1
|
Ren Z, Gao H, Martyniuk N, Ren H, Xiong X, Luo W. Dual-Domain Primary Succession of Bacteria in Glacier Forefield Streams and Soils of a Maritime and Continental Glacier. MICROBIAL ECOLOGY 2025; 88:5. [PMID: 39954056 PMCID: PMC11829940 DOI: 10.1007/s00248-024-02486-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 12/23/2024] [Indexed: 02/17/2025]
Abstract
Glaciers retreat rapidly and create newly exposed terrestrial and aquatic habitats in glacier forefields, where primary succession proceeds synchronously in glacier forefields. Here, we introduced the "Dual-Domain Primary Succession" concept to examine the parallel yet distinct primary succession processes in soil and stream ecosystems within glacier forefields, by focusing on Hailuogou Glacier and Urumqi Glacier No.1 in China. Findings showed that soil bacterial communities exhibited higher α-diversity with a decreasing pattern in Hailuogou Glacier, in contrast to Urumqi Glacier No.1, which displayed lower and unimodally distributed α-diversity along the glacier forefield chronosequence (GFC). A similar pattern emerged in streams, except for an increasing α-diversity trend in Urumqi Glacier No.1 stream along the GFC. Additionally, α-diversity in streams changed more rapidly than in soils for Hailuogou Glacier, but more slowly for Urumqi Glacier No.1. Along GFC, both soil and stream bacterial communities experienced spatial variations, primarily due to species turnover. The succession of community composition was evident at the OTU level, with each module in the co-occurrence network consisting of OTUs enriched at specific successional stages. A substantial number of OTUs shared between paired soil and stream samples showed a decreasing trend along the GFC, while β-diversity increased. The results suggested that bacterial communities have a similar succession pattern but in different pace between soil and stream while having distinct successional trajectories between the studied glaciers. This study highlighted the "Dual-Domain Primary Succession" in glacier forefields, but further studies with more glaciers are necessary to make broader generalizations.
Collapse
Affiliation(s)
- Ze Ren
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Hongkai Gao
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, 200241, China
| | - Nicolas Martyniuk
- Laboratorio de Limnología, INIBIOMA, CONICET-Universidad Nacional del Comahue, Quintral 1250, 8400, Bariloche, Argentina
| | - Heng Ren
- Linze Inland River Basin Research Station, Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, Gansu, China
| | - Xiong Xiong
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Wei Luo
- Key Laboratory of Polar Science, Ministry of Natural Resources, Polar Research Institute of China, Shanghai, 200136, China.
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, 200030, China.
- The Technology and Equipment Engineering Centre for Polar Observations, Zhejiang University, Zhoushan, 316000, China.
| |
Collapse
|
2
|
Olsson-Francis K, Doran PT, Ilyin V, Raulin F, Rettberg P, Kminek G, Mier MPZ, Coustenis A, Hedman N, Shehhi OA, Ammannito E, Bernardini J, Fujimoto M, Grasset O, Groen F, Hayes A, Gallagher S, Kumar K P, Mustin C, Nakamura A, Seasly E, Suzuki Y, Peng J, Prieto-Ballesteros O, Sinibaldi S, Xu K, Zaitsev M. The COSPAR Planetary Protection Policy for robotic missions to Mars: A review of current scientific knowledge and future perspectives. LIFE SCIENCES IN SPACE RESEARCH 2023; 36:27-35. [PMID: 36682826 DOI: 10.1016/j.lssr.2022.12.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Planetary protection guidance for martian exploration has become a notable point of discussion over the last decade. This is due to increased scientific interest in the habitability of the red planet with updated techniques, missions becoming more attainable by smaller space agencies, and both the private sector and governments engaging in activities to facilitate commercial opportunities and human-crewed missions. The international standards for planetary protection have been developed through consultation with the scientific community and the space agencies by the Committee on Space Research's (COSPAR) Panel on Planetary Protection, which provides guidance for compliance with the Outer Space Treaty of 1967. In 2021, the Panel evaluated recent scientific data and literature regarding the planetary protection requirements for Mars and the implications of this on the guidelines. In this paper, we discuss the COSPAR Planetary Protection Policy for Mars, review the new scientific findings and discuss the next steps required to enable the next generation of robotic missions to Mars.
Collapse
Affiliation(s)
- Karen Olsson-Francis
- AstrobiologyOU, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes, UK.
| | - Peter T Doran
- Department of Geology and Geophysics, Louisiana State, Baton Rouge, Louisiana, USA
| | - Vyacheslav Ilyin
- Institute for Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Francois Raulin
- Univ Paris Est Cr Univ Paris Est Créteil and Université Paris Cité, CNRS, LISA, F-94010 Créteil, France
| | - Petra Rettberg
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Research Group Astrobiology, 51147 Cologne, Germany
| | | | - María-Paz Zorzano Mier
- Centro deAstrobiología (CAB), CSIC-INTA, Carretera de Ajalvir km 4, 28850 Torrejón de Ardoz, Madrid, Spain
| | - Athena Coustenis
- LESIA, Paris Observatory, PSL University, CNRS, Paris University, 92195 Meudon Cedex, France
| | - Niklas Hedman
- Committee, Policy and Legal Affairs Section, Office for Outer Space Affairs, United Nations Office at Vienna, Austria
| | | | | | - James Bernardini
- Office of Safety and Mission Assurance, NASA Headquarters, Washington, DC 20546, USA
| | - Masaki Fujimoto
- Japan Aerospace Exploration Agency (JAXA), Institute of Space and Astronautical Science (ISAS), Kanagawa, Japan
| | | | - Frank Groen
- Office of Safety and Mission Assurance, NASA Headquarters, Washington, DC 20546, USA
| | - Alex Hayes
- Cornell University, Ithaca, NY 14853-6801, USA
| | - Sarah Gallagher
- Institute of Earth and Space Exploration, Western University, London, Ontario, Canada
| | | | | | - Akiko Nakamura
- Department of Earth and Planetary Science, The University of Tokyo,7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Elaine Seasly
- Office of Safety and Mission Assurance, NASA Headquarters, Washington, DC 20546, USA
| | - Yohey Suzuki
- Department of Earth and Planetary Science, The University of Tokyo,7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Jing Peng
- China National Space Administration, Beijing, China
| | - Olga Prieto-Ballesteros
- Centro deAstrobiología (CAB), CSIC-INTA, Carretera de Ajalvir km 4, 28850 Torrejón de Ardoz, Madrid, Spain
| | | | - Kanyan Xu
- Laboratory of Space Microbiology, Shenzhou Space Biotechnology Group, Chinese Academy of Space Technology, Beijing, China
| | - Maxim Zaitsev
- Planetary Physics Dept., Space Research Inst. of Russian Acad. of Sciences, Moscow, Russia
| |
Collapse
|
3
|
Guo B, Li W, Santibáñez P, Priscu JC, Liu Y, Liu K. Organic matter distribution in the icy environments of Taylor Valley, Antarctica. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 841:156639. [PMID: 35697215 DOI: 10.1016/j.scitotenv.2022.156639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/07/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Glaciers can accumulate and release organic matter affecting the structure and function of associated terrestrial and aquatic ecosystems. We analyzed 18 ice cores collected from six locations in Taylor Valley (McMurdo Dry Valleys), Antarctica to determine the spatial abundance and quality of organic matter, and the spatial distribution of bacterial density and community structure from the terminus of the Taylor Glacier to the coast (McMurdo Sound). Our results showed that dissolved and particulate organic carbon (DOC and POC) concentrations in the ice core samples increased from the Taylor Glacier to McMurdo Sound, a pattern also shown by bacterial cell density. Fluorescence Excitation Emission Matrices Spectroscopy (EEMs) and multivariate parallel factor (PARAFAC) modeling identified one humic-like (C1) and one protein-like (C2) component in ice cores whose fluorescent intensities all increased from the Polar Plateau to the coast. The fluorescence index showed that the bioavailability of dissolved organic matter (DOM) also decreased from the Polar Plateau to the coast. Partial least squares path modeling analysis revealed that bacterial abundance was the main positive biotic factor influencing both the quantity and quality of organic matter. Marine aerosol influenced the spatial distribution of DOC more than katabatic winds in the ice cores. Certain bacterial taxa showed significant correlations with DOC and POC concentrations. Collectively, our results show the tight connectivity among organic matter spatial distribution, bacterial abundance and meteorology in the McMurdo Dry Valley ecosystem.
Collapse
Affiliation(s)
- Bixi Guo
- State Key Laboratory of Tibetan Plateau Earth System Science (LATPES), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; Polar Oceans Research Group, Sheridan, MT 59749, USA
| | - Wei Li
- Polar Oceans Research Group, Sheridan, MT 59749, USA; Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, CA 94550, USA
| | - Pamela Santibáñez
- Ministry of Science, Technology, Knowledge, & Innovation, Punta Arenas 6200000, Chile
| | - John C Priscu
- Polar Oceans Research Group, Sheridan, MT 59749, USA.
| | - Yongqin Liu
- State Key Laboratory of Tibetan Plateau Earth System Science (LATPES), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; Center for the Pan-Third Pole Environment, Lanzhou University, Lanzhou 730000, China
| | - Keshao Liu
- State Key Laboratory of Tibetan Plateau Earth System Science (LATPES), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
4
|
Glaciers as microbial habitats: current knowledge and implication. J Microbiol 2022; 60:767-779. [DOI: 10.1007/s12275-022-2275-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/04/2022] [Accepted: 07/04/2022] [Indexed: 10/16/2022]
|
5
|
Liu Y, Ji M, Yu T, Zaugg J, Anesio AM, Zhang Z, Hu S, Hugenholtz P, Liu K, Liu P, Chen Y, Luo Y, Yao T. A genome and gene catalog of glacier microbiomes. Nat Biotechnol 2022; 40:1341-1348. [PMID: 35760913 DOI: 10.1038/s41587-022-01367-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/19/2022] [Indexed: 12/31/2022]
Abstract
Glaciers represent a unique inventory of microbial genetic diversity and a record of evolution. The Tibetan Plateau contains the largest area of low-latitude glaciers and is particularly vulnerable to global warming. By sequencing 85 metagenomes and 883 cultured isolates from 21 Tibetan glaciers covering snow, ice and cryoconite habitats, we present a specialized glacier microbial genome and gene catalog to archive glacial genomic and functional diversity. This comprehensive Tibetan Glacier Genome and Gene (TG2G) catalog includes 883 genomes and 2,358 metagenome-assembled genomes, which represent 968 candidate species spanning 30 phyla. The catalog also contains over 25 million non-redundant protein-encoding genes, the utility of which is demonstrated by the exploration of secondary metabolite biosynthetic potentials, virulence factor identification and global glacier metagenome comparison. The TG2G catalog is a valuable resource that enables enhanced understanding of the structure and functions of Tibetan glacial microbiomes.
Collapse
Affiliation(s)
- Yongqin Liu
- Center for Pan-third Pole Environment, Lanzhou University, Lanzhou, China. .,State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China. .,University of Chinese Academy of Sciences, Beijing, China.
| | - Mukan Ji
- Center for Pan-third Pole Environment, Lanzhou University, Lanzhou, China
| | - Tao Yu
- University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Julian Zaugg
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, St. Lucia, QLD, Australia
| | - Alexandre M Anesio
- Department of Environmental Science, iClimate, Aarhus University, Roskilde, Denmark
| | - Zhihao Zhang
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Songnian Hu
- University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Philip Hugenholtz
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, St. Lucia, QLD, Australia
| | - Keshao Liu
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Pengfei Liu
- Center for Pan-third Pole Environment, Lanzhou University, Lanzhou, China
| | - Yuying Chen
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yingfeng Luo
- University of Chinese Academy of Sciences, Beijing, China. .,State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
| | - Tandong Yao
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Mao G, Ji M, Xu B, Liu Y, Jiao N. Variation of High and Low Nucleic Acid-Content Bacteria in Tibetan Ice Cores and Their Relationship to Black Carbon. Front Microbiol 2022; 13:844432. [PMID: 35237252 PMCID: PMC8882866 DOI: 10.3389/fmicb.2022.844432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 01/24/2022] [Indexed: 01/29/2023] Open
Abstract
Nutrient enrichment caused by black carbon (BC) is a major ecological crisis in glacial ecosystems. The microbiological effects of BC were assessed in this study by using fluorescent fingerprinting assay based on flow cytometry (FCM) of bacterial communities with low (LNA) and high (HNA) nucleic acid-content bacteria. Here, we investigated a high-resolution temporal variation of bacterial abundance and LNA/HNA ratio in Tibetan ice cores. Our results revealed that bacterial abundance was proportional to the atmospheric BC on the glaciers. The shift of LNA functional groups to HNA functional groups in glaciers suggested BC emissions increased the proportion of highly active cells. In addition, distinct number of LNA and HNA functional groups was identified between the monsoon and non-monsoon seasons. Westerly winds with high amounts of BC accounted for high ratio of HNA functional groups during the non-monsoon season. In comparison, high moisture during the monsoon season decreased atmospheric BC loading, which increases the ratio of LNA functional groups. Correlations between BC and functional groups were very strong, showing that two functional groups may serve as early-warning indicators of microbiological effects of BC at low trophic level. Our approach provides a potential early-warning framework to study the influences of atmospheric BC on the glaciological community.
Collapse
Affiliation(s)
- Guannan Mao
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Mukan Ji
- Center for the Pan-Third Pole Environment, Lanzhou University, Lanzhou, China
| | - Baiqing Xu
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Yongqin Liu
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
- Center for the Pan-Third Pole Environment, Lanzhou University, Lanzhou, China
- CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Yongqin Liu,
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| |
Collapse
|
7
|
Zhong ZP, Tian F, Roux S, Gazitúa MC, Solonenko NE, Li YF, Davis ME, Van Etten JL, Mosley-Thompson E, Rich VI, Sullivan MB, Thompson LG. Glacier ice archives nearly 15,000-year-old microbes and phages. MICROBIOME 2021; 9:160. [PMID: 34281625 PMCID: PMC8290583 DOI: 10.1186/s40168-021-01106-w] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/31/2021] [Indexed: 05/05/2023]
Abstract
BACKGROUND Glacier ice archives information, including microbiology, that helps reveal paleoclimate histories and predict future climate change. Though glacier-ice microbes are studied using culture or amplicon approaches, more challenging metagenomic approaches, which provide access to functional, genome-resolved information and viruses, are under-utilized, partly due to low biomass and potential contamination. RESULTS We expand existing clean sampling procedures using controlled artificial ice-core experiments and adapted previously established low-biomass metagenomic approaches to study glacier-ice viruses. Controlled sampling experiments drastically reduced mock contaminants including bacteria, viruses, and free DNA to background levels. Amplicon sequencing from eight depths of two Tibetan Plateau ice cores revealed common glacier-ice lineages including Janthinobacterium, Polaromonas, Herminiimonas, Flavobacterium, Sphingomonas, and Methylobacterium as the dominant genera, while microbial communities were significantly different between two ice cores, associating with different climate conditions during deposition. Separately, ~355- and ~14,400-year-old ice were subject to viral enrichment and low-input quantitative sequencing, yielding genomic sequences for 33 vOTUs. These were virtually all unique to this study, representing 28 novel genera and not a single species shared with 225 environmentally diverse viromes. Further, 42.4% of the vOTUs were identifiable temperate, which is significantly higher than that in gut, soil, and marine viromes, and indicates that temperate phages are possibly favored in glacier-ice environments before being frozen. In silico host predictions linked 18 vOTUs to co-occurring abundant bacteria (Methylobacterium, Sphingomonas, and Janthinobacterium), indicating that these phages infected ice-abundant bacterial groups before being archived. Functional genome annotation revealed four virus-encoded auxiliary metabolic genes, particularly two motility genes suggest viruses potentially facilitate nutrient acquisition for their hosts. Finally, given their possible importance to methane cycling in ice, we focused on Methylobacterium viruses by contextualizing our ice-observed viruses against 123 viromes and prophages extracted from 131 Methylobacterium genomes, revealing that the archived viruses might originate from soil or plants. CONCLUSIONS Together, these efforts further microbial and viral sampling procedures for glacier ice and provide a first window into viral communities and functions in ancient glacier environments. Such methods and datasets can potentially enable researchers to contextualize new discoveries and begin to incorporate glacier-ice microbes and their viruses relative to past and present climate change in geographically diverse regions globally. Video Abstract.
Collapse
Affiliation(s)
- Zhi-Ping Zhong
- Byrd Polar and Climate Research Center, Ohio State University, Columbus, OH, USA
- Department of Microbiology, Ohio State University, Columbus, OH, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH, USA
| | - Funing Tian
- Department of Microbiology, Ohio State University, Columbus, OH, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH, USA
| | - Simon Roux
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | - Natalie E Solonenko
- Department of Microbiology, Ohio State University, Columbus, OH, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH, USA
| | - Yueh-Fen Li
- Department of Microbiology, Ohio State University, Columbus, OH, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH, USA
| | - Mary E Davis
- Byrd Polar and Climate Research Center, Ohio State University, Columbus, OH, USA
| | - James L Van Etten
- Department of Plant Pathology and Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Ellen Mosley-Thompson
- Byrd Polar and Climate Research Center, Ohio State University, Columbus, OH, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH, USA
- Department of Geography, Ohio State University, Columbus, OH, USA
| | - Virginia I Rich
- Byrd Polar and Climate Research Center, Ohio State University, Columbus, OH, USA
- Department of Microbiology, Ohio State University, Columbus, OH, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH, USA
| | - Matthew B Sullivan
- Byrd Polar and Climate Research Center, Ohio State University, Columbus, OH, USA.
- Department of Microbiology, Ohio State University, Columbus, OH, USA.
- Center of Microbiome Science, Ohio State University, Columbus, OH, USA.
- Department of Civil, Environmental and Geodetic Engineering, Ohio State University, Columbus, OH, USA.
| | - Lonnie G Thompson
- Byrd Polar and Climate Research Center, Ohio State University, Columbus, OH, USA.
- Center of Microbiome Science, Ohio State University, Columbus, OH, USA.
- School of Earth Sciences, Ohio State University, Columbus, OH, USA.
| |
Collapse
|
8
|
A Perspective of the Cumulative Risks from Climate Change on Mt. Everest: Findings from the 2019 Expedition. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18041928. [PMID: 33671205 PMCID: PMC7922742 DOI: 10.3390/ijerph18041928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 11/29/2022]
Abstract
In 2019, the National Geographic and Rolex Perpetual Planet Everest expedition successfully retrieved the greatest diversity of scientific data ever from the mountain. The confluence of geologic, hydrologic, chemical and microbial hazards emergent as climate change increases glacier melt is significant. We review the findings of increased opportunity for landslides, water pollution, human waste contamination and earthquake events. Further monitoring and policy are needed to ensure the safety of residents, future climbers, and trekkers in the Mt. Everest watershed.
Collapse
|
9
|
Malaska MJ, Bhartia R, Manatt KS, Priscu JC, Abbey WJ, Mellerowicz B, Palmowski J, Paulsen GL, Zacny K, Eshelman EJ, D'Andrilli J. Subsurface In Situ Detection of Microbes and Diverse Organic Matter Hotspots in the Greenland Ice Sheet. ASTROBIOLOGY 2020; 20:1185-1211. [PMID: 32700965 PMCID: PMC7591382 DOI: 10.1089/ast.2020.2241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 05/08/2020] [Indexed: 06/11/2023]
Abstract
We used a deep-ultraviolet fluorescence mapping spectrometer, coupled to a drill system, to scan from the surface to 105 m depth into the Greenland ice sheet. The scan included firn and glacial ice and demonstrated that the instrument is able to determine small (mm) and large (cm) scale regions of organic matter concentration and discriminate spectral types of organic matter at high resolution. Both a linear point cloud scanning mode and a raster mapping mode were used to detect and localize microbial and organic matter "hotspots" embedded in the ice. Our instrument revealed diverse spectral signatures. Most hotspots were <20 mm in diameter, clearly isolated from other hotspots, and distributed stochastically; there was no evidence of layering in the ice at the fine scales examined (100 μm per pixel). The spectral signatures were consistent with organic matter fluorescence from microbes, lignins, fused-ring aromatic molecules, including polycyclic aromatic hydrocarbons, and biologically derived materials such as fulvic acids. In situ detection of organic matter hotspots in ice prevents loss of spatial information and signal dilution when compared with traditional bulk analysis of ice core meltwaters. Our methodology could be useful for detecting microbial and organic hotspots in terrestrial icy environments and on future missions to the Ocean Worlds of our Solar System.
Collapse
Affiliation(s)
- Michael J. Malaska
- Jet Propulsion Laboratory/California Institute of Technology, Pasadena, California, USA
| | | | - Kenneth S. Manatt
- Jet Propulsion Laboratory/California Institute of Technology, Pasadena, California, USA
| | - John C. Priscu
- Department of Land Resources & Environmental Sciences, Montana State University, Bozeman, Montana, USA
| | - William J. Abbey
- Jet Propulsion Laboratory/California Institute of Technology, Pasadena, California, USA
| | | | | | | | - Kris Zacny
- Honeybee Robotics, Altadena, California, USA
| | | | | |
Collapse
|
10
|
Early Last Interglacial ocean warming drove substantial ice mass loss from Antarctica. Proc Natl Acad Sci U S A 2020; 117:3996-4006. [PMID: 32047039 PMCID: PMC7049167 DOI: 10.1073/pnas.1902469117] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The future response of the Antarctic ice sheet to rising temperatures remains highly uncertain. A useful period for assessing the sensitivity of Antarctica to warming is the Last Interglacial (LIG) (129 to 116 ky), which experienced warmer polar temperatures and higher global mean sea level (GMSL) (+6 to 9 m) relative to present day. LIG sea level cannot be fully explained by Greenland Ice Sheet melt (∼2 m), ocean thermal expansion, and melting mountain glaciers (∼1 m), suggesting substantial Antarctic mass loss was initiated by warming of Southern Ocean waters, resulting from a weakening Atlantic meridional overturning circulation in response to North Atlantic surface freshening. Here, we report a blue-ice record of ice sheet and environmental change from the Weddell Sea Embayment at the periphery of the marine-based West Antarctic Ice Sheet (WAIS), which is underlain by major methane hydrate reserves. Constrained by a widespread volcanic horizon and supported by ancient microbial DNA analyses, we provide evidence for substantial mass loss across the Weddell Sea Embayment during the LIG, most likely driven by ocean warming and associated with destabilization of subglacial hydrates. Ice sheet modeling supports this interpretation and suggests that millennial-scale warming of the Southern Ocean could have triggered a multimeter rise in global sea levels. Our data indicate that Antarctica is highly vulnerable to projected increases in ocean temperatures and may drive ice-climate feedbacks that further amplify warming.
Collapse
|
11
|
Eshelman EJ, Malaska MJ, Manatt KS, Doloboff IJ, Wanger G, Willis MC, Abbey WJ, Beegle LW, Priscu JC, Bhartia R. WATSON: In Situ Organic Detection in Subsurface Ice Using Deep-UV Fluorescence Spectroscopy. ASTROBIOLOGY 2019; 19:771-784. [PMID: 30822105 DOI: 10.1089/ast.2018.1925] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Terrestrial icy environments have been found to preserve organic material and contain habitable niches for microbial life. The cryosphere of other planetary bodies may therefore also serve as an accessible location to search for signs of life. The Wireline Analysis Tool for the Subsurface Observation of Northern ice sheets (WATSON) is a compact deep-UV fluorescence spectrometer for nondestructive ice borehole analysis and spatial mapping of organics and microbes, intended to address the heterogeneity and low bulk densities of organics and microbial cells in ice. WATSON can be either operated standalone or integrated into a wireline drilling system. We present an overview of the WATSON instrument and results from laboratory experiments intended to determine (i) the sensitivity of WATSON to organic material in a water ice matrix and (ii) the ability to detect organic material under various thicknesses of ice. The results of these experiments show that in bubbled ice the instrument has a depth of penetration of 10 mm and a detection limit of fewer than 300 cells. WATSON incorporates a scanning system that can map the distribution of organics and microbes over a 75 by 25 mm area. WATSON demonstrates a sensitive fluorescence mapping technique for organic and microbial detection in icy environments including terrestrial glaciers and ice sheets, and planetary surfaces including Europa, Enceladus, or the martian polar caps.
Collapse
Affiliation(s)
- Evan J Eshelman
- 1 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | - Michael J Malaska
- 1 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | - Kenneth S Manatt
- 1 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | - Ivria J Doloboff
- 1 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | - Greg Wanger
- 1 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
- 2 University of Southern California, Los Angeles, California
| | - Madelyne C Willis
- 3 Montana State University, Department of Land Resources and Environmental Science, Bozeman, Montana
| | - William J Abbey
- 1 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | - Luther W Beegle
- 1 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | - John C Priscu
- 3 Montana State University, Department of Land Resources and Environmental Science, Bozeman, Montana
| | - Rohit Bhartia
- 1 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| |
Collapse
|
12
|
Paun VI, Icaza G, Lavin P, Marin C, Tudorache A, Perşoiu A, Dorador C, Purcarea C. Total and Potentially Active Bacterial Communities Entrapped in a Late Glacial Through Holocene Ice Core From Scarisoara Ice Cave, Romania. Front Microbiol 2019; 10:1193. [PMID: 31244788 PMCID: PMC6563852 DOI: 10.3389/fmicb.2019.01193] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 05/13/2019] [Indexed: 01/20/2023] Open
Abstract
Our understanding of the icy-habitat microbiome is likely limited by a lack of reliable data on microorganisms inhabiting underground ice that has accumulated inside caves. To characterize how environmental variation impacts cave ice microbial community structure, we determined the composition of total and potentially active bacterial communities along a 13,000-year-old ice core from Scarisoara cave (Romania) through 16S rRNA gene Illumina sequencing. An average of 2,546 prokaryotic gDNA operational taxonomic units (OTUs) and 585 cDNA OTUs were identified across the perennial cave ice block and analyzed in relation to the geochemical composition of ice layers. The total microbial community and the putative active fraction displayed dissimilar taxa profiles. The ice-contained microbiome was dominated by Actinobacteria with a variable representation of Proteobacteria, while the putative active microbial community was equally shared between Proteobacteria and Firmicutes. Accordingly, a major presence of Cryobacterium, Lysinomonas, Pedobacter, and Aeromicrobium phylotypes homologous to psychrotrophic and psychrophilic bacteria from various cold environments were noted in the total community, while the prevalent putative active bacteria belonged to Clostridium, Pseudomonas, Janthinobacterium, Stenotrophomonas, and Massilia genera. Variation in the microbial cell density of ice strata with the dissolved organic carbon (DOC) content and the strong correlation of DOC and silicon concentrations revealed a major impact of depositional processes on microbial abundance throughout the ice block. Post-depositional processes appeared to occur mostly during the 4,000–7,000 years BP interval. A major bacterial composition shift was observed in 4,500–5,000-year-old ice, leading to a high representation of Beta- and Deltaproteobacteria in the potentially active community in response to the increased concentrations of DOC and major chemical elements. Estimated metabolic rates suggested the presence of a viable microbial community within the cave ice block, characterized by a maintenance metabolism in most strata and growth capacity in those ice deposits with high microbial abundance and DOC content. This first survey of microbial distribution in perennial cave ice formed since the Last Glacial period revealed a complex potentially active community, highlighting major shifts in community composition associated with geochemical changes that took place during climatic events that occurred about 5,000 years ago, with putative formation of photosynthetic biofilms.
Collapse
Affiliation(s)
- Victoria I Paun
- Department of Microbiology, Institute of Biology, Bucharest, Romania
| | - Gonzalo Icaza
- Laboratorio de Complejidad Microbiana y Ecología Funcional, Instituto Antofagasta, Universidad de Antofagasta, Antofagasta, Chile.,Centre for Biotechnology and Bioengineering, Universidad de Antofagasta, Antofagasta, Chile
| | - Paris Lavin
- Laboratorio de Complejidad Microbiana y Ecología Funcional, Instituto Antofagasta, Universidad de Antofagasta, Antofagasta, Chile.,Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
| | - Constantin Marin
- Laboratory of Hydrogeochemistry, "Emil Racovita" Institute of Speleology, Bucharest, Romania
| | - Alin Tudorache
- Laboratory of Hydrogeochemistry, "Emil Racovita" Institute of Speleology, Bucharest, Romania
| | - Aurel Perşoiu
- Department of Microbiology, Institute of Biology, Bucharest, Romania.,"Emil Racovita" Institute of Speleology, Cluj-Napoca, Romania.,Stefan cel Mare University of Suceava, Suceava, Romania
| | - Cristina Dorador
- Laboratorio de Complejidad Microbiana y Ecología Funcional, Instituto Antofagasta, Universidad de Antofagasta, Antofagasta, Chile.,Centre for Biotechnology and Bioengineering, Universidad de Antofagasta, Antofagasta, Chile.,Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
| | - Cristina Purcarea
- Department of Microbiology, Institute of Biology, Bucharest, Romania
| |
Collapse
|
13
|
Bacterial and archaeal community structures in perennial cave ice. Sci Rep 2018; 8:15671. [PMID: 30353134 PMCID: PMC6199274 DOI: 10.1038/s41598-018-34106-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 10/12/2018] [Indexed: 01/08/2023] Open
Abstract
Ice entrenched microcosm represents a vast reservoir of novel species and a proxy for past climate reconstitution. Among glacial ecosystems, ice caves represent one of the scarcely investigated frozen habitats. To characterize the microbial diversity of perennial ice from karst ecosystems, Roche 454 sequencing of 16S rRNA gene amplicons from the underground ice block of Scarisoara Ice Cave (Romania) was applied. The temporal distribution of bacterial and archaeal community structures from newly formed, 400, and 900 years old ice layers was surveyed and analyzed in relation with the age and geochemical composition of the ice substrate. The microbial content of cave ice layers varied from 3.3 104 up to 7.5 105 cells mL−1, with 59–78% viability. Pyrosequencing generated 273,102 reads for the five triplicate ice samples, which corresponded to 3,464 operational taxonomic units (OTUs). The distribution of the bacterial phyla in the perennial cave ice varied with age, organic content, and light exposure. Proteobacteria dominated the 1 and 900 years old organic rich ice deposits, while Actinobacteria was mostly found in 900 years old ice strata, and Firmicutes was best represented in 400 years old ice. Cyanobacteria and Chlorobi representatives were identified mainly from the ice block surface samples exposed to sunlight. Archaea was observed only in older ice strata, with a high incidence of Crenarchaeota and Thaumarchaeaota in the 400 years old ice, while Euryarchaeota dominated the 900 years old ice layers, with Methanomicrobia representing the predominant taxa. A large percentage (55.7%) of 16S rRNA gene amplicons corresponded to unidentified OTUs at genus or higher taxa levels, suggesting a greater undiscovered bacterial diversity in this glacial underground habitat. The prokaryotes distribution across the cave ice block revealed the presence of 99 phylotypes specific for different ice layers, in addition to the shared microbial community. Ice geochemistry represented an important factor that explained the microbial taxa distribution in the cave ice block, while the total organic carbon content had a direct impact on the cell density of the ice microcosm. Both bacterial and archaeal community structures appeared to be affected by climate variations during the ice formation, highlighting the cave ice microbiome as a source of putative paleoclimatic biomarkers. This report constitutes the first high-throughput sequencing study of the cave ice microbiome and its distribution across the perennial underground glacier of an alpine ice cave.
Collapse
|