilrijk, 2610 Antwerp, Belgium
| | - Joachim Audet
- Department of Ecoscience, Aarhus University, C.F. Møllers Allé, 8000 Aarhus, Denmark
| | - Rachel Burns
- Department of Geosciences and Natural Resource Management, University of Copenhagen, 1350 Copenhagen, Denmark
| | - Klaus Butterbach-Bahl
- Institute of Meteorology and Climate Research, Atmospheric Environmental Research, Karlsruhe Institute of Technology, 82467 Garmisch-Partenkirchen, Germany
- Department of Agroecology, Pioneer Center for Research in Sustainable Agricultural Futures (Land-CRAFT), Aarhus University, 8000 Aarhus, Denmark
| | - Mikk Espenberg
- Department of Geography, Institute of Ecology and Earth Sciences, University of Tartu, 46 St., Vanemuise, 51003 Tartu, Estonia
| | - Christian Fritz
- Aquatic Ecology and Environmental Biology, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Stephan Glatzel
- Department of Geography and Regional Research, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Gerald Jurasinski
- Faculty of Agriculture and Environment, Landscape Ecology and Site Evaluation, University of Rostock, Justus-von-Liebig-Weg 6, 18059 Rostock, Germany
- Department of Maritime Systems, Faculty of Interdisciplinary Research, University of Rostock, Albert- Einstein-Straße 3, 18059 Rostock, Germany
| | - Tuula Larmola
- Natural Resources Institute Finland (Luke), 00790 Helsinki, Finland
| | - Ülo Mander
- Department of Geography, Institute of Ecology and Earth Sciences, University of Tartu, 46 St., Vanemuise, 51003 Tartu, Estonia
| | - Claudia Nielsen
- Department of Agroecology, Faculty of Technical Sciences, Aarhus University, Blichers Alle 20, 8830 Tjele, Denmark
- CBIO, Centre for Circular Bioeconomy, Aarhus University, 8830 Tjele, Denmark
| | - Andres F. Rodriguez
- Department of Agroecology, Faculty of Technical Sciences, Aarhus University, Blichers Alle 20, 8830 Tjele, Denmark
| | - Clemens Scheer
- Institute of Meteorology and Climate Research, Atmospheric Environmental Research, Karlsruhe Institute of Technology, 82467 Garmisch-Partenkirchen, Germany
| | - Dominik Zak
- Department of Ecoscience, Aarhus University, C.F. Møllers Allé, 8000 Aarhus, Denmark
- Department of Ecohydrology and Biogeochemistry, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 301, 12587 Berlin, Germany
| | - Hanna M. Silvennoinen
- NINA, Norwegian Institute for Nature Research, PO Box 5685, Torgarden, NO-7485 Trondheim, Norway
| |
Collapse
|
6
|
Li T, Ge L, Zhao R, Peng C, Zhou X, Li P, Liu Z, Song H, Tang J, Zhang C, Li Q, Wang M, Zou Z. Phenolic compounds weaken the impact of drought on soil enzyme activity in global wetlands. Front Microbiol 2024; 15:1372866. [PMID: 38525071 PMCID: PMC10957752 DOI: 10.3389/fmicb.2024.1372866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 02/27/2024] [Indexed: 03/26/2024] Open
Abstract
Soil enzymes play a central role in carbon and nutrient cycling, and their activities can be affected by drought-induced oxygen exposure. However, a systematic global estimate of enzyme sensitivity to drought in wetlands is still lacking. Through a meta-analysis of 55 studies comprising 761 paired observations, this study found that phosphorus-related enzyme activity increased by 38% as result of drought in wetlands, while the majority of other soil enzyme activities remained stable. The expansion of vascular plants under long-term drought significantly promoted the accumulation of phenolic compounds. Using a 2-week incubation experiment with phenol supplementation, we found that phosphorus-related enzyme could tolerate higher biotoxicity of phenolic compounds than other enzymes. Moreover, a long-term (35 years) drainage experiment in a northern peatland in China confirmed that the increased phenolic concentration in surface layer resulting from a shift in vegetation composition inhibited the increase in enzyme activities caused by rising oxygen availability, except for phosphorus-related enzyme. Overall, these results demonstrate the complex and resilient nature of wetland ecosystems, with soil enzymes showing a high degree of adaptation to drought conditions. These new insights could help evaluate the impact of drought on future wetland ecosystem services and provide a theoretical foundation for the remediation of degraded wetlands.
Collapse
Affiliation(s)
- Tong Li
- School of Geographic Sciences, Hunan Normal University, Changsha, China
| | - Leming Ge
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, China
| | - Ruotong Zhao
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, China
| | - Changhui Peng
- School of Geographic Sciences, Hunan Normal University, Changsha, China
- Department of Biology Science, Institute of Environment Sciences, University of Quebec at Montreal, Montreal, QC, Canada
| | - Xiaolu Zhou
- School of Geographic Sciences, Hunan Normal University, Changsha, China
| | - Peng Li
- School of Geographic Sciences, Hunan Normal University, Changsha, China
| | - Zelin Liu
- School of Geographic Sciences, Hunan Normal University, Changsha, China
| | - Hanxiong Song
- Department of Biology Science, Institute of Environment Sciences, University of Quebec at Montreal, Montreal, QC, Canada
| | - Jiayi Tang
- School of Geographic Sciences, Hunan Normal University, Changsha, China
| | - Cicheng Zhang
- School of Geographic Sciences, Hunan Normal University, Changsha, China
| | - Quan Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Meng Wang
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, China
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Institute for Peat and Mire Research, Northeast Normal University, Changchun, China
| | - Ziying Zou
- School of Geographic Sciences, Hunan Normal University, Changsha, China
| |
Collapse
|
7
|
Sun Y, Chen X. Differential responses of soil extracellular enzyme activity and stoichiometry to precipitation changes in a poplar plantation. ENVIRONMENTAL RESEARCH 2024; 241:117565. [PMID: 37972810 DOI: 10.1016/j.envres.2023.117565] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/16/2023] [Accepted: 10/31/2023] [Indexed: 11/19/2023]
Abstract
Changes in precipitation patterns can significantly affect belowground processes. Although soil extracellular enzymes play a vital role in several biogeochemical processes, our knowledge of how precipitation changes affect soil extracellular enzyme activity (EEA) and stoichiometry remains insufficient. In this study, we investigated the activities of C-acquiring enzyme (β-1,4-glucosidase), N-acquiring enzymes (β-N-acetylglucosaminidase and leucine aminopeptidase), and P-acquiring enzyme (acid phosphatase) under different precipitation scenarios [ambient precipitation (CK), 30% decrease in precipitation (moderate DPT), 50% decrease in precipitation (extreme DPT), 30% increase in precipitation (moderate IPT), and 50% increase in precipitation (extreme IPT)] in a poplar plantation. We found soil EEA exhibited more pronounced increases to moderate IPT compared to moderate DPT (positive asymmetry), the opposite trend (negative asymmetry) was observed under extreme precipitation; whereas soil EEA C:N:P stoichiometry exhibited negative asymmetry at moderate precipitation changes, and exhibited positive asymmetry at extreme precipitation changes. Under moderate precipitation changes, the asymmetry of soil EEA was mainly regulated by asymmetries of respective microbial biomass and litter mass; the asymmetry of soil EEA stoichiometry was mainly regulated by asymmetries of respective soil stoichiometric ratios and litter mass. Furthermore, under extreme precipitation changes, the asymmetries of soil EEA and stoichiometry were best explained by the asymmetry of soil moisture. Our results provide the first evidence of double asymmetric responses of soil EEA and stoichiometry to precipitation changes and highlight the need to consider this asymmetry when modeling the dynamics of biogeochemical cycling in forest ecosystems.
Collapse
Affiliation(s)
- Yuan Sun
- Jiangsu Key Laboratory for Bioresources of Saline Soils, School of Wetlands, Yancheng Teachers University, Yancheng, China.
| | - Xinli Chen
- Department of Renewable Resources, University of Alberta, Edmonton, Canada.
| |
Collapse
|
8
|
Myeong NR, Kwon MJ, Göckede M, Tripathi BM, Kim M. Responses of soil micro-eukaryotic communities to decadal drainage in a Siberian wet tussock tundra. Front Microbiol 2024; 14:1227909. [PMID: 38249484 PMCID: PMC10797069 DOI: 10.3389/fmicb.2023.1227909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 12/14/2023] [Indexed: 01/23/2024] Open
Abstract
Climate warming holds the potential to cause extensive drying of wetlands in the Arctic, but the warming-drying effects on belowground ecosystems, particularly micro-eukaryotes, remain poorly understood. We investigated the responses of soil micro-eukaryotic communities, including fungi, protists, and microbial metazoa, to decadal drainage manipulation in a Siberian wet tundra using both amplicon and shotgun metagenomic sequencing. Our results indicate that drainage treatment increased the abundance of both fungal and non-fungal micro-eukaryotic communities, with key groups such as Ascomycota (mostly order Helotiales), Nematoda, and Tardigrada being notably abundant in drained sites. Functional traits analysis showed an increase in litter saprotrophic fungi and protistan consumers, indicating their increased activities in drained sites. The effects of drainage were more pronounced in the surface soil layer than the deeper layer, as soils dry and warm from the surface. Marked compositional shifts were observed for both communities, with fungal communities being more strongly influenced by drainage-induced vegetation change than the lowered water table itself, while the vegetation effect on non-fungal micro-eukaryotes was moderate. These findings provide insights into how belowground micro-eukaryotic communities respond to the widespread drying of wetlands in the Arctic and improve our predictive understanding of future ecosystem changes.
Collapse
Affiliation(s)
- Nu Ri Myeong
- Korea Polar Research Institute (KOPRI), Incheon, Republic of Korea
- Department of Systems Biotechnology, Chung-Ang University, Anseong, Republic of Korea
| | - Min Jung Kwon
- Institute of Soil Science, University of Hamburg, Hamburg, Germany
| | | | - Binu M. Tripathi
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV, United States
| | - Mincheol Kim
- Korea Polar Research Institute (KOPRI), Incheon, Republic of Korea
| |
Collapse
|
9
|
Li J, Zhao L, Song C, He C, Bian H, Sheng L. Forest swamp succession alters organic carbon composition and survival strategies of soil microbial communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166742. [PMID: 37659521 DOI: 10.1016/j.scitotenv.2023.166742] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023]
Abstract
Forest swamp ecosystems plays crucial role in the global carbon cycle. However, the effects of forest swamp succession on soil organic matter (SOM) and microbial community structure remain unclear. To determine the drivers of SOM change and soil microbial communities in forest swamp succession, a 'space instead of time' approach was used. Soil samples from 0 to 40 cm were collected along forest swamp (early stage), dried-up forest swamp (middle stage), and forest (late stage) ecosystems. Our findings reveal that as succession progresses, the relative content of aromatics decreases and SOM undergoes a transition towards a more readily degradable form. These changes affect soil carbon sequestration and nutrient availability. Bacterial diversity was significantly influenced by succession and changes in soil depth, with fungi exhibiting higher resilience. Soil properties and environmental conditions exert influence over the structure and function of microorganisms. As succession occurred, microbial interactions shifted from cooperation to competition, with bacteria displaying a deterministic distribution pattern and fungi exhibiting a random distribution pattern. SOM quality plays a key role in shaping microbial communities and influencing their growth strategies. Microorganisms are the major drivers of soil respiration, with K-strategist dominated communities in early succession exhibiting slower degradation rates, whereas r-strategists dominated in later stages, leading to faster decomposition.
Collapse
Affiliation(s)
- Jianwei Li
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Liyuan Zhao
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Chuantao Song
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Chunguang He
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Hongfeng Bian
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China.
| | - Lianxi Sheng
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China.
| |
Collapse
|
10
|
Seppey CVW, Cabrol L, Thalasso F, Gandois L, Lavergne C, Martinez-Cruz K, Sepulveda-Jauregui A, Aguilar-Muñoz P, Astorga-España MS, Chamy R, Dellagnezze BM, Etchebehere C, Fochesatto GJ, Gerardo-Nieto O, Mansilla A, Murray A, Sweetlove M, Tananaev N, Teisserenc R, Tveit AT, Van de Putte A, Svenning MM, Barret M. Biogeography of microbial communities in high-latitude ecosystems: Contrasting drivers for methanogens, methanotrophs and global prokaryotes. Environ Microbiol 2023; 25:3364-3386. [PMID: 37897125 DOI: 10.1111/1462-2920.16526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 10/02/2023] [Indexed: 10/29/2023]
Abstract
Methane-cycling is becoming more important in high-latitude ecosystems as global warming makes permafrost organic carbon increasingly available. We explored 387 samples from three high-latitudes regions (Siberia, Alaska and Patagonia) focusing on mineral/organic soils (wetlands, peatlands, forest), lake/pond sediment and water. Physicochemical, climatic and geographic variables were integrated with 16S rDNA amplicon sequences to determine the structure of the overall microbial communities and of specific methanogenic and methanotrophic guilds. Physicochemistry (especially pH) explained the largest proportion of variation in guild composition, confirming species sorting (i.e., environmental filtering) as a key mechanism in microbial assembly. Geographic distance impacted more strongly beta diversity for (i) methanogens and methanotrophs than the overall prokaryotes and, (ii) the sediment habitat, suggesting that dispersal limitation contributed to shape the communities of methane-cycling microorganisms. Bioindicator taxa characterising different ecological niches (i.e., specific combinations of geographic, climatic and physicochemical variables) were identified, highlighting the importance of Methanoregula as generalist methanogens. Methylocystis and Methylocapsa were key methanotrophs in low pH niches while Methylobacter and Methylomonadaceae in neutral environments. This work gives insight into the present and projected distribution of methane-cycling microbes at high latitudes under climate change predictions, which is crucial for constraining their impact on greenhouse gas budgets.
Collapse
Affiliation(s)
- Christophe V W Seppey
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
- Institute of Environmental Science and Geography, University of Potsdam, Potsdam-Golm, Germany
| | - Léa Cabrol
- Aix-Marseille University, CNRS, IRD, Mediterranean Institute of Oceanography (MIO) UM 110, Marseille, France
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Chile
| | - Frederic Thalasso
- Centro de Investigacíon y de Estudios Avanzados del Instituto Politecnico Nacional (Cinvestav-IPN), Departamento de Biotecnología y Bioingeniería, México, Mexico
| | - Laure Gandois
- Laboratoire Écologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, Toulouse, France
| | - Céline Lavergne
- HUB AMBIENTAL UPLA, Laboratory of Aquatic Environmental Research, Universidad de Playa Ancha, Valparaíso, Chile
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Karla Martinez-Cruz
- Departamento de Ciencias y Recursos Naturales, Universidad de Magallanes, Punta Arenas, Chile
- Environmental Physics Group, Limnological Institute, University of Konstanz, Konstanz, Germany
| | | | - Polette Aguilar-Muñoz
- HUB AMBIENTAL UPLA, Laboratory of Aquatic Environmental Research, Universidad de Playa Ancha, Valparaíso, Chile
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | | | - Rolando Chamy
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Bruna Martins Dellagnezze
- Microbial Ecology Laboratory, Department of Microbial Biochemistry and Genomic, Biological Research Institute "Clemente Estable", Montevideo, Uruguay
| | - Claudia Etchebehere
- Microbial Ecology Laboratory, Department of Microbial Biochemistry and Genomic, Biological Research Institute "Clemente Estable", Montevideo, Uruguay
| | - Gilberto J Fochesatto
- Department of Atmospheric Sciences, University of Alaska Fairbanks, Fairbanks, Alaska, USA
| | - Oscar Gerardo-Nieto
- Centro de Investigacíon y de Estudios Avanzados del Instituto Politecnico Nacional (Cinvestav-IPN), Departamento de Biotecnología y Bioingeniería, México, Mexico
| | - Andrés Mansilla
- Departamento de Ciencias y Recursos Naturales, Universidad de Magallanes, Punta Arenas, Chile
| | - Alison Murray
- Division of Earth and Ecosystem Sciences, Desert Research Institute, Reno, Nevada, USA
| | - Maxime Sweetlove
- Royal Belgian Institute for Natural Sciences, OD-Nature, Brussels, Belgium
| | - Nikita Tananaev
- Melnikov Permafrost Institute, Russian Academy of Sciences, Yakutsk, Russia
- Institute of Natural Sciences, North-Eastern Federal University, Yakutsk, Russia
| | - Roman Teisserenc
- Laboratoire Écologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, Toulouse, France
| | - Alexander T Tveit
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Anton Van de Putte
- Royal Belgian Institute for Natural Sciences, OD-Nature, Brussels, Belgium
| | - Mette M Svenning
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Maialen Barret
- Laboratoire Écologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, Toulouse, France
| |
Collapse
|
11
|
Buttler A, Bragazza L, Laggoun-Défarge F, Gogo S, Toussaint ML, Lamentowicz M, Chojnicki BH, Słowiński M, Słowińska S, Zielińska M, Reczuga M, Barabach J, Marcisz K, Lamentowicz Ł, Harenda K, Lapshina E, Gilbert D, Schlaepfer R, Jassey VEJ. Ericoid shrub encroachment shifts aboveground-belowground linkages in three peatlands across Europe and Western Siberia. GLOBAL CHANGE BIOLOGY 2023; 29:6772-6793. [PMID: 37578632 DOI: 10.1111/gcb.16904] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/19/2023] [Accepted: 07/23/2023] [Indexed: 08/15/2023]
Abstract
In northern peatlands, reduction of Sphagnum dominance in favour of vascular vegetation is likely to influence biogeochemical processes. Such vegetation changes occur as the water table lowers and temperatures rise. To test which of these factors has a significant influence on peatland vegetation, we conducted a 3-year manipulative field experiment in Linje mire (northern Poland). We manipulated the peatland water table level (wet, intermediate and dry; on average the depth of the water table was 17.4, 21.2 and 25.3 cm respectively), and we used open-top chambers (OTCs) to create warmer conditions (on average increase of 1.2°C in OTC plots compared to control plots). Peat drying through water table lowering at this local scale had a larger effect than OTC warming treatment per see on Sphagnum mosses and vascular plants. In particular, ericoid shrubs increased with a lower water table level, while Sphagnum decreased. Microclimatic measurements at the plot scale indicated that both water-level and temperature, represented by heating degree days (HDDs), can have significant effects on the vegetation. In a large-scale complementary vegetation gradient survey replicated in three peatlands positioned along a transitional oceanic-continental and temperate-boreal (subarctic) gradient (France-Poland-Western Siberia), an increase in ericoid shrubs was marked by an increase in phenols in peat pore water, resulting from higher phenol concentrations in vascular plant biomass. Our results suggest a shift in functioning from a mineral-N-driven to a fungi-mediated organic-N nutrient acquisition with shrub encroachment. Both ericoid shrub encroachment and higher mean annual temperature in the three sites triggered greater vascular plant biomass and consequently the dominance of decomposers (especially fungi), which led to a feeding community dominated by nematodes. This contributed to lower enzymatic multifunctionality. Our findings illustrate mechanisms by which plants influence ecosystem responses to climate change, through their effect on microbial trophic interactions.
Collapse
Affiliation(s)
- Alexandre Buttler
- School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Lausanne, Switzerland
| | - Luca Bragazza
- Agroscope, Field-Crop Systems and Plant Nutrition, Nyon, Switzerland
| | | | - Sebastien Gogo
- UMR-CNRS 6553 ECOBIO, Université de Rennes, Rennes, France
| | - Marie-Laure Toussaint
- Laboratoire de Chrono-Environnement, UMR, CNRS 6249, UFR des Sciences et Techniques, Université de Franche-Comté, Besançon, France
| | - Mariusz Lamentowicz
- Climate Change Ecology Research Unit, Faculty of Geographical and Geological Sciences, Adam Mickiewicz University, Poznań, Poland
| | - Bogdan H Chojnicki
- Laboratory of Bioclimatology, Department of Ecology and Environmental Protection, Faculty of Environmental and Mechanical Engineering, Poznan University of Life Sciences, Poznań, Poland
| | - Michał Słowiński
- Past Landscape Dynamic Laboratory, Institute of Geography and Spatial Organization, Polish Academy of Sciences, Warsaw, Poland
| | - Sandra Słowińska
- Climate Research Department, Institute of Geography and Spatial Organization, Polish Academy of Sciences, Warsaw, Poland
| | - Małgorzata Zielińska
- Climate Change Ecology Research Unit, Faculty of Geographical and Geological Sciences, Adam Mickiewicz University, Poznań, Poland
| | - Monika Reczuga
- Climate Change Ecology Research Unit, Faculty of Geographical and Geological Sciences, Adam Mickiewicz University, Poznań, Poland
| | - Jan Barabach
- Department of Land Improvement, Environmental Development and Spatial Management, Poznan University of Life Sciences, Poznań, Poland
| | - Katarzyna Marcisz
- Climate Change Ecology Research Unit, Faculty of Geographical and Geological Sciences, Adam Mickiewicz University, Poznań, Poland
| | - Łukasz Lamentowicz
- Climate Change Ecology Research Unit, Faculty of Geographical and Geological Sciences, Adam Mickiewicz University, Poznań, Poland
| | - Kamila Harenda
- Laboratory of Bioclimatology, Department of Ecology and Environmental Protection, Faculty of Environmental and Mechanical Engineering, Poznan University of Life Sciences, Poznań, Poland
| | | | - Daniel Gilbert
- Laboratoire de Chrono-Environnement, UMR, CNRS 6249, UFR des Sciences et Techniques, Université de Franche-Comté, Besançon, France
| | - Rodolphe Schlaepfer
- School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Vincent E J Jassey
- School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Lausanne, Switzerland
- Laboratoire d'Ecologie Fonctionnelle et Environnement, CNRS, Université de Toulouse, Toulouse, France
| |
Collapse
|
12
|
Cordero I, Leizeaga A, Hicks LC, Rousk J, Bardgett RD. High intensity perturbations induce an abrupt shift in soil microbial state. THE ISME JOURNAL 2023; 17:2190-2199. [PMID: 37814127 PMCID: PMC10690886 DOI: 10.1038/s41396-023-01512-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 08/29/2023] [Accepted: 09/04/2023] [Indexed: 10/11/2023]
Abstract
Soil microbial communities play a pivotal role in regulating ecosystem functioning. But they are increasingly being shaped by human-induced environmental change, including intense "pulse" perturbations, such as droughts, which are predicted to increase in frequency and intensity with climate change. While it is known that soil microbial communities are sensitive to such perturbations and that effects can be long-lasting, it remains untested whether there is a threshold in the intensity and frequency of perturbations that can trigger abrupt and persistent transitions in the taxonomic and functional characteristics of soil microbial communities. Here we demonstrate experimentally that intense pulses of drought equivalent to a 30-year drought event (<15% WHC) induce a major shift in the soil microbial community characterised by significantly altered bacterial and fungal community structures of reduced complexity and functionality. Moreover, the characteristics of this transformed microbial community persisted after returning soil to its previous moisture status. As a result, we found that drought had a strong legacy effect on bacterial community function, inducing an enhanced growth rate following subsequent drought. Abrupt transitions are widely documented in aquatic and terrestrial plant communities in response to human-induced perturbations. Our findings demonstrate that such transitions also occur in soil microbial communities in response to high intensity pulse perturbations, with potentially deleterious consequences for soil health.
Collapse
Affiliation(s)
- Irene Cordero
- Department of Earth and Environmental Sciences, The University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK.
- Department of Community Ecology, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zuercherstrasse 111, 8903, Birmensdorf, Switzerland.
| | - Ainara Leizeaga
- Department of Earth and Environmental Sciences, The University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
- Department of Biology, Lund University, Lund, Sweden
| | | | | | - Richard D Bardgett
- Department of Earth and Environmental Sciences, The University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| |
Collapse
|
13
|
Runnel K, Tamm H, Kohv M, Pent M, Vellak K, Lodjak J, Lõhmus A. Short-term responses of the soil microbiome and its environment indicate an uncertain future of restored peatland forests. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118879. [PMID: 37659362 DOI: 10.1016/j.jenvman.2023.118879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/10/2023] [Accepted: 08/26/2023] [Indexed: 09/04/2023]
Abstract
Restoring peatland ecosystems involves significant uncertainty due to complex ecological and socio-economic feedbacks as well as alternative stable ecological states. The primary aim of this study was to investigate to what extent the natural functioning of drainage-affected peat soils can be restored, and to examine role of soil microbiota in this recovery process. To address these questions, a large-scale before-after-control-impact (BACI) experiment was conducted in drained peatland forests in Estonia. The restoration treatments included ditch closure and partial tree cutting to raise the water table and restore stand structure. Soil samples and environmental data were collected before and 3-4 years after the treatments; the samples were subjected to metabarcoding to assess fungal and bacterial communities and analysed for their chemical properties. The study revealed some indicators of a shift toward the reference state (natural mixotrophic bog-forests): the spatial heterogeneity in soil fungi and bacteria increased, as well as the relative abundance of saprotrophic fungi; while nitrogen content in the soil decreased significantly. However, a general stability of other physico-chemical properties (including pH remaining elevated by ca. one unit) and annual fluctuations in the microbiome suggested that soil recovery will remain incomplete and patchy for decades. The main implication is the necessity to manage hydrologically restored peatland forests while explicitly considering an uncertain future and diverse outcomes. This includes their continuous monitoring and the adoption of a precautionary approach to prevent further damage both to these ecosystems and to surrounding intact peatlands.
Collapse
Affiliation(s)
- Kadri Runnel
- Institute of Ecology and Earth Sciences, University of Tartu, J. Liivi 2, 50409, Tartu, Estonia.
| | - Heidi Tamm
- Institute of Ecology and Earth Sciences, University of Tartu, J. Liivi 2, 50409, Tartu, Estonia
| | - Marko Kohv
- Institute of Ecology and Earth Sciences, University of Tartu, J. Liivi 2, 50409, Tartu, Estonia
| | - Mari Pent
- Institute of Ecology and Earth Sciences, University of Tartu, J. Liivi 2, 50409, Tartu, Estonia
| | - Kai Vellak
- Institute of Ecology and Earth Sciences, University of Tartu, J. Liivi 2, 50409, Tartu, Estonia
| | - Jaanis Lodjak
- Institute of Ecology and Earth Sciences, University of Tartu, J. Liivi 2, 50409, Tartu, Estonia
| | - Asko Lõhmus
- Institute of Ecology and Earth Sciences, University of Tartu, J. Liivi 2, 50409, Tartu, Estonia
| |
Collapse
|
14
|
Sytiuk A, Hamard S, Céréghino R, Dorrepaal E, Geissel H, Küttim M, Lamentowicz M, Tuittila ES, Jassey VEJ. Linkages between Sphagnum metabolites and peatland CO 2 uptake are sensitive to seasonality in warming trends. THE NEW PHYTOLOGIST 2023; 237:1164-1178. [PMID: 36336780 PMCID: PMC10108112 DOI: 10.1111/nph.18601] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Plants produce a wide diversity of metabolites. Yet, our understanding of how shifts in plant metabolites as a response to climate change feedback on ecosystem processes remains scarce. Here, we test to what extent climate warming shifts the seasonality of metabolites produced by Sphagnum mosses, and what are the consequences of these shifts for peatland C uptake. We used a reciprocal transplant experiment along a climate gradient in Europe to simulate climate change. We evaluated the responses of primary and secondary metabolites in five Sphagnum species and related their responses to gross ecosystem productivity (GEP). When transplanted to a warmer climate, Sphagnum species showed consistent responses to warming, with an upregulation of either their primary or secondary metabolite according to seasons. Moreover, these shifts were correlated to changes in GEP, especially in spring and autumn. Our results indicate that the Sphagnum metabolome is very plastic and sensitive to warming. We also show that warming-induced changes in the seasonality of Sphagnum metabolites have consequences on peatland GEP. Our findings demonstrate the capacity for plant metabolic plasticity to impact ecosystem C processes and reveal a further mechanism through which Sphagnum could shape peatland responses to climate change.
Collapse
Affiliation(s)
- Anna Sytiuk
- Laboratoire Ecologie Fonctionnelle et Environnement (LEFE)Université Paul Sabatier, CNRSF‐31000ToulouseFrance
| | - Samuel Hamard
- Laboratoire Ecologie Fonctionnelle et Environnement (LEFE)Université Paul Sabatier, CNRSF‐31000ToulouseFrance
| | - Régis Céréghino
- Laboratoire Ecologie Fonctionnelle et Environnement (LEFE)Université Paul Sabatier, CNRSF‐31000ToulouseFrance
| | - Ellen Dorrepaal
- Department of Ecology and Environmental Science, Climate Impacts Research CentreUmeå UniversitySE‐981 07AbiskoSweden
| | - Honorine Geissel
- Laboratoire Ecologie Fonctionnelle et Environnement (LEFE)Université Paul Sabatier, CNRSF‐31000ToulouseFrance
| | - Martin Küttim
- Institute of Ecology, School of Natural Sciences and HealthTallinn UniversityUus‐Sadama 510120TallinnEstonia
| | - Mariusz Lamentowicz
- Climate Change Ecology Research Unit, Faculty of Geographical and Geological SciencesAdam Mickiewicz University in PoznańBogumiła Krygowskiego 1061‐680PoznańPoland
| | - Eeva Stiina Tuittila
- School of Forest SciencesUniversity of Eastern FinlandJoensuu CampusFI‐80100JoensuuFinland
| | - Vincent E. J. Jassey
- Laboratoire Ecologie Fonctionnelle et Environnement (LEFE)Université Paul Sabatier, CNRSF‐31000ToulouseFrance
| |
Collapse
|
15
|
Wu H, Yang J, Fu W, Rillig MC, Cao Z, Zhao A, Hao Z, Zhang X, Chen B, Han X. Identifying thresholds of nitrogen enrichment for substantial shifts in arbuscular mycorrhizal fungal community metrics in a temperate grassland of northern China. THE NEW PHYTOLOGIST 2023; 237:279-294. [PMID: 36177721 DOI: 10.1111/nph.18516] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
Nitrogen (N) enrichment poses threats to biodiversity and ecosystem stability, while arbuscular mycorrhizal (AM) fungi play important roles in ecosystem stability and functioning. However, the ecological impacts, especially thresholds of N enrichment potentially causing AM fungal community shifts have not been adequately characterized. Based on a long-term field experiment with nine N addition levels ranging from 0 to 50 g N m-2 yr-1 in a temperate grassland, we characterized the community response patterns of AM fungi to N enrichment. Arbuscular mycorrhizal fungal biomass continuously decreased with increasing N addition levels. However, AM fungal diversity did not significantly change below 20 g N m-2 yr-1 , but dramatically decreased at higher N levels, which drove the AM fungal community to a potentially unstable state. Structural equation modeling showed that the decline in AM fungal biomass could be well explained by soil acidification, whereas key driving factors for AM fungal diversity shifted from soil nitrogen : phosphorus (N : P) ratio to soil pH with increasing N levels. Different aspects of AM fungal communities (biomass, diversity and community composition) respond differently to increasing N addition levels. Thresholds for substantial community shifts in response to N enrichment in this grassland ecosystem are identified.
Collapse
Affiliation(s)
- Hui Wu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junjie Yang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Wei Fu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Matthias C Rillig
- Institute of Biology, Freie Universität Berlin, Berlin, 14195, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, 14195, Germany
| | - Zhenjiao Cao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Aihua Zhao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Zhipeng Hao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Xin Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Baodong Chen
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xingguo Han
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| |
Collapse
|
16
|
Seka AM, Zhang J, Zhang D, Ayele EG, Han J, Prodhan FA, Zhang G, Liu Q. Hydrological drought evaluation using GRACE satellite-based drought index over the lake basins, East Africa. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158425. [PMID: 36063925 DOI: 10.1016/j.scitotenv.2022.158425] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/27/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
Hydrological drought, a regular phenomenon that could heavily impact natural systems and human life, is aggravated by a water storage deficit. While Gravity Recovery and Climate Experiment (GRACE) satellite databased drought monitoring has been widely studied in East Africa (EA), drought recovery time and anthropogenic factors are still missing, which are prerequisite for drought management. Here, a water storage deficit index (WSDI) and modified WSDI are utilized for analyzing a holistic representation of drought. The results show that the drought events in recent times are well-identified and estimated using this approach over five lake basins in EA from 2002 to 2021. Although, the basin scale drought events are evaluated using the Pearson correlation coefficient (r) from 2002 to 2021. The results showed a significant correlation between WSDI, MWSDI, and the standardized precipitation-evapotranspiration index (SPEI) in all lake basins except in the Tana basin. We show that the presence of anthropogenic forcing has increased the highest peak deficits of -2.57, -3.25, -19.05, -87.2, and -99 km3 over the Tana, Abaya-Chamo, Turkana, Victoria, and Tanganyika basins, respectively. The longest deficit period of 36 months and the highest severity value of -1140 were observed in the Turkana and Victoria basins. The average drought recovery time ranges from 2.4 to 11.2 months and from 1.4 to 12.6 months as obtained by WSDI and MWSDI, respectively. Our findings highlight the importance of the calculated WSD approach to evaluating the hydrological drought characterization and estimate the drought condition at the basin scale.
Collapse
Affiliation(s)
- Ayalkibet Mekonnen Seka
- Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China; University of Chinese Academy of Sciences, Beijing 100049, China; International Research Center of Big Data for Sustainable Development Goals, Beijing 100094, China; Arba Minch Water Technology Institute, Water Resources Research Center (AWTi), Arba Minch University, Ethiopia
| | - Jiahua Zhang
- Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China; University of Chinese Academy of Sciences, Beijing 100049, China; International Research Center of Big Data for Sustainable Development Goals, Beijing 100094, China.
| | - Da Zhang
- Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Elias Gebeyehu Ayele
- Arba Minch Water Technology Institute, Water Resources Research Center (AWTi), Arba Minch University, Ethiopia
| | - Jiaqi Han
- Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China; University of Chinese Academy of Sciences, Beijing 100049, China; International Research Center of Big Data for Sustainable Development Goals, Beijing 100094, China
| | - Foyez Ahmed Prodhan
- Department of Agricultural Extension and Rural Development, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| | - Guoping Zhang
- Public Meteorological Service Center, China Meteorological Administration, Beijing 100081, China.
| | - Qi Liu
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
17
|
Salimi S, Scholz M. Importance of water level management for peatland outflow water quality in the face of climate change and drought. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:75455-75470. [PMID: 35653024 PMCID: PMC9553818 DOI: 10.1007/s11356-022-20614-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/30/2022] [Indexed: 06/15/2023]
Abstract
The impact of different climate scenarios, drought, and water level management on the outflow water quality of peatlands has been investigated. A mesocosm experiment has been conducted within climate control chambers to simulate current (2016-2019 real-time) and future representative concentration pathway (RCP) climate scenarios (RCP 2.6, 4.5 and 8.5). To assess the efficiency of a management strategy for improving peatland water quality, water level adjustment was applied to half of the system at the same time for each climate scenario. Furthermore, the mesocosm experienced the 2018 European drought during the simulation years, and the corresponding impact was analyzed. The results of this study revealed a substantial and favorable impact of water level management on water quality of peatlands under different climate scenarios. The effect of water level management was the largest for ammonium (NH4-N) and 5-day biochemical oxygen demand (BOD5), and the smallest for total phosphorus (TP). Drought had a strong impact on chemical variables, increasing their concentration and deteriorating the water quality of peatland outflow. However, water level management can stabilize the nutrient levels in peatland outflows, particularly during drought and under warmer climate scenarios, thus mitigating the adverse effects of climate change.
Collapse
Affiliation(s)
- Shokoufeh Salimi
- Division of Water Resources Engineering, Faculty of Engineering, Lund University, P.O. Box 118, 221 00, Lund, Sweden
| | - Miklas Scholz
- Division of Water Resources Engineering, Faculty of Engineering, Lund University, P.O. Box 118, 221 00, Lund, Sweden.
- School of Science, Engineering and Environment, The University of Salford, Newton Building, M5 4WT, Salford, United Kingdom.
- Department of Civil Engineering Science, School of Civil Engineering and the Built Environment, University of Johannesburg, Kingsway Campus, Aukland Park 2006, PO Box 524, Johannesburg, South Africa.
- Department of Town Planning, Engineering Networks and Systems, South Ural State University (National Research University), Prospekt Lenin 76, Chelyabinsk, 454080, Russia.
| |
Collapse
|
18
|
Li J, Li M, Zhao L, Sun X, Gao M, Sheng L, Bian H. Characteristics of soil carbon emissions and bacterial community composition in peatlands at different stages of vegetation succession. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156242. [PMID: 35643137 DOI: 10.1016/j.scitotenv.2022.156242] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/09/2022] [Accepted: 05/22/2022] [Indexed: 05/16/2023]
Abstract
Microorganisms are important components of soil ecosystems and play an important role in material cycles. Northern peatlands are important ecosystems in middle-high latitude regions. In peatlands, different vegetation successions occur with changes in groundwater levels. The overall carbon emission of peat bogs is related to the carbon stability of the surrounding environment. Unraveling the assembly and distribution of bacterial communities at different succession stages in peatland is essential to understanding the soil nutrient cycle. In this study, we investigated the characteristics of soil carbon emissions and the composition of subsurface microorganisms under six different succession stages. The highest carbon emission was observed in mossy peatlands, and their soil enzyme activity was closely related to the aboveground vegetation cover type. The succession pattern of ground vegetation was the main driver of soil microorganisms. The abundance of the dominant Proteobacteria decreased with increasing soil depth, while the opposite trend was observed for Chloroflexi. Furthermore, the community structure of microorganisms became progressively simpler and looser as soil water content decreased. The bacterial alpha diversity was driven by soil dissolved organic carbon and Fe, and the beta diversity was driven mainly by soil water content. The bacteria presented a random distribution in a nutrient-rich soil environment and shifted to deterministic distribution with decreasing water and nutrient contents. The balance between taxonomic diversity and dispersal limitation mediates species coexistence in the soil microbiome. This study provides new insights into the soil environment at different stages of succession in peatlands.
Collapse
Affiliation(s)
- Jianwei Li
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Ming Li
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Liyuan Zhao
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Xiaoqian Sun
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Minghao Gao
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Lianxi Sheng
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Hongfeng Bian
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China.
| |
Collapse
|
19
|
Li Q, Yang J, He G, Liu X, Zhang D. Characteristics of soil C:N:P stoichiometry and enzyme activities in different grassland types in Qilian Mountain nature reserve-Tibetan Plateau. PLoS One 2022; 17:e0271399. [PMID: 35834549 PMCID: PMC9282613 DOI: 10.1371/journal.pone.0271399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 06/29/2022] [Indexed: 11/18/2022] Open
Abstract
This research was designed to explore the variation characteristics of soil C:N:P stoichiometry and enzyme activity in the Qilian Mountains different grassland types. Thus, 7 grassland types (Upland meadow: UM, Alpine meadow: AM, Temperate steppe: ST, Alpine steppe: AS, Temperate Desert Steppe: TDS, Temperate Desert: TD, Alpine desert: AD) of Qilian Natural Reserve were selected to analyze the variation characteristics of soil enzyme activities and stoichiometry of different grassland types and its relationship with environmental factors. The study indicated that the C/N, C/P, and N/P of different grasslands ranged from 5.08 to 17.35, 2.50 to 72.29, and 0.53 to 4.02.The ranking of different types grassland for the C/N was TS ≥ AM ≥ UM ≥ AS ≥ TDS > AD > TD, and the changing pattern of C/P and N/P is similar to that of C/N. The ranking of different types grassland for the urease enzyme activity was UM ≈AS > AD ≈TDS ≈TS ≈AM > TD, and TS ≈AM ≈UM ≈AS ≈AD > TDS > TD for alkaline phosphatase enzyme activity, and AS ≈AM ≈TS ≈TDS≥UM ≥TD ≈AD for catalase enzyme activity. Based on N/P ratio and RDA analysis, nitrogen was the main factor limiting the grassland productivity, and pH, TN, SOC, Richness index and Simpson diversity index were the main environmental factors affecting the soil C:N:P stoichiometry and enzyme activities. Cluster analysis showed that 7 grassland types were clustered into three categories. In conclusion, the stoichiometric characteristics and soil enzyme activities of different grasslands vary with grassland types. Nitrogen was the main factor limiting the grasslands productivity, and pH, TN, SOC, Richness index and Simpson diversity index were the main environmental factors affecting the soil C:N:P stoichiometry and enzyme activities, and the grassland Qilian Mountain can be managed in the ecological district according to the clustering results. The results of this study can provide data support and theoretical guidance for the scientific management and ecological protection of grassland in Qilian Mountains Reserve.
Collapse
Affiliation(s)
- Qiang Li
- Gansu Agricultural University/Key Laboratory of Grassland Ecosystem of the Ministry of Education, College of Grassland Science, Lanzhou, China
| | - Junyin Yang
- Gansu Agricultural University/Key Laboratory of Grassland Ecosystem of the Ministry of Education, College of Grassland Science, Lanzhou, China
| | - Guoxing He
- Gansu Agricultural University/Key Laboratory of Grassland Ecosystem of the Ministry of Education, College of Grassland Science, Lanzhou, China
| | - Xiaoni Liu
- Gansu Agricultural University/Key Laboratory of Grassland Ecosystem of the Ministry of Education, College of Grassland Science, Lanzhou, China
- * E-mail:
| | - Degang Zhang
- Gansu Agricultural University/Key Laboratory of Grassland Ecosystem of the Ministry of Education, College of Grassland Science, Lanzhou, China
| |
Collapse
|
20
|
Thakur MP, Risch AC, van der Putten WH. Biotic responses to climate extremes in terrestrial ecosystems. iScience 2022; 25:104559. [PMID: 35784794 PMCID: PMC9240802 DOI: 10.1016/j.isci.2022.104559] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Anthropogenic climate change is increasing the incidence of climate extremes. Consequences of climate extremes on biodiversity can be highly detrimental, yet few studies also suggest beneficial effects of climate extremes on certain organisms. To obtain a general understanding of ecological responses to climate extremes, we present a review of how 16 major taxonomic/functional groups (including microorganisms, plants, invertebrates, and vertebrates) respond during extreme drought, precipitation, and temperature. Most taxonomic/functional groups respond negatively to extreme events, whereas groups such as mosses, legumes, trees, and vertebrate predators respond most negatively to climate extremes. We further highlight that ecological recovery after climate extremes is challenging to predict purely based on ecological responses during or immediately after climate extremes. By accounting for the characteristics of the recovering species, resource availability, and species interactions with neighboring competitors or facilitators, mutualists, and enemies, we outline a conceptual framework to better predict ecological recovery in terrestrial ecosystems.
Collapse
Affiliation(s)
- Madhav P. Thakur
- Institute of Ecology and Evolution and Oeschger Centre for Climate Change Research, University of Bern, 3012 Bern, Switzerland
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO- KNAW), Wageningen, the Netherlands
- Corresponding author
| | - Anita C. Risch
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Switzerland
| | - Wim H. van der Putten
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO- KNAW), Wageningen, the Netherlands
- Laboratory of Nematology, Wageningen University, Wageningen, the Netherlands
| |
Collapse
|
21
|
Antala M, Juszczak R, van der Tol C, Rastogi A. Impact of climate change-induced alterations in peatland vegetation phenology and composition on carbon balance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 827:154294. [PMID: 35247401 DOI: 10.1016/j.scitotenv.2022.154294] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/03/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Global climate is changing faster than humankind has ever experienced. Model-based predictions of future climate are becoming more complex and precise, but they still lack crucial information about the reaction of some important ecosystems, such as peatlands. Peatlands belong to one of the largest carbon stores on the Earth. They are mostly distributed in high latitudes, where the temperature rises faster than in the other parts of the planet. Warmer climate and changes in precipitation patterns cause changes in the composition and phenology of peatland vegetation. Peat mosses are becoming less abundant, vascular plants cover is increasing, and the vegetation season and phenophases of vascular plants start sooner. The alterations in vegetation cause changes in the carbon assimilation and release of greenhouse gases. Therefore, this article reviews the impact of climate change-induced alterations in peatland vegetation phenology and composition on future climate and the uncertainties that need to be addressed for more accurate climate prediction.
Collapse
Affiliation(s)
- Michal Antala
- Laboratory of Bioclimatology, Department of Ecology and Environmental Protection, Faculty of Environmental Engineering and Mechanical Engineering, Poznan University of Life Sciences, Piątkowska 94, 60-649 Poznań, Poland
| | - Radoslaw Juszczak
- Laboratory of Bioclimatology, Department of Ecology and Environmental Protection, Faculty of Environmental Engineering and Mechanical Engineering, Poznan University of Life Sciences, Piątkowska 94, 60-649 Poznań, Poland
| | - Christiaan van der Tol
- Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, 7500 AE Enschede, the Netherlands
| | - Anshu Rastogi
- Laboratory of Bioclimatology, Department of Ecology and Environmental Protection, Faculty of Environmental Engineering and Mechanical Engineering, Poznan University of Life Sciences, Piątkowska 94, 60-649 Poznań, Poland; Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, 7500 AE Enschede, the Netherlands.
| |
Collapse
|
22
|
Zhao Q, Bai J, Jia J, Zhang G, Wang J, Gao Y. The Effects of Drainage on the Soil Fungal Community in Freshwater Wetlands. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.837747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Wetland drainage has been intensively implemented globally, and it has exerted significant effects on wetland ecosystems. The effects of wetland drainage on the soil fungal community remain to be clarified. Soil samples were collected at depths of 0–5 and 5–10 cm in freshwater Phragmites australis wetlands to investigate changes in the fungal community before and after drainage (termed FW and DFW, respectively) using high-throughput sequencing of the fungal-specific internal transcribed spacer 1 (ITS1) gene region. No significant differences in the α diversity of the soil fungal community were found in 0–10 cm soils between FW and DFW (p > 0.05), except for the abundance-based coverage estimator (ACE) and Chao1 indices in 5–10 cm soils. Significantly higher values of ACE and Chao1 in 5–10 cm soils in FW than in DFW indicated that wetland drainage may reduce fungal community richness in 5–10 cm soils. Ascomycota, Sordariomycetes, and Cephalothecaceae were the dominant fungal phylum, class, and family, respectively, in 0–5 and 5–10 cm soils of both FW and DFW, representing as high as 76.17, 58.22, and 45.21% of the fungal community in 5–10 FW soils, respectively. Saprotrophic fungi predominated in both FW and DFW. Drainage altered both the fungal community structure and some edaphic factors. Mantel tests and Spearman correlation analyses implied that edaphic factors [i.e., soil organic matter (SOM), electronic conductivity (EC), pH, and clay] also affected soil fungal community structure. Overall, wetland drainage altered the community structure of the fungal community in the freshwater wetlands.
Collapse
|
23
|
Słowińska S, Słowiński M, Marcisz K, Lamentowicz M. Long-term microclimate study of a peatland in Central Europe to understand microrefugia. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2022; 66:817-832. [PMID: 35113230 PMCID: PMC8948114 DOI: 10.1007/s00484-022-02240-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 11/28/2021] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
Peatlands perform many important ecosystem functions at both the local and global scale, including hydrologic and climatic regulation. Although peatlands often act as climatic microrefugia, they have rarely been the subject of long-term microclimatic studies. In this study, we aimed to compare the local climatic conditions of a mid-forest mire to that of an open area and examine the differences in microclimates within the mire based on plant community diversity, shading, and water table depths. The peatland studied in this work was significantly cooler than the reference site, mainly due to a higher decline in nighttime air temperatures. However, the daily maximum air temperature near the ground was often higher. We also noticed that microclimates significantly differed within the studied peatland. Wet and shaded microsites were cooler than the sites having a lower water level and receiving higher amounts of solar radiation. The results of the study suggest that peatlands have locally cooler climates, and thus can serve as climate change refugia. These findings can help us interpret reconstructed data from the peat archive, and, when combined with experiments, identify tipping points for peatland ecosystems.
Collapse
Affiliation(s)
- Sandra Słowińska
- Climate Impacts Laboratory, Department of Geoecology and Climatology, Institute of Geography and Spatial Organization, Polish Academy of Sciences, Warsaw, Poland.
| | - Michał Słowiński
- Past Landscape Dynamics Laboratory, Institute of Geography and Spatial Organization, Polish Academy of Sciences, Warsaw, Poland
| | - Katarzyna Marcisz
- Climate Change Ecology Research Unit, Faculty of Geographical and Geological Sciences, Adam Mickiewicz University, Poznań, Poland
| | - Mariusz Lamentowicz
- Climate Change Ecology Research Unit, Faculty of Geographical and Geological Sciences, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
24
|
Sytiuk A, Céréghino R, Hamard S, Delarue F, Dorrepaal E, Küttim M, Lamentowicz M, Pourrut B, Robroek BJM, Tuittila E, Jassey VEJ. Biochemical traits enhance the trait concept in
Sphagnum
ecology. OIKOS 2022. [DOI: 10.1111/oik.09119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Anna Sytiuk
- Laboratoire Ecologie Fonctionnelle et Environnement, Univ. Paul Sabatier Toulouse 3, UPS, CNRS Toulouse France
| | - Regis Céréghino
- Laboratoire Ecologie Fonctionnelle et Environnement, Univ. Paul Sabatier Toulouse 3, UPS, CNRS Toulouse France
| | - Samuel Hamard
- Laboratoire Ecologie Fonctionnelle et Environnement, Univ. Paul Sabatier Toulouse 3, UPS, CNRS Toulouse France
| | | | - Ellen Dorrepaal
- Climate Impacts Research Centre, Dept of Ecology and Environmental Science, Umeå Univ. Abisko Sweden
| | - Martin Küttim
- Inst. of Ecology, School of Natural Sciences and Health, Tallinn Univ. Tallinn Estonia
| | - Mariusz Lamentowicz
- Climate Change Ecology Research Unit, Faculty of Geographical and Geological Sciences, Adam Mickiewicz Univ. in Poznań Poznań Poland
| | - Bertrand Pourrut
- Laboratoire Ecologie Fonctionnelle et Environnement, Univ. Paul Sabatier Toulouse 3, UPS, CNRS Toulouse France
| | - Bjorn J. M. Robroek
- Aquatic Ecology&Environmental Biology, Radboud Inst. for Biological and Environmental Sciences, Faculty of Science, Radboud Univ. Nijmegen Nijmegen the Netherlands
| | - Eeva‐Stiina Tuittila
- Biological Sciences, Faculty of Natural and Environmental Sciences, Inst. for Life Sciences, Univ. of Southampton Southampton UK
| | - Vincent E. J. Jassey
- Laboratoire Ecologie Fonctionnelle et Environnement, Univ. Paul Sabatier Toulouse 3, UPS, CNRS Toulouse France
| |
Collapse
|
25
|
Fournier P, Pellan L, Barroso-Bergadà D, Bohan DA, Candresse T, Delmotte F, Dufour MC, Lauvergeat V, Le Marrec C, Marais A, Martins G, Masneuf-Pomarède I, Rey P, Sherman D, This P, Frioux C, Labarthe S, Vacher C. The functional microbiome of grapevine throughout plant evolutionary history and lifetime. ADV ECOL RES 2022. [DOI: 10.1016/bs.aecr.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
26
|
Integrating Decomposers, Methane-Cycling Microbes and Ecosystem Carbon Fluxes Along a Peatland Successional Gradient in a Land Uplift Region. Ecosystems 2021. [DOI: 10.1007/s10021-021-00713-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AbstractPeatlands are carbon dioxide (CO2) sinks that, in parallel, release methane (CH4). The peatland carbon (C) balance depends on the interplay of decomposer and CH4-cycling microbes, vegetation, and environmental conditions. These interactions are susceptible to the changes that occur along a successional gradient from vascular plant-dominated systems to Sphagnum moss-dominated systems. Changes similar to this succession are predicted to occur from climate change. Here, we investigated how microbial and plant communities are interlinked with each other and with ecosystem C cycling along a successional gradient on a boreal land uplift coast. The gradient ranged from shoreline to meadows and fens, and further to bogs. Potential microbial activity (aerobic CO2 production; CH4 production and oxidation) and biomass were greatest in the early successional meadows, although their communities of aerobic decomposers (fungi, actinobacteria), methanogens, and methanotrophs did not differ from the older fens. Instead, the functional microbial communities shifted at the fen–bog transition concurrent with a sudden decrease in C fluxes. The successional patterns of decomposer versus CH4-cycling communities diverged at the bog stage, indicating strong but distinct microbial responses to Sphagnum dominance and acidity. We highlight young meadows as dynamic sites with the greatest microbial potential for C release. These hot spots of C turnover with dense sedge cover may represent a sensitive bottleneck in succession, which is necessary for eventual long-term peat accumulation. The distinctive microbes in bogs could serve as indicators of the C sink function in restoration measures that aim to stabilize the C in the peat.
Collapse
|
27
|
Heffernan L, Jassey VEJ, Frederickson M, MacKenzie MD, Olefeldt D. Constraints on potential enzyme activities in thermokarst bogs: Implications for the carbon balance of peatlands following thaw. GLOBAL CHANGE BIOLOGY 2021; 27:4711-4726. [PMID: 34164885 DOI: 10.1111/gcb.15758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/04/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
Northern peatlands store a globally significant amount of soil organic carbon, much of it found in rapidly thawing permafrost. Permafrost thaw in peatlands often leads to the development and expansion of thermokarst bogs, where microbial activity will determine the stability of the carbon storage and the release of greenhouse gases. In this study, we compared potential enzyme activities between young (thawed ~30 years ago) and mature (~200 years) thermokarst bogs, for both shallow and deep peat layers. We found very low potential enzyme activities in deep peat layers, with no differences between the young and mature bogs. Peat quality at depth was found to be highly humified (FTIR analysis) in both the young and mature bogs. This suggests that deep, old peat was largely stable following permafrost thaw, without a rapid pulse of decomposition during the young bog stage. For near-surface peat, we found significantly higher potential enzyme activities in the young bog than in the mature-associated with differences in peat quality derived from different Sphagnum species. A laboratory incubation of near-surface peat showed that differences in potential enzyme activity were primarily influenced by peat type rather than oxygen availability. This suggested that the young bog can have higher rates of near-surface decomposition despite being substantially wetter than the mature bog. Overall, our study shows that peat properties are the dominant constraint on potential enzyme activity and that peatland site development (successional pathways and permafrost history) through its influence on peat type and chemistry is likely to determine peat decomposition following permafrost thaw.
Collapse
Affiliation(s)
- Liam Heffernan
- Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada
| | - Vincent E J Jassey
- Laboratorie d'Ecologie Fonctionelle et Envrionnement, Université de Toulouse, CNRS, Toulouse, France
| | - Maya Frederickson
- Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada
| | - M Derek MacKenzie
- Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada
| | - David Olefeldt
- Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
28
|
Suz LM, Bidartondo MI, van der Linde S, Kuyper TW. Ectomycorrhizas and tipping points in forest ecosystems. THE NEW PHYTOLOGIST 2021; 231:1700-1707. [PMID: 34110018 DOI: 10.1111/nph.17547] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/02/2021] [Indexed: 06/12/2023]
Abstract
The resilience of forests is compromised by human-induced environmental influences pushing them towards tipping points and resulting in major shifts in ecosystem state that might be difficult to reverse, are difficult to predict and manage, and can have vast ecological, economic and social consequences. The literature on tipping points has grown rapidly, but almost exclusively based on aquatic and aboveground systems. So far little effort has been made to make links to soil systems, where change is not as drastically apparent, timescales may differ and recovery may be slower. Predicting belowground ecosystem state transitions and recovery, and their impacts on aboveground systems, remains a major scientific, practical and policy challenge. Recently observed major changes in aboveground tree condition across European forests are probably causally linked to ectomycorrhizal (EM) fungal changes belowground. Based on recent breakthroughs in data collection and analysis, we apply tipping point theory to forests, including their belowground component, focusing on EM fungi; link environmental thresholds for EM fungi with nutrient imbalances in forest trees; explore the role of phenotypic plasticity in EM fungal adaptation to, and recovery from, environmental change; and propose major positive feedback mechanisms to understand, address and predict forest ecosystem tipping points.
Collapse
Affiliation(s)
| | - Martin I Bidartondo
- Royal Botanic Gardens, Kew, TW9 3DS, UK
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Sietse van der Linde
- Netherlands Food and Consumer Product Safety Authority, National Reference Centre, Wageningen, 6706 EA, the Netherlands
| | - Thomas W Kuyper
- Soil Biology Group, Wageningen University & Research, Wageningen, 6700 AA, the Netherlands
| |
Collapse
|
29
|
Lamit LJ, Romanowicz KJ, Potvin LR, Lennon JT, Tringe SG, Chimner RA, Kolka RK, Kane ES, Lilleskov EA. Peatland microbial community responses to plant functional group and drought are depth-dependent. Mol Ecol 2021; 30:5119-5136. [PMID: 34402116 DOI: 10.1111/mec.16125] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 07/14/2021] [Accepted: 07/27/2021] [Indexed: 12/27/2022]
Abstract
Peatlands store one-third of Earth's soil carbon, the stability of which is uncertain due to climate change-driven shifts in hydrology and vegetation, and consequent impacts on microbial communities that mediate decomposition. Peatland carbon cycling varies over steep physicochemical gradients characterizing vertical peat profiles. However, it is unclear how drought-mediated changes in plant functional groups (PFGs) and water table (WT) levels affect microbial communities at different depths. We combined a multiyear mesocosm experiment with community sequencing across a 70-cm depth gradient, to test the hypotheses that vascular PFGs (Ericaceae vs. sedges) and WT (high vs. low) structure peatland microbial communities in depth-dependent ways. Several key results emerged. (i) Both fungal and prokaryote (bacteria and archaea) community structure shifted with WT and PFG manipulation, but fungi were much more sensitive to PFG whereas prokaryotes were much more sensitive to WT. (ii) PFG effects were largely driven by Ericaceae, although sedge effects were evident in specific cases (e.g., methanotrophs). (iii) Treatment effects varied with depth: the influence of PFG was strongest in shallow peat (0-10, 10-20 cm), whereas WT effects were strongest at the surface and middle depths (0-10, 30-40 cm), and all treatment effects waned in the deepest peat (60-70 cm). Our results underline the depth-dependent and taxon-specific ways that plant communities and hydrologic variability shape peatland microbial communities, pointing to the importance of understanding how these factors integrate across soil profiles when examining peatland responses to climate change.
Collapse
Affiliation(s)
- Louis J Lamit
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, Michigan, USA
| | - Karl J Romanowicz
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, Michigan, USA
| | - Lynette R Potvin
- USDA Forest Service Northern Research Station, Houghton, Michigan, USA
| | - Jay T Lennon
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Susannah G Tringe
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Rodney A Chimner
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, Michigan, USA
| | - Randall K Kolka
- USDA Forest Service Northern Research Station, Grand Rapids, Minnesota, USA
| | - Evan S Kane
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, Michigan, USA.,USDA Forest Service Northern Research Station, Houghton, Michigan, USA
| | - Erik A Lilleskov
- USDA Forest Service Northern Research Station, Houghton, Michigan, USA
| |
Collapse
|
30
|
Górecki K, Rastogi A, Stróżecki M, Gąbka M, Lamentowicz M, Łuców D, Kayzer D, Juszczak R. Water table depth, experimental warming, and reduced precipitation impact on litter decomposition in a temperate Sphagnum-peatland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 771:145452. [PMID: 33736185 DOI: 10.1016/j.scitotenv.2021.145452] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/22/2021] [Accepted: 01/23/2021] [Indexed: 06/12/2023]
Abstract
The Tea Bag Index (TBI) method was used to estimate the litter decomposition rate in peatland exposed for climate manipulation (increased temperature and reduced precipitation) at two contrasting sites differing in water table depth (WTD) dynamics. To manipulate climate on peatland, the prototyped Open Top Chambers (OTC) and automated rain-out shelters were used. OTCs increased daytime air temperatures by ~1.7 °C at the driest plots exposed for an increase of air temperature and reduced precipitation, while the increase of the average daily air temperature was lower than 0.9 °C. However, OTCs cooled down the peat temperature even by 0.8 °C and this effect was most pronounced for daytime rather than night-time conditions. The precipitation amount was reduced by 26%. The tea bags were buried at 8 cm depth for 83 and 172 days starting from the 19th of April 2019. Our observation proved that although decomposition rates were dependent on temperature, WTD and its fluctuations are the main factors controlling the rates of litter decomposition in waterlogged ecosystems like ours. At waterlogged Sphagnum-dominated peatlands, the interrelation between different environmental factors may mitigate the impact of warming and reduced precipitation on litter decomposition.
Collapse
Affiliation(s)
- Krzysztof Górecki
- Department of Entomology and Environmental Protection, Faculty of Agronomy, Horticulture and Bioengineering, Poznań University of Life Sciences, Dąbrowskiego 159, 60-594 Poznań, Poland
| | - Anshu Rastogi
- Laboratory of Bioclimatology, Department of Ecology and Environmental Protection, Faculty of Environmental Engineering and Mechanical Engineering, Poznań University of Life Sciences, Piątkowska 94, 60-649 Poznań, Poland
| | - Marcin Stróżecki
- Laboratory of Bioclimatology, Department of Ecology and Environmental Protection, Faculty of Environmental Engineering and Mechanical Engineering, Poznań University of Life Sciences, Piątkowska 94, 60-649 Poznań, Poland
| | - Maciej Gąbka
- Department of Hydrobiology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Mariusz Lamentowicz
- Laboratory of Climate Change Ecology, Faculty of Geographical and Geological Sciences, Adam Mickiewicz University in Poznań, B. Krygowskiego 10, 61-680 Poznań, Poland
| | - Dominika Łuców
- Laboratory of Climate Change Ecology, Faculty of Geographical and Geological Sciences, Adam Mickiewicz University in Poznań, B. Krygowskiego 10, 61-680 Poznań, Poland; Past Landscape Dynamics Laboratory, Institute of Geography and Spatial Organization, Polish Academy of Sciences, Twarda 51/55, Warszawa 00-818, Poland
| | - Dariusz Kayzer
- Department of Mathematical and Statistical Methods, Faculty of Agronomy, Horticulture and Bioengineering, Poznań University of Life Sciences, Wojska Polskiego 28, 60-637 Poznań, Poland
| | - Radosław Juszczak
- Laboratory of Bioclimatology, Department of Ecology and Environmental Protection, Faculty of Environmental Engineering and Mechanical Engineering, Poznań University of Life Sciences, Piątkowska 94, 60-649 Poznań, Poland.
| |
Collapse
|
31
|
Effects of experimental warming on Betula nana epidermal cell growth tested over its maximum climatological growth range. PLoS One 2021; 16:e0251625. [PMID: 34010344 PMCID: PMC8133401 DOI: 10.1371/journal.pone.0251625] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 04/29/2021] [Indexed: 11/19/2022] Open
Abstract
Numerous long-term, free-air plant growth facilities currently explore vegetation responses to the ongoing climate change in northern latitudes. Open top chamber (OTC) experiments as well as the experimental set-ups with active warming focus on many facets of plant growth and performance, but information on morphological alterations of plant cells is still scarce. Here we compare the effects of in-situ warming on leaf epidermal cell expansion in dwarf birch, Betula nana in Finland, Greenland, and Poland. The localities of the three in-situ warming experiments represent contrasting regions of B. nana distribution, with the sites in Finland and Greenland representing the current main distribution in low and high Arctic, respectively, and the continental site in Poland as a B. nana relict Holocene microrefugium. We quantified the epidermal cell lateral expansion by microscopic analysis of B. nana leaf cuticles. The leaves were produced in paired experimental treatment plots with either artificial warming or ambient temperature. At all localities, the leaves were collected in two years at the end of the growing season to facilitate between-site and within-site comparison. The measured parameters included the epidermal cell area and circumference, and using these, the degree of cell wall undulation was calculated as an Undulation Index (UI). We found enhanced leaf epidermal cell expansion under experimental warming, except for the extremely low temperature Greenland site where no significant difference occurred between the treatments. These results demonstrate a strong response of leaf growth at individual cell level to growing season temperature, but also suggest that in harsh conditions other environmental factors may limit this response. Our results provide evidence of the relevance of climate warming for plant leaf maturation and underpin the importance of studies covering large geographical scales.
Collapse
|
32
|
Drought Events over the Amazon River Basin (1993–2019) as Detected by the Climate-Driven Total Water Storage Change. REMOTE SENSING 2021. [DOI: 10.3390/rs13061124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Gravity Recovery and Climate Experiment (GRACE) mission has measured total water storage change (TWSC) and interpreted drought patterns in an unparalleled way since 2002. Nevertheless, there are few sources that can be used to understand drought patterns prior to the GRACE era. In this study, we extended the gridded GRACE TWSC to 1993 by combining principal component analysis (PCA), least square (LS) fitting, and multiple linear regression (MLR) methods using climate variables as input drivers. We used the extended (climate-driven) TWSC to interpret drought patterns (1993–2019) over the Amazon basin. Results showed that, in the Amazon area with the resolution of 0.5°, GRACE, GRACE follow on, and Swarm had correlation coefficients of 0.95, 0.92, and 0.77 compared with climate-driven TWSCS, respectively. The drought patterns assessed by the climate-driven TWSC were consistent with those interpreted by the Palmer Drought Severity Index and GRACE TWSC. We also found that the 1998 and 2016 drought events in the Amazon, both induced by strong El Niño events, showed similar drought patterns. This study provides a new perspective for interpreting long-term drought patterns prior to the GRACE period.
Collapse
|
33
|
Ritson JP, Alderson DM, Robinson CH, Burkitt AE, Heinemeyer A, Stimson AG, Gallego-Sala A, Harris A, Quillet A, Malik AA, Cole B, Robroek BJM, Heppell CM, Rivett DW, Chandler DM, Elliott DR, Shuttleworth EL, Lilleskov E, Cox F, Clay GD, Diack I, Rowson J, Pratscher J, Lloyd JR, Walker JS, Belyea LR, Dumont MG, Longden M, Bell NGA, Artz RRE, Bardgett RD, Griffiths RI, Andersen R, Chadburn SE, Hutchinson SM, Page SE, Thom T, Burn W, Evans MG. Towards a microbial process-based understanding of the resilience of peatland ecosystem service provisioning - A research agenda. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 759:143467. [PMID: 33199011 DOI: 10.1016/j.scitotenv.2020.143467] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/12/2020] [Accepted: 10/24/2020] [Indexed: 06/11/2023]
Abstract
Peatlands are wetland ecosystems with great significance as natural habitats and as major global carbon stores. They have been subject to widespread exploitation and degradation with resulting losses in characteristic biota and ecosystem functions such as climate regulation. More recently, large-scale programmes have been established to restore peatland ecosystems and the various services they provide to society. Despite significant progress in peatland science and restoration practice, we lack a process-based understanding of how soil microbiota influence peatland functioning and mediate the resilience and recovery of ecosystem services, to perturbations associated with land use and climate change. We argue that there is a need to: in the short-term, characterise peatland microbial communities across a range of spatial and temporal scales and develop an improved understanding of the links between peatland habitat, ecological functions and microbial processes; in the medium term, define what a successfully restored 'target' peatland microbiome looks like for key carbon cycle related ecosystem services and develop microbial-based monitoring tools for assessing restoration needs; and in the longer term, to use this knowledge to influence restoration practices and assess progress on the trajectory towards 'intact' peatland status. Rapid advances in genetic characterisation of the structure and functions of microbial communities offer the potential for transformative progress in these areas, but the scale and speed of methodological and conceptual advances in studying ecosystem functions is a challenge for peatland scientists. Advances in this area require multidisciplinary collaborations between peatland scientists, data scientists and microbiologists and ultimately, collaboration with the modelling community. Developing a process-based understanding of the resilience and recovery of peatlands to perturbations, such as climate extremes, fires, and drainage, will be key to meeting climate targets and delivering ecosystem services cost effectively.
Collapse
Affiliation(s)
- Jonathan P Ritson
- School of Environment Education and Development, The University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| | - Danielle M Alderson
- School of Environment Education and Development, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Clare H Robinson
- Department of Earth & Environmental Sciences, The University of Manchester, Williamson Building, Oxford Road, Manchester M13 9PL, UK
| | | | - Andreas Heinemeyer
- Stockholm Environment Institute, Department of Environment & Geography, York YO10 5NG, UK
| | - Andrew G Stimson
- North Pennines AONB Partnership, Weardale Business Centre, The Old Co-op building, 1 Martin Street, Stanhope, County Durham DL13 2UY, UK
| | - Angela Gallego-Sala
- Department of Geography, University of Exeter, Laver, North Park Road, Exeter EX4 4QE, UK
| | - Angela Harris
- Department of Geography, The University of Manchester, Manchester M13 9PL, UK
| | - Anne Quillet
- Department of Geography and Environmental Science, University of Reading, Whiteknights RG6 6AB, UK
| | - Ashish A Malik
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 3UU, UK
| | - Beth Cole
- School of Geography, Geology and the Environment, University of Leicester, LE1 7RH, UK
| | - Bjorn J M Robroek
- Dept. of Aquatic Ecology & Environmental Biology, Institute for Water and Wetlands Research, Radboud University, Nijmegen, the Netherlands
| | - Catherine M Heppell
- School of Geography, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Damian W Rivett
- Department of Natural Sciences, Manchester Metropolitan University, Manchester, UK
| | - Dave M Chandler
- Moors for the Future Partnership, The Moorland Centre, Fieldhead, Edale, Derbyshire S33 7ZA, UK
| | - David R Elliott
- Environmental Sustainability Research Centre, University of Derby, Derby DE22 1GB, UK
| | - Emma L Shuttleworth
- School of Environment Education and Development, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Erik Lilleskov
- USDA Forest Service, Northern Research Station, Houghton, MI 49931, USA
| | - Filipa Cox
- Department of Earth and Environmental Sciences, University of Manchester, M13 9PL, UK
| | - Gareth D Clay
- School of Environment Education and Development, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Iain Diack
- Natural England, Parkside Court, Hall Park Way, Telford, Shropshire TF3 4LR, UK
| | - James Rowson
- Department of Geography and Geology, Edge Hill University, St Helens Road, Ormskirk Lancs L39 4QP, UK
| | - Jennifer Pratscher
- School of Energy, Geoscience, Infrastructure and Society, The Lyell Centre, Heriot-Watt University, Edinburgh EH14 4AP, UK
| | - Jonathan R Lloyd
- Department of Earth & Environmental Sciences, The University of Manchester, Williamson Building, Oxford Road, Manchester M13 9PL, UK
| | | | - Lisa R Belyea
- School of Geography, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Marc G Dumont
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Mike Longden
- Lancashire Wildlife Trust, 499-511 Bury new road, Bolton Bl2 6DH, UK
| | - Nicholle G A Bell
- School of Chemistry, University of Edinburgh, King's Buildings, David Brewster Road, Edinburgh EH93FJ, UK
| | - Rebekka R E Artz
- Ecological Sciences, The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK
| | - Richard D Bardgett
- Department of Earth and Environmental Sciences, The University of Manchester, Manchester M13 9PT, UK
| | | | - Roxane Andersen
- Environmental Research Institute, University of the Highlands and Islands, Castle St., Thurso KW14 7JD, UK
| | - Sarah E Chadburn
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Stocker Road, Exeter EX4 4PY, UK
| | - Simon M Hutchinson
- School of Science, Engineering and Environment, University of Salford, Salford M5 4WT, UK
| | - Susan E Page
- School of Geography, Geology and the Environment, University of Leicester, LE1 7RH, UK
| | - Tim Thom
- Yorkshire Peat Partnership, Yorkshire Wildlife Trust, Unit 23, Skipton Auction Mart, Gargrave Road, Skipton, North Yorkshire BD23 1UD, UK
| | - William Burn
- Stockholm Environment Institute, Department of Environment & Geography, York YO10 5NG, UK
| | - Martin G Evans
- School of Environment Education and Development, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| |
Collapse
|
34
|
Robroek BJM, Martí M, Svensson BH, Dumont MG, Veraart AJ, Jassey VEJ. Rewiring of peatland plant–microbe networks outpaces species turnover. OIKOS 2021. [DOI: 10.1111/oik.07635] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Bjorn J. M. Robroek
- Aquatic Ecology and Environmental Biology, Inst. for Water and Wetland Research, Faculty of Science, Radboud Univ. Nijmegen Nijmegen the Netherlands
| | - Magalí Martí
- Thematic Studies – Environmental Change, Linköping Univ. Linköping Sweden
| | - Bo H. Svensson
- Thematic Studies – Environmental Change, Linköping Univ. Linköping Sweden
| | - Marc G. Dumont
- School of Biological Sciences, Faculty of Environmental and Life Sciences, Univ. of Southampton Southampton UK
| | - Annelies J. Veraart
- Aquatic Ecology and Environmental Biology, Inst. for Water and Wetland Research, Faculty of Science, Radboud Univ. Nijmegen Nijmegen the Netherlands
| | - Vincent E. J. Jassey
- Laboratoire d'Ecologie Fonctionnelle et Environnement, Univ. de Toulouse, CNRS Toulouse Cedex France
| |
Collapse
|
35
|
Fortuniak K, Pawlak W, Siedlecki M, Chambers S, Bednorz L. Temperate mire fluctuations from carbon sink to carbon source following changes in water table. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 756:144071. [PMID: 33279194 DOI: 10.1016/j.scitotenv.2020.144071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/12/2020] [Accepted: 11/20/2020] [Indexed: 06/12/2023]
Abstract
The generally-accepted paradigm of wetland response to climate change is that water table drawdown and higher temperatures will cause wetlands to switch from a sink to a source of atmospheric carbon. However, it is hard to find a multi-year, ecosystem scale dataset representative of an undisturbed wetland that clearly demonstrates this paradigm on an annual total basis. Here we provide strong empirical confirmation of the above scenario based on six years of continuous eddy-covariance CO2 and CH4 flux measurements in Biebrza Valley, north-eastern Poland. In wet years the mire was a significant sink of atmospheric carbon (down to -270 ± 70 gC-CO2 m-2 yr-1 against +21.8 ± 3.4 gC-CH4 m-2 yr-1 in 2013) whereas in dry years it constituted a substantial carbon source (releasing up to +130 ± 70 gC-CO2 m-2 yr-1 and +2.6 ± 1.4 gC-CH4 m-2 yr-1 in 2015). Our findings demonstrate that the scenario of positive feedback between wetland carbon release and the present climate change trajectory is realistic and support the need of natural wetland preservation or rewetting. Our findings also indicate that conclusions drawn regarding a wetland's response to changing climate can depend strongly on the chosen period of analysis.
Collapse
Affiliation(s)
- Krzysztof Fortuniak
- Department of Meteorology and Climatology, Faculty of Geographical Sciences, University of Lodz, Lodz, Poland.
| | - Włodzimierz Pawlak
- Department of Meteorology and Climatology, Faculty of Geographical Sciences, University of Lodz, Lodz, Poland.
| | - Mariusz Siedlecki
- Department of Meteorology and Climatology, Faculty of Geographical Sciences, University of Lodz, Lodz, Poland.
| | - Scott Chambers
- Environmental Research, ANSTO, Lucas Heights, Australia.
| | - Leszek Bednorz
- Department of Botany, Faculty of Agronomy, Horticulture and Bioengineering, Poznan University of Life Sciences, Poznan, Poland.
| |
Collapse
|
36
|
Bertrand G, Ponçot A, Pohl B, Lhosmot A, Steinmann M, Johannet A, Pinel S, Caldirak H, Artigue G, Binet P, Bertrand C, Collin L, Magnon G, Gilbert D, Laggoun-Deffarge F, Toussaint ML. Statistical hydrology for evaluating peatland water table sensitivity to simple environmental variables and climate changes application to the mid-latitude/altitude Frasne peatland (Jura Mountains, France). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:141931. [PMID: 33254862 DOI: 10.1016/j.scitotenv.2020.141931] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/30/2020] [Accepted: 08/22/2020] [Indexed: 06/12/2023]
Abstract
Peatlands are habitats for a range of fragile flora and fauna species. Their eco-physicochemical characteristics make them as outstanding global carbon and water storage systems. These ecosystems occupy 3% of the worldwide emerged land surface but represent 30% of the global organic soil carbon and 10% of the global fresh water volumes. In such systems, carbon speciation depends to a large extent on specific redox conditions which are mainly governed by the depth of the water table. Hence, understanding their hydrological variability, that conditions both their ecological and biogeochemical functions, is crucial for their management, especially when anticipating their future evolution under climate change. This study illustrates how long-term monitoring of basic hydro-meteorological parameters combined with statistical modeling can be used as a tool to evaluate i) the horizontal (type of peat), ii) vertical (acrotelm/catotelm continuum) and iii) future hydrological variability. Using cross-correlations between meteorological data (precipitation, potential evapotranspiration) and water table depth (WTD), we primarily highlight the spatial heterogeneity of hydrological reactivity across the Sphagnum-dominated Frasne peatland (French Jura Mountain). Then, a multiple linear regression model allows performing hydrological projections until 2100, according to regionalized IPCC RCP4.5 and 8.5 scenarios. Although WTD remains stable during the first half of 21th century, seasonal trends beyond 2050 show lower WTD in winter and markedly greater WTD in summer. In particular, after 2050, more frequent droughts in summer and autumn should occur, increasing WTD. These projections are completed with risk evaluations for peatland droughts until 2100 that appear to be increasing especially for transition seasons, i.e. May-June and September-October. Comparing these trends with previous evaluations of phenol concentrations in water throughout the vegetative period, considered as a proxy of plant functioning intensity, highlights that these hydrological modifications during transitional seasons could be a great ecological perturbation, especially by affecting Sphagnum metabolism.
Collapse
Affiliation(s)
- Guillaume Bertrand
- University of Bourgogne Franche-Comté, UMR UFC CNRS 6249 Chrono-Environnement, 1- route de Gray 25000 Besançon, 4 place Tharradin, 25200 Montbéliard, France.
| | - Alex Ponçot
- University of Bourgogne Franche-Comté, UMR UFC CNRS 6249 Chrono-Environnement, 1- route de Gray 25000 Besançon, 4 place Tharradin, 25200 Montbéliard, France.
| | - Benjamin Pohl
- Biogéosciences, UMR6282 CNRS, University of Bourgogne Franche-Comté, 6 boulevard Gabriel, F-21000 Dijon, France
| | - Alexandre Lhosmot
- University of Bourgogne Franche-Comté, UMR UFC CNRS 6249 Chrono-Environnement, 1- route de Gray 25000 Besançon, 4 place Tharradin, 25200 Montbéliard, France
| | - Marc Steinmann
- University of Bourgogne Franche-Comté, UMR UFC CNRS 6249 Chrono-Environnement, 1- route de Gray 25000 Besançon, 4 place Tharradin, 25200 Montbéliard, France
| | - Anne Johannet
- IMT Mines Ales, 8, rue Jules Renard, 30319 Alès cedex, France
| | - Sébastien Pinel
- IMT Mines Ales, 8, rue Jules Renard, 30319 Alès cedex, France
| | | | | | - Philippe Binet
- University of Bourgogne Franche-Comté, UMR UFC CNRS 6249 Chrono-Environnement, 1- route de Gray 25000 Besançon, 4 place Tharradin, 25200 Montbéliard, France
| | - Catherine Bertrand
- University of Bourgogne Franche-Comté, UMR UFC CNRS 6249 Chrono-Environnement, 1- route de Gray 25000 Besançon, 4 place Tharradin, 25200 Montbéliard, France
| | - Louis Collin
- EPAGE Syndicat Mixte Haut-Doubs Haute-Loue, 3 rue de la gare, 25560 Frasne, France
| | - Geneviève Magnon
- EPAGE Syndicat Mixte Haut-Doubs Haute-Loue, 3 rue de la gare, 25560 Frasne, France
| | - Daniel Gilbert
- University of Bourgogne Franche-Comté, UMR UFC CNRS 6249 Chrono-Environnement, 1- route de Gray 25000 Besançon, 4 place Tharradin, 25200 Montbéliard, France
| | | | - Marie-Laure Toussaint
- University of Bourgogne Franche-Comté, UMR UFC CNRS 6249 Chrono-Environnement, 1- route de Gray 25000 Besançon, 4 place Tharradin, 25200 Montbéliard, France
| |
Collapse
|
37
|
Kitson E, Bell NGA. The Response of Microbial Communities to Peatland Drainage and Rewetting. A Review. Front Microbiol 2020; 11:582812. [PMID: 33193221 PMCID: PMC7658402 DOI: 10.3389/fmicb.2020.582812] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/30/2020] [Indexed: 11/13/2022] Open
Abstract
Peatlands are significant global carbon stores and play an important role in mediating the flux of greenhouse gasses into the atmosphere. During the 20th century substantial areas of northern peatlands were drained to repurpose the land for industrial or agricultural use. Drained peatlands have dysfunctional microbial communities, which can lead to net carbon emissions. Rewetting of drained peatlands is therefore an environmental priority, yet our understanding of the effects of peatland drainage and rewetting on microbial communities is still incomplete. Here we summarize the last decade of research into the response of the wider microbial community, methane-cycling microorganisms, and micro-fauna to drainage and rewetting in fens and bogs in Europe and North America. Emphasis is placed on current research methodologies and their limitations. We propose targets for future work including: accounting for timescale of drainage and rewetting events; better vertical and lateral coverage of samples across a peatland; the integration of proteomic and metabolomic datasets into functional community analysis; the use of RNA sequencing to differentiate the active community from legacy DNA; and further study into the response of the viral and micro-faunal communities to peatland drainage and rewetting. This review should benefit researchers embarking on studies in wetland microbiology and non-microbiologists working on peatland drainage and rewetting in general.
Collapse
Affiliation(s)
- Ezra Kitson
- EaSTCHEM School of Chemistry, University of Edinburgh, Edinburgh, United Kingdom
| | - Nicholle G A Bell
- EaSTCHEM School of Chemistry, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
38
|
Reczuga MK, Seppey CVW, Mulot M, Jassey VE, Buttler A, Słowińska S, Słowiński M, Lara E, Lamentowicz M, Mitchell EA. Assessing the responses of Sphagnum micro-eukaryotes to climate changes using high throughput sequencing. PeerJ 2020; 8:e9821. [PMID: 32999758 PMCID: PMC7505061 DOI: 10.7717/peerj.9821] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 08/05/2020] [Indexed: 11/20/2022] Open
Abstract
Current projections suggest that climate warming will be accompanied by more frequent and severe drought events. Peatlands store ca. one third of the world's soil organic carbon. Warming and drought may cause peatlands to become carbon sources through stimulation of microbial activity increasing ecosystem respiration, with positive feedback effect on global warming. Micro-eukaryotes play a key role in the carbon cycle through food web interactions and therefore, alterations in their community structure and diversity may affect ecosystem functioning and could reflect these changes. We assessed the diversity and community composition of Sphagnum-associated eukaryotic microorganisms inhabiting peatlands and their response to experimental drought and warming using high throughput sequencing of environmental DNA. Under drier conditions, micro-eukaryotic diversity decreased, the relative abundance of autotrophs increased and that of osmotrophs (including Fungi and Peronosporomycetes) decreased. Furthermore, we identified climate change indicators that could be used as early indicators of change in peatland microbial communities and ecosystem functioning. The changes we observed indicate a shift towards a more "terrestrial" community in response to drought, in line with observed changes in the functioning of the ecosystem.
Collapse
Affiliation(s)
- Monika K. Reczuga
- Climate Change Ecology Research Unit, Faculty of Geographical and Geological Sciences, Adam Mickiewicz University, Poznań, Poland
- Laboratory of Soil Biodiversity, University of Neuchâtel, Neuchâtel, Switzerland
- Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Christophe Victor William Seppey
- Laboratory of Soil Biodiversity, University of Neuchâtel, Neuchâtel, Switzerland
- Department of Arctic and Marine Biology, Faculty of Biosciences Fisheries and Economics, University of Tromsø, Tromsø, Norway
| | - Matthieu Mulot
- Laboratory of Soil Biodiversity, University of Neuchâtel, Neuchâtel, Switzerland
| | - Vincent E.J. Jassey
- Laboratoire Ecologie Fonctionelle et Environnement, Université de Toulouse, CNRS, Toulouse Cedex, France
- Ecological Systems Laboratory, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research, Site Lausanne, Switzerland
| | - Alexandre Buttler
- Ecological Systems Laboratory, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research, Site Lausanne, Switzerland
| | - Sandra Słowińska
- Department of Geoecology and Climatology, Institute of Geography and Spatial Organization, Polish Academy of Sciences, Warsaw, Poland
| | - Michał Słowiński
- Past Landscape Dynamics Laboratory, Institute of Geography and Spatial Organization, Polish Academy of Sciences, Warsaw, Poland
| | - Enrique Lara
- Laboratory of Soil Biodiversity, University of Neuchâtel, Neuchâtel, Switzerland
- Real Jardín Botánico, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Mariusz Lamentowicz
- Climate Change Ecology Research Unit, Faculty of Geographical and Geological Sciences, Adam Mickiewicz University, Poznań, Poland
| | - Edward A.D. Mitchell
- Laboratory of Soil Biodiversity, University of Neuchâtel, Neuchâtel, Switzerland
- Jardin Botanique de Neuchâtel, Neuchâtel, Switzerland
| |
Collapse
|
39
|
Zhang H, Amesbury MJ, Piilo SR, Garneau M, Gallego-Sala A, Väliranta MM. Recent Changes in Peatland Testate Amoeba Functional Traits and Hydrology Within a Replicated Site Network in Northwestern Québec, Canada. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00228] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
40
|
Rastogi A, Antala M, Gąbka M, Rosadziński S, Stróżecki M, Brestic M, Juszczak R. Impact of warming and reduced precipitation on morphology and chlorophyll concentration in peat mosses (Sphagnum angustifolium and S. fallax). Sci Rep 2020; 10:8592. [PMID: 32451474 PMCID: PMC7248058 DOI: 10.1038/s41598-020-65032-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 04/15/2020] [Indexed: 12/02/2022] Open
Abstract
Peatlands are one of the most important ecosystems due to their biodiversity and abundant organic compounds; therefore, it is important to observe how different plant species in peatlands react to changing environmental conditions. Sphagnum spp. are the main component of peatlands and are considered as the creator of conditions favorable for carbon storage in the form of peat. Sphagnum angustifolium and Sphagnum fallax are taxonomically very close species. To examine their adaptability to climate change, we studied the morphology and pigment content of these two species from environmental manipulation sites in Poland, where the environment was continuously manipulated for temperature and precipitation. The warming of peat was induced by using infrared heaters, whereas total precipitation was reduced by a curtain that cuts the nighttime precipitation. Morphology of S. angustifolium stayed under climate manipulation relatively stable. However, the main morphological parameters of S. fallax were significantly affected by precipitation reduction. Thus, this study indicates S. angustifolium is better adapted in comparison to S. fallax for drier and warmer conditions.
Collapse
Affiliation(s)
- Anshu Rastogi
- Laboratory of Bioclimatology, Department of Ecology and Environmental Protection, Poznan University of Life Sciences, Piątkowska 94, 60-649, Poznan, Poland.
| | - Michal Antala
- Laboratory of Bioclimatology, Department of Ecology and Environmental Protection, Poznan University of Life Sciences, Piątkowska 94, 60-649, Poznan, Poland
- Department of Plant Physiology, Slovak University of Agriculture, A. Hlinku 2, 94976, Nitra, Slovak Republic
| | - Maciej Gąbka
- Department of Hydrobiology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland.
| | - Stanisław Rosadziński
- Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Marcin Stróżecki
- Laboratory of Bioclimatology, Department of Ecology and Environmental Protection, Poznan University of Life Sciences, Piątkowska 94, 60-649, Poznan, Poland
| | - Marian Brestic
- Department of Plant Physiology, Slovak University of Agriculture, A. Hlinku 2, 94976, Nitra, Slovak Republic
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources Czech University of Life Sciences, 16500 Prague, Czech Republic
| | - Radosław Juszczak
- Laboratory of Bioclimatology, Department of Ecology and Environmental Protection, Poznan University of Life Sciences, Piątkowska 94, 60-649, Poznan, Poland
| |
Collapse
|
41
|
Pardo I, Costas N, Méndez-Fernández L, Martínez-Madrid M, Rodríguez P. Changes in invertebrate community composition allow for consistent interpretation of biodiversity loss in ecological status assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 715:136995. [PMID: 32018107 DOI: 10.1016/j.scitotenv.2020.136995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/27/2020] [Accepted: 01/27/2020] [Indexed: 06/10/2023]
Abstract
Biological communities change in response to human alteration. The response of individual taxa and the community can be used to establish preventive criteria to halt further biodiversity deterioration. Here we explore how consistent are the boundaries between Good and Moderate ecological status derived from classification systems used in North-NW Spain: NORThern Spain Indicators system (NORTI), River type specific multimetric (METI) and Iberian Bio-monitoring Working Party (IBMWP), by using common interpretation of normative definitions of Water Framework Directive. We applied the three classifications to a monitoring dataset of Nalón River basin, comprising samples from different stream types and reference conditions. We applied Threshold Indicator Taxa ANalysis to the invertebrate community along the most relevant environmental pressures and biological impairment gradients represented by the Ecological Quality Ratio (EQR) scores of the classification systems. Only NORTI provided a true community ecological threshold and the change point (cp) 95% quantile (Q95%) range of 0.760 was assumed to be the boundary from Good to Moderate (G/M) status, used to standardize the number of taxa loss in all systems. Since the average number of taxa at reference sites was 34, the estimated loss of sensitive taxa was up to 97.1% in IBMWP, 73.5% in METI and 52.9% in NORTI when passing from Good to Moderate status, revealing very permissive boundaries. The loss of common sensitive taxa in NORTI at Q95% was used as G/M threshold and applied to the other classifications, resulting all in a common biodiversity loss of 21% of sensitive taxa richness at values of NORTI-EQR = 0.760, METI-EQR = 0.818 and IBMWP-EQR = 0.753. Results indicate that significant community changes along pressure gradients allow for establishing quantitative criteria consistent with normative definitions. This understanding derived from Directive monitoring programs can assess the risk that invertebrate communities face in terms of species loss derived from anthropogenic pressures.
Collapse
Affiliation(s)
- Isabel Pardo
- Department of Ecology and Animal Biology, University of Vigo, 36310 Vigo, Spain.
| | - Noemí Costas
- Department of Ecology and Animal Biology, University of Vigo, 36310 Vigo, Spain
| | - Leire Méndez-Fernández
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), 48080 Bilbao, Spain
| | - Maite Martínez-Madrid
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), 48080 Bilbao, Spain
| | - Pilar Rodríguez
- Department of Zoology and Animal Cell Biology, University of the Basque Country (UPV/EHU), 48080 Bilbao, Spain
| |
Collapse
|
42
|
Lamentowicz M, Kajukało-Drygalska K, Kołaczek P, Jassey VEJ, Gąbka M, Karpińska-Kołaczek M. Testate amoebae taxonomy and trait diversity are coupled along an openness and wetness gradient in pine-dominated Baltic bogs. Eur J Protistol 2020; 73:125674. [PMID: 32200296 DOI: 10.1016/j.ejop.2020.125674] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/08/2020] [Accepted: 01/22/2020] [Indexed: 11/26/2022]
Abstract
Sphagnum peatlands host a high abundance of protists, especially testate amoebae. Here, we designed a study to investigate the functional diversity of testate amoebae in relation to wetness and forest cover in Baltic bogs. We provided new data on the influence of openness/wetness gradient on testate amoebae communities, showing significant differences in selected testate amoebae (TA) traits. Three key messages emerged from our investigations: 1) we recorded an effect of peatland surface openness on testate amoebae functional traits that led us to accept the hypothesis that TA traits differ according to light intensity and hydrology. Mixotrophic species were recorded in high relative abundance in open plots, whereas they were nearly absent in forested sites; 2) we revealed a hydrological threshold for the occurrence of mixotrophic testate amoebae that might be very important in terms of peatland functioning and carbon sink vs. source context; and 3) mixotrophic species with organic tests were nearly absent in forested sites that were dominated by heterotrophic species with agglutinated or idiosomic tests. An important message from this study is that taxonomy of TA rather indicates the hydrological gradient whereas traits of mixotrophs the openness gradient.
Collapse
Affiliation(s)
- Mariusz Lamentowicz
- Laboratory of Climate Change Ecology, Faculty of Geographical and Geological Sciences, Adam Mickiewicz University, Poznań, Poland.
| | - Katarzyna Kajukało-Drygalska
- Laboratory of Climate Change Ecology, Faculty of Geographical and Geological Sciences, Adam Mickiewicz University, Poznań, Poland
| | - Piotr Kołaczek
- Laboratory of Climate Change Ecology, Faculty of Geographical and Geological Sciences, Adam Mickiewicz University, Poznań, Poland
| | - Vincent E J Jassey
- ECOLAB, Laboratoire d'Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, Toulouse, France
| | - Maciej Gąbka
- Department of Hydrobiology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poland
| | - Monika Karpińska-Kołaczek
- Laboratory of Climate Change Ecology, Faculty of Geographical and Geological Sciences, Adam Mickiewicz University, Poznań, Poland; Center for the Study of Demographic and Economic Structures in Preindustrial Central and Eastern Europe University of Białystok, Poland
| |
Collapse
|
43
|
Ylänne H, Kaarlejärvi E, Väisänen M, Männistö MK, Ahonen SHK, Olofsson J, Stark S. Removal of grazers alters the response of tundra soil carbon to warming and enhanced nitrogen availability. ECOL MONOGR 2019. [DOI: 10.1002/ecm.1396] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Henni Ylänne
- Arctic Center University of Lapland P.O. Box 122 Rovaniemi FI‐96101 Finland
- Department of Ecology and Genetics University of Oulu P.O. Box 3000 Oulu FI‐90100 Finland
| | - Elina Kaarlejärvi
- Department of Ecology and Environmental Sciences Umeå University Umeå SE‐90187 Sweden
- Department of Biology Vrije Universiteit Brussel (VUB) Pleinlaan 2 Brussel B‐1050 Belgium
| | - Maria Väisänen
- Arctic Center University of Lapland P.O. Box 122 Rovaniemi FI‐96101 Finland
| | - Minna K. Männistö
- Natural Resources Institute Finland (Luke) Eteläranta 55 Rovaniemi FI‐96300 Finland
| | - Saija H. K. Ahonen
- Department of Ecology and Genetics University of Oulu P.O. Box 3000 Oulu FI‐90100 Finland
| | - Johan Olofsson
- Department of Ecology and Environmental Sciences Umeå University Umeå SE‐90187 Sweden
| | - Sari Stark
- Arctic Center University of Lapland P.O. Box 122 Rovaniemi FI‐96101 Finland
| |
Collapse
|
44
|
Jassey VEJ, Signarbieux C. Effects of climate warming on Sphagnum photosynthesis in peatlands depend on peat moisture and species-specific anatomical traits. GLOBAL CHANGE BIOLOGY 2019; 25:3859-3870. [PMID: 31502398 DOI: 10.1111/gcb.14788] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/16/2019] [Indexed: 06/10/2023]
Abstract
Climate change will influence plant photosynthesis by altering patterns of temperature and precipitation, including their variability and seasonality. Both effects may be important for peatlands as the carbon (C) sink potential of these ecosystems depends on the balance between plant C uptake through photosynthesis and microbial decomposition. Here, we show that the effect of climate warming on Sphagnum community photosynthesis toggles from positive to negative as the peatland goes from rainy to dry periods during summer. More particularly, we show that mechanisms of compensation among the dominant Sphagnum species (Sphagnum fallax and Sphagnum medium) stabilize the average photosynthesis and productivity of the Sphagnum community during summer despite rising temperatures and frequent droughts. While warming had a negligible effect on S. medium photosynthetic capacity (Amax ) during rainy periods, Amax of S. fallax increased by 40%. On the opposite, warming exacerbated the negative effects of droughts on S. fallax with an even sharper decrease of its Amax while S. medium Amax remained unchanged. S. medium showed a remarkable resistance to droughts due to anatomical traits favouring its water holding capacity. Our results show that different phenotypic plasticity among dominant Sphagnum species allow the community to cope with rising temperatures and repeated droughts, maintaining similar photosynthesis and productivity over summer in warmed and control conditions. These results are important because they provide information on how soil water content may modulate the effects of climate warming on Sphagnum productivity in boreal peatlands. It further confirms the transitory nature of warming-induced photosynthesis benefits in boreal systems and highlights the vulnerability of the ecosystem to excess warming and drying.
Collapse
Affiliation(s)
- Vincent E J Jassey
- Laboratoire d'Ecologie Fonctionnelle et Environnement, CNRS-INPT, Université de Toulouse, Toulouse, France
- School of Architecture, Civil and Environmental Engineering (ENAC), Ecological Systems Laboratory (ECOS), Ecole Polytechnique Fédérale de Lausanne EPFL, Lausanne, Switzerland
- WSL Swiss Federal Institute for Forest, Snow and Landscape Research, Lausanne, Switzerland
| | - Constant Signarbieux
- School of Architecture, Civil and Environmental Engineering (ENAC), Ecological Systems Laboratory (ECOS), Ecole Polytechnique Fédérale de Lausanne EPFL, Lausanne, Switzerland
- WSL Swiss Federal Institute for Forest, Snow and Landscape Research, Lausanne, Switzerland
- Institute of Geography, University of Neuchatel, Neuchatel, Switzerland
| |
Collapse
|
45
|
Norby RJ, Childs J, Hanson PJ, Warren JM. Rapid loss of an ecosystem engineer: Sphagnum decline in an experimentally warmed bog. Ecol Evol 2019; 9:12571-12585. [PMID: 31788198 PMCID: PMC6875578 DOI: 10.1002/ece3.5722] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/13/2019] [Accepted: 09/15/2019] [Indexed: 01/16/2023] Open
Abstract
Sphagnum mosses are keystone components of peatland ecosystems. They facilitate the accumulation of carbon in peat deposits, but climate change is predicted to expose peatland ecosystem to sustained and unprecedented warming leading to a significant release of carbon to the atmosphere. Sphagnum responses to climate change, and their interaction with other components of the ecosystem, will determine the future trajectory of carbon fluxes in peatlands. We measured the growth and productivity of Sphagnum in an ombrotrophic bog in northern Minnesota, where ten 12.8-m-diameter plots were exposed to a range of whole-ecosystem (air and soil) warming treatments (+0 to +9°C) in ambient or elevated (+500 ppm) CO2. The experiment is unique in its spatial and temporal scale, a focus on response surface analysis encompassing the range of elevated temperature predicted to occur this century, and consideration of an effect of co-occurring CO2 altering the temperature response surface. In the second year of warming, dry matter increment of Sphagnum increased with modest warming to a maximum at 5°C above ambient and decreased with additional warming. Sphagnum cover declined from close to 100% of the ground area to <50% in the warmest enclosures. After three years of warming, annual Sphagnum productivity declined linearly with increasing temperature (13-29 g C/m2 per °C warming) due to widespread desiccation and loss of Sphagnum. Productivity was less in elevated CO2 enclosures, which we attribute to increased shading by shrubs. Sphagnum desiccation and growth responses were associated with the effects of warming on hydrology. The rapid decline of the Sphagnum community with sustained warming, which appears to be irreversible, can be expected to have many follow-on consequences to the structure and function of this and similar ecosystems, with significant feedbacks to the global carbon cycle and climate change.
Collapse
Affiliation(s)
- Richard J. Norby
- Environmental Sciences Division and Climate Change Science InstituteOak Ridge National LaboratoryOak RidgeTNUSA
| | - Joanne Childs
- Environmental Sciences Division and Climate Change Science InstituteOak Ridge National LaboratoryOak RidgeTNUSA
| | - Paul J. Hanson
- Environmental Sciences Division and Climate Change Science InstituteOak Ridge National LaboratoryOak RidgeTNUSA
| | - Jeffrey M. Warren
- Environmental Sciences Division and Climate Change Science InstituteOak Ridge National LaboratoryOak RidgeTNUSA
| |
Collapse
|
46
|
Singer D, Metz S, Unrein F, Shimano S, Mazei Y, Mitchell EAD, Lara E. Contrasted Micro-Eukaryotic Diversity Associated with Sphagnum Mosses in Tropical, Subtropical and Temperate Climatic Zones. MICROBIAL ECOLOGY 2019; 78:714-724. [PMID: 30756135 DOI: 10.1007/s00248-019-01325-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 01/14/2019] [Indexed: 06/09/2023]
Abstract
Sphagnum-dominated ecosystem plays major roles as carbon sinks at the global level. Associated microbial communities, in particular, eukaryotes, play significant roles in nutrient fixation and turnover. In order to understand better the ecological processes driven by these organisms, the first step is to characterise these associated organisms. We characterised the taxonomic diversity, and from this, inferred the functional diversity of microeukaryotes in Sphagnum mosses in tropical, subtropical and temperate climatic zones through an environmental DNA diversity metabarcoding survey of the V9 region of the gene coding for the RNA of the small subunit of the ribosomes (SSU rRNA). As microbial processes are strongly driven by temperatures, we hypothesised that saprotrophy would be highest in warm regions, whereas mixotrophy, an optimal strategy in oligotrophic environments, would peak under colder climates. Phylotype richness was higher in tropical and subtropical climatic zones than in the temperate region, mostly due to a higher diversity of animal parasites (i.e. Apicomplexa). Decomposers, and especially opportunistic yeasts and moulds, were more abundant under warmer climates, while mixotrophic organisms were more abundant under temperate climates. The dominance of decomposers, suggesting a higher heterotrophic activity under warmer climates, is coherent with the generally observed faster nutrient cycling at lower latitudes; this phenomenon is likely enhanced by higher inputs of nutrients most probably brought in the system by Metazoa, such as arthropods.
Collapse
Affiliation(s)
- David Singer
- Laboratory of Soil Biodiversity, Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, CH-2000, Neuchâtel, Switzerland.
- Department of Zoology, Institute of Biosciences, University of São Paulo, São Paulo, 05508-090, Brazil.
| | - Sebastian Metz
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECH), UNSAM-CONICET, Av. Intendente Marino Km 8.200, (B 7130 IWA) Chascomús, Buenos Aires, Argentina
| | - Fernando Unrein
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECH), UNSAM-CONICET, Av. Intendente Marino Km 8.200, (B 7130 IWA) Chascomús, Buenos Aires, Argentina
| | - Satoshi Shimano
- Science Research Center, Hosei University, Fujimi 2-17-1, Chiyoda-ku, Tokyo, 102-8160, Japan
| | - Yuri Mazei
- Department of Hydrobiology, Lomonosov Moscow State University, Leninskiye gory, 1, Moscow, Russia, 119991
| | - Edward A D Mitchell
- Laboratory of Soil Biodiversity, Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, CH-2000, Neuchâtel, Switzerland
- Jardin Botanique de Neuchâtel, Chemin du Pertuis-du-Sault 58, CH-2000, Neuchâtel, Switzerland
| | - Enrique Lara
- Real Jardín Botánico, CSIC, Plaza de Murillo 2, 28014, Madrid, Spain
| |
Collapse
|
47
|
Day NJ, Dunfield KE, Johnstone JF, Mack MC, Turetsky MR, Walker XJ, White AL, Baltzer JL. Wildfire severity reduces richness and alters composition of soil fungal communities in boreal forests of western Canada. GLOBAL CHANGE BIOLOGY 2019; 25:2310-2324. [PMID: 30951220 DOI: 10.1111/gcb.14641] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 02/27/2019] [Accepted: 03/28/2019] [Indexed: 06/09/2023]
Abstract
Wildfire is the dominant disturbance in boreal forests and fire activity is increasing in these regions. Soil fungal communities are important for plant growth and nutrient cycling postfire but there is little understanding of how fires impact fungal communities across landscapes, fire severity gradients, and stand types in boreal forests. Understanding relationships between fungal community composition, particularly mycorrhizas, and understory plant composition is therefore important in predicting how future fire regimes may affect vegetation. We used an extreme wildfire event in boreal forests of Canada's Northwest Territories to test drivers of fungal communities and assess relationships with plant communities. We sampled soils from 39 plots 1 year after fire and 8 unburned plots. High-throughput sequencing (MiSeq, ITS) revealed 2,034 fungal operational taxonomic units. We found soil pH and fire severity (proportion soil organic layer combusted), and interactions between these drivers were important for fungal community structure (composition, richness, diversity, functional groups). Where fire severity was low, samples with low pH had higher total fungal, mycorrhizal, and saprotroph richness compared to where severity was high. Increased fire severity caused declines in richness of total fungi, mycorrhizas, and saprotrophs, and declines in diversity of total fungi and mycorrhizas. The importance of stand age (a surrogate for fire return interval) for fungal composition suggests we could detect long-term successional patterns even after fire. Mycorrhizal and plant community composition, richness, and diversity were weakly but significantly correlated. These weak relationships and the distribution of fungi across plots suggest that the underlying driver of fungal community structure is pH, which is modified by fire severity. This study shows the importance of edaphic factors in determining fungal community structure at large scales, but suggests these patterns are mediated by interactions between fire and forest stand composition.
Collapse
Affiliation(s)
- Nicola J Day
- Wilfrid Laurier University, Waterloo, Ontario, Canada
| | | | - Jill F Johnstone
- University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- University of Alaska Fairbanks, Fairbanks, Alaska
| | | | | | | | | | | |
Collapse
|
48
|
Defrenne CE, Philpott TJ, Guichon SHA, Roach WJ, Pickles BJ, Simard SW. Shifts in Ectomycorrhizal Fungal Communities and Exploration Types Relate to the Environment and Fine-Root Traits Across Interior Douglas-Fir Forests of Western Canada. FRONTIERS IN PLANT SCIENCE 2019; 10:643. [PMID: 31191571 PMCID: PMC6547044 DOI: 10.3389/fpls.2019.00643] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 04/29/2019] [Indexed: 05/20/2023]
Abstract
Large-scale studies that examine the responses of ectomycorrhizal fungi across biogeographic gradients are necessary to assess their role in mediating current and predicted future alterations in forest ecosystem processes. We assessed the extent of environmental filtering on interior Douglas-fir (Pseudotsuga menziesii var. glauca (Beissn.) Franco) ectomycorrhizal fungal communities across regional gradients in precipitation, temperature, and soil fertility in interior Douglas-fir dominated forests of western Canada. We also examined relationships between fine-root traits and mycorrhizal fungal exploration types by combining root and fungal trait measurements with next-generation sequencing. Temperature, precipitation, and soil C:N ratio affected fungal community dissimilarity and exploration type abundance but had no effect on α-diversity. Fungi with rhizomorphs (e.g., Piloderma sp.) or proteolytic abilities (e.g., Cortinarius sp.) dominated communities in warmer and less fertile environments. Ascomycetes (e.g., Cenococcum geophilum) or shorter distance explorers, which potentially cost the plant less C, were favored in colder/drier climates where soils were richer in total nitrogen. Environmental filtering of ectomycorrhizal fungal communities is potentially related to co-evolutionary history between Douglas-fir populations and fungal symbionts, suggesting success of interior Douglas-fir as climate changes may be dependent on maintaining strong associations with local communities of mycorrhizal fungi. No evidence for a link between root and fungal resource foraging strategies was found at the regional scale. This lack of evidence further supports the need for a mycorrhizal symbiosis framework that is independent of root trait frameworks, to aid in understanding belowground plant uptake strategies across environments.
Collapse
Affiliation(s)
- Camille E. Defrenne
- Department of Forest and Conservation Sciences, Faculty of Forestry, The University of British Columbia, Vancouver, BC, Canada
| | - Timothy J. Philpott
- Ministry of Forests, Lands, Natural Resource Operations and Rural Development, Cariboo-Chilcotin Natural Resource District, Williams Lake, BC, Canada
| | - Shannon H. A. Guichon
- Stable Isotope Facility, Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, Canada
| | - W. Jean Roach
- Skyline Forestry Consultants Ltd., Kamloops, BC, Canada
| | - Brian J. Pickles
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Suzanne W. Simard
- Department of Forest and Conservation Sciences, Faculty of Forestry, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
49
|
Lamentowicz M, Gałka M, Marcisz K, Słowiński M, Kajukało-Drygalska K, Dayras MD, Jassey VEJ. Unveiling tipping points in long-term ecological records from Sphagnum-dominated peatlands. Biol Lett 2019; 15:20190043. [PMID: 30940021 PMCID: PMC6501361 DOI: 10.1098/rsbl.2019.0043] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 03/06/2019] [Indexed: 11/12/2022] Open
Abstract
Unveiling past tipping points is a prerequisite for a better understanding of how individual species and entire ecosystems will respond to future climate change. Such knowledge is key for the implementation of biodiversity conservation. We identify the relationships between peatland vegetation and hydrological conditions over the past 2000 years using plant macrofossils, testate amoebae-based quantitative hydrological reconstructions and Sphagnum-moss functional traits from seven Polish peatland records. Using threshold indicator taxa analysis, we discovered that plant community composition strongly converged at a water level of ca 11.7 cm, indicating a community-level tipping point. We identified 45 plant taxa that showed either an increase or a decrease in their relative abundance between 8 and 17 cm of water-level depth. Our analysis of Sphagnum community traits further showed that Sphagnum functional diversity was remarkably stable over time despite Sphagnum species sensitivity to hydrological conditions. Our results suggest that past hydrological shifts did not influence major functions of the Sphagnum community, such as photosynthetic capacity, growth and productivity, owing to species replacement with a similar functional space. Although further studies including trait plasticity will be required, our findings suggest that the capacity of the Sphagnum community to gain carbon remained stable despite hydrological changes.
Collapse
Affiliation(s)
- Mariusz Lamentowicz
- Laboratory of Wetland Ecology and Monitoring, Adam Mickiewicz University, 61-680 Poznań, Poland
- Department of Biogeography and Palaeoecology, Adam Mickiewicz University, 61-680 Poznań, Poland
| | - Mariusz Gałka
- Department of Geobotany and Plant Ecology, Faculty of Biology and Environmental Protection, University of Łódź, 90-237 Łódź, Poland
| | - Katarzyna Marcisz
- Laboratory of Wetland Ecology and Monitoring, Adam Mickiewicz University, 61-680 Poznań, Poland
- Department of Biogeography and Palaeoecology, Adam Mickiewicz University, 61-680 Poznań, Poland
| | - Michał Słowiński
- Department of Environmental Resources and Geohazards, Institute of Geography and Spatial Organisation, Polish Academy of Sciences, 00-818 Warsaw, Poland
| | - Katarzyna Kajukało-Drygalska
- Laboratory of Wetland Ecology and Monitoring, Adam Mickiewicz University, 61-680 Poznań, Poland
- Department of Biogeography and Palaeoecology, Adam Mickiewicz University, 61-680 Poznań, Poland
| | - Milva Druguet Dayras
- Laboratoire d'Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS-INPT, 31062 Toulouse, France
| | - Vincent E. J. Jassey
- Laboratoire d'Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS-INPT, 31062 Toulouse, France
| |
Collapse
|
50
|
Słowiński M, Lamentowicz M, Łuców D, Barabach J, Brykała D, Tyszkowski S, Pieńczewska A, Śnieszko Z, Dietze E, Jażdżewski K, Obremska M, Ott F, Brauer A, Marcisz K. Paleoecological and historical data as an important tool in ecosystem management. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 236:755-768. [PMID: 30776550 DOI: 10.1016/j.jenvman.2019.02.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 01/29/2019] [Accepted: 02/01/2019] [Indexed: 06/09/2023]
Abstract
In recent decades, it has been observed that most forest fires in Europe were caused by people. Extreme droughts, which are more often prolonged, can increase the risk of forest fires, not only in southern Europe but also, in Central Europe. Nonetheless, catastrophic fire events are not well recognized in the Central European Lowlands (CEL), where large forest complexes are located. Knowledge of past fire activity in this part of Europe is scarce, although several fires have occurred in this area during the previous millennia. Large coniferous forest monocultures located in the CEL are highly susceptible to fires and other disturbances. Here, we present a case study from the Tuchola Pinewoods (TP; northern Poland), where large pine monocultures are present. The main aim of this study is to document the potential effects past land management has on modern day disturbance regimes using state-of-the-art paleoecological data, historical documents and cartographic materials. We then present a protocol that will help forest managers utilize long-term paleoecological records. Based on paleoecological investigations, historical documents, and cartographic materials, our results show that, in the past 300 years, the TP witnessed not only disastrous fires and but also windfalls by tornados and insect outbreaks. A change in management from Polish to Prussian/German in the 18th century led to the transformation of mixed forests into Scots pine monocultures with the purpose to allow better economic use of the forest. Those administrative decisions led to an ecosystem highly susceptible to disturbances. This article provides a critical review of past forest management as well as future research directions related to the impacts of fire risk on land management and ecosystem services: (a) habitat composition and structure (biodiversity); (b) natural water management; and (c) mitigation of climate changes. Designated forest conditions, management, and future fire risk are a controversial and highly debated topic of forest management by Forestry Units. More research will allow the gathering of reliable information pertinent to management practices with regard to the current fire risks. It is necessary to develop a dialog between scientists and managers to reduce the risk of fires in projected climate change.
Collapse
Affiliation(s)
- Michał Słowiński
- Department of Environmental Resources and Geohazards, Institute of Geography and Spatial Organisation, Polish Academy of Sciences, Twarda 51/55, 00-818, Warsaw, Poland.
| | - Mariusz Lamentowicz
- Laboratory of Wetland Ecology and Monitoring & Department of Biogeography and Paleoecology, Adam Mickiewicz University, Bogumiła Krygowskiego 10, 61-680, Poznań, Poland
| | - Dominika Łuców
- Department of Environmental Resources and Geohazards, Institute of Geography and Spatial Organisation, Polish Academy of Sciences, Twarda 51/55, 00-818, Warsaw, Poland; Laboratory of Wetland Ecology and Monitoring & Department of Biogeography and Paleoecology, Adam Mickiewicz University, Bogumiła Krygowskiego 10, 61-680, Poznań, Poland
| | - Jan Barabach
- Laboratory of Wetland Ecology and Monitoring & Department of Biogeography and Paleoecology, Adam Mickiewicz University, Bogumiła Krygowskiego 10, 61-680, Poznań, Poland
| | - Dariusz Brykała
- Department of Environmental Resources and Geohazards, Institute of Geography and Spatial Organisation, Polish Academy of Sciences, Twarda 51/55, 00-818, Warsaw, Poland
| | - Sebastian Tyszkowski
- Department of Environmental Resources and Geohazards, Institute of Geography and Spatial Organisation, Polish Academy of Sciences, Twarda 51/55, 00-818, Warsaw, Poland
| | - Anna Pieńczewska
- Institute of Geography, Kazimierz Wielki University, Pl. Kościeleckich 8, 85-033, Bydgoszcz, Poland
| | - Zbigniew Śnieszko
- Institute of Geography, Kazimierz Wielki University, Pl. Kościeleckich 8, 85-033, Bydgoszcz, Poland
| | - Elisabeth Dietze
- Alfred-Wegener-Institute Helmholtz-Centre for Polar and Marine Research, Research Unit Potsdam, Telegrafenberg, D-14473, Potsdam, Germany
| | | | - Milena Obremska
- Institute of Geological Sciences, Polish Academy of Sciences, Twarda 51/55, 00-818, Warsaw, Poland
| | - Florian Ott
- GFZ German Research Centre for Geosciences, Section 5.2 - Climate Dynamics and Landscape Evolution, Telegrafenberg C, D-14473, Potsdam, Germany; Max Planck Institute for the Science of Human History, Kahlaische Str. 10, 07743, Jena, Germany
| | - Achim Brauer
- GFZ German Research Centre for Geosciences, Section 5.2 - Climate Dynamics and Landscape Evolution, Telegrafenberg C, D-14473, Potsdam, Germany
| | - Katarzyna Marcisz
- Laboratory of Wetland Ecology and Monitoring & Department of Biogeography and Paleoecology, Adam Mickiewicz University, Bogumiła Krygowskiego 10, 61-680, Poznań, Poland
| |
Collapse
|