1
|
Bailey K, Szejner P, Strange B, Nabours R, Monson RK, Hu J. The aridity influence on oxygen isotopes recorded in tree rings. TREE PHYSIOLOGY 2025; 45:tpaf044. [PMID: 40192226 DOI: 10.1093/treephys/tpaf044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 03/22/2025] [Indexed: 05/15/2025]
Abstract
The stable isotopes of oxygen in wood cellulose (δ18Ocell) have been widely used to reconstruct historical source water use in trees or changes in atmospheric humidity. However, in many cases, the δ18O of source water use is assumed to reflect that of precipitation, which is often not the case in semi-arid to arid ecosystems where trees use deeper and older water from previous precipitation events (or even groundwater). Furthermore, the degree to which δ18Ocell reflects source water and atmospheric aridity depends on pex, normally defined as the proportion of oxygen atoms that exchange between isotopically enriched carbohydrates from the leaf and unenriched xylem water during cellulose synthesis. Many studies treat pex as a constant. However, pex can only be estimated with direct measurements of δ18Ocell and the δ18O of tree source water and sucrose. Additionally, other physiological mechanisms (e.g., photosynthate translocation) can alter the isotopic signal before cellulose is produced. Thus, determining this 'apparent pex' (apex; which includes those other physiological mechanisms such as photosynthate translocation plus the exchange of oxygen atoms during cellulose synthesis), can be difficult. In this study, we collected δ18O of xylem water and δ18O of wood cellulose from seven stands of Ponderosa pine situated at the northern boundary of the North American Monsoon (NAM) climate system to assess how potential variability in apex influenced how source water and aridity were recorded in δ18Ocell. We compared measured and modeled values of δ18Ocell and found that more arid sites under-represented the vapor pressure deficit (VPD) signal in cellulose while wetter sites over-represented the VPD signal in cellulose. We also found that apex varied as a function of site aridity, where low precipitation and high VPD led to high apex, while high precipitation and low VPD led to low apex. Future studies can use our emerging understanding of the aridity-apex relationship in different portions of the annual ring to better disentangle the source water and VPD signals in cellulose, particularly for regions such as the NAM region.
Collapse
Affiliation(s)
- Kinzie Bailey
- School of Natural Resources and the Environment, University of Arizona, 1064 East Lowell Street, Tucson, AZ 85721, USA
- Laboratory of Tree Ring Research, University of Arizona, 1215 East Lowell Street, Tucson, AZ 85721, USA
- Northern Prairie Wildlife Research Center, US Geological Survey, 820 Columbus Street, Rapid City, SD 57701, USA
| | - Paul Szejner
- Bioeconomy and Environment Unit, Natural Resources Institute Finland, Latokartanonkaari 9, FI-00790 Helsinki, Finland
| | - Brandon Strange
- School of Natural Resources and the Environment, University of Arizona, 1064 East Lowell Street, Tucson, AZ 85721, USA
- Laboratory of Tree Ring Research, University of Arizona, 1215 East Lowell Street, Tucson, AZ 85721, USA
- School of Informatics, Norther Arizona University, 1295 Knoles Drive, Flagstaff, AZ 86011, USA
| | - Rhiannon Nabours
- School of Natural Resources and the Environment, University of Arizona, 1064 East Lowell Street, Tucson, AZ 85721, USA
| | - Russell K Monson
- Laboratory of Tree Ring Research, University of Arizona, 1215 East Lowell Street, Tucson, AZ 85721, USA
- Department of Evolutionary Biology, University of Arizona, 1041 East Lowell Street, Tucson, AZ 85721, USA
| | - Jia Hu
- School of Natural Resources and the Environment, University of Arizona, 1064 East Lowell Street, Tucson, AZ 85721, USA
- Laboratory of Tree Ring Research, University of Arizona, 1215 East Lowell Street, Tucson, AZ 85721, USA
| |
Collapse
|
2
|
Wei M, Liu M, Ma Y, Tigabu M, Fang K, Guo X, Zheng W, Guo F. Stable isotope analysis in tree rings of conifer species relevant to fire history study. Philos Trans R Soc Lond B Biol Sci 2025; 380:20230466. [PMID: 40241448 PMCID: PMC12004089 DOI: 10.1098/rstb.2023.0466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 04/28/2024] [Accepted: 05/23/2024] [Indexed: 04/18/2025] Open
Abstract
Smoke and particulate matter released from forest fires, affecting the photosynthetic rate and stomatal conductance, may change the isotope composition in tree rings. Therefore, analysis of tree-ring isotopes could be a promising approach to monitor fires. We hypothesized that forest fires could influence the abundance of carbon (δ13C), oxygen (δ18O) and nitrogen (δ15N) isotopes and the radial growth of tree rings of conifers through their impact on the physiological processes. We collected wood cores from four coniferous species in northern and southern China. The isotope composition of these samples was analysed to shed light on the correlation between fire occurrence and tree-ring isotopes. We found that fires led to an increase in δ13C but a decrease in δ15N in the whole wood, while significant increases of above 0.5‰ in δ13C and a decrease of 0.2 to 0.5‰ in δ18O in the α-cellulose were observed. Meteorological factors including precipitation and relative humidity influenced the isotope abundance. Besides, forest fires inhibited the radial growth of conifer trees, particularly Cryptomeria fortunei. Our results suggest that variations in δ13C and δ18O abundance in tree rings play an essential role as an indicator of forest fire occurrence, providing additional insights into the study of fire history.This article is part of the theme issue 'Novel fire regimes under climate changes and human influences: impacts, ecosystem responses and feedbacks'.
Collapse
Affiliation(s)
- Mao Wei
- Fujian Agriculture and Forestry University, Fuzhou, Fujian, People's Republic of China
| | - Mengxia Liu
- Fujian Agriculture and Forestry University, Fuzhou, Fujian, People's Republic of China
| | - Yuanfan Ma
- Fujian Agriculture and Forestry University, Fuzhou, Fujian, People's Republic of China
| | - Mulualem Tigabu
- Fujian Agriculture and Forestry University, Fuzhou, Fujian, People's Republic of China
| | - Keyan Fang
- Fujian Normal University, Fuzhou, Fujian, People's Republic of China
| | - Xinbin Guo
- Fujian Agriculture and Forestry University, Fuzhou, Fujian, People's Republic of China
| | - Wenxia Zheng
- Fujian Agriculture and Forestry University, Fuzhou, Fujian, People's Republic of China
| | - Futao Guo
- Fujian Agriculture and Forestry University, Fuzhou, Fujian, People's Republic of China
| |
Collapse
|
3
|
Peltier DMP, Nguyen P, Ebert C, Koch GW, Schuur EAG, Ogle K. Moisture stress limits radial mixing of non-structural carbohydrates in sapwood of trembling aspen. TREE PHYSIOLOGY 2024; 44:204-216. [PMID: 37387246 DOI: 10.1093/treephys/tpad083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/14/2023] [Accepted: 06/27/2023] [Indexed: 07/01/2023]
Abstract
Dynamics in non-structural carbohydrate (NSC) pools may underlie observed drought legacies in tree growth. We assessed how aridity influences the dynamics of different-aged NSC pools in tree sapwood at two sites with differing climate conditions ('wet' vs 'dry'), which also experienced widespread regional drought 5 years earlier. We used an incubation method to measure the radiocarbon (Δ14C) in CO2 respired from Populus tremuloides Michx. (aspen) tree rings to evaluate NSC storage and mixing patterns, coupled with measurements of NSC (soluble sugars and starch) concentrations and respired δ13C-CO2. At a wet site, CO2 respired from rings formed during 1962-67 was only ~11 years old, suggesting deep sapwood mixing of NSCs as starch. At a dry site, the total NSC was about one-third of wet-site totals, maximum ages in deep rings were lower and ages more rapidly increased in shallow rings and then plateaued. These results suggest historically shallower mixing and/or relatively higher consumption of NSCs under dry conditions. Both sites, however, had similar aged NSC (<1 year) in the most recent six rings, indicative of deep radial mixing following relatively wet conditions during the sampling year. We suggest that the significant differences in NSC mixing among sites are driven by moisture stress, where aridity reduces NSC reserves and restricts the depth of radial mixing. However, dynamic climate conditions in the south-western USA resulted in more complex radial patterns of sapwood NSC age than previously described. We suggest a novel conceptual framework to understand how moisture variability might influence the dynamics of NSC mixing in the sapwood.
Collapse
Affiliation(s)
- Drew M P Peltier
- Center for Ecosystem Science and Society, Northern Arizona University, PO Box 5620, Flagstaff, AZ 86011, USA
| | - Phiyen Nguyen
- Department of Biological Sciences, Northern Arizona University, PO Box 5640, Flagstaff, AZ 86011, USA
| | - Chris Ebert
- Center for Ecosystem Science and Society, Northern Arizona University, PO Box 5620, Flagstaff, AZ 86011, USA
| | - George W Koch
- Center for Ecosystem Science and Society, Northern Arizona University, PO Box 5620, Flagstaff, AZ 86011, USA
- Department of Biological Sciences, Northern Arizona University, PO Box 5640, Flagstaff, AZ 86011, USA
| | - Edward A G Schuur
- Center for Ecosystem Science and Society, Northern Arizona University, PO Box 5620, Flagstaff, AZ 86011, USA
- Department of Biological Sciences, Northern Arizona University, PO Box 5640, Flagstaff, AZ 86011, USA
| | - Kiona Ogle
- Center for Ecosystem Science and Society, Northern Arizona University, PO Box 5620, Flagstaff, AZ 86011, USA
- Department of Biological Sciences, Northern Arizona University, PO Box 5640, Flagstaff, AZ 86011, USA
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, PO Box 5693, AZ 86011, USA
| |
Collapse
|
4
|
Aryal S, Grießinger J, Gaire NP, Bhattarai T, Bräuning A. Drought, temperature, and moisture availability: understanding the drivers of isotopic decoupling in native pine species of the Nepalese Himalaya. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2024; 68:1093-1108. [PMID: 38441667 PMCID: PMC11108894 DOI: 10.1007/s00484-024-02647-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 02/12/2024] [Accepted: 02/28/2024] [Indexed: 05/22/2024]
Abstract
The Himalayas experienced long-term climate changes and recent extreme weather events that affected plant growth and the physiology of tree species at high-elevation sites. This study presents the first statistically robust δ18OTR chronologies for two native pine species, Pinus roxburghii, and Pinus wallichiana, in the lower Nepalese Himalaya. The isotope chronologies exhibited 0.88‰ differences in overall mean isotope values attributed to varying elevations (460-2000 m asl). Comparative analysis of climate response using data sets from different sources and resolutions revealed the superiority of the APHRODITE (Asian Precipitation - Highly-Resolved Observational Data Integration Towards Evaluation) data set calibrated for the South Asian Summer Monsoon (SASM)-dominated region. Both species exhibited negative correlations with monsoon precipitation and positive correlations with temperature. However, during the peak monsoon season (July-August), daily resolved climate data disentangled statistically insignificant relationships, and revealed that δ18OTR is influenced by atmospheric moisture. Both congeneric species showed a decoupling between the chronologies after 1995. However, no significant change in air moisture origin and monsoon regime between the study sites was observed, indicating a consistent dominant moisture source during different monsoon seasons. Besides, we also observed the decreased inter-series correlation of both δ18OTR chronologies after 1995, with P. wallichiana experiencing a steeper decrease than P. roxburghii. The weakening correlations between and within the chronologies coincided with a regional drought during 1993-1995 in both sites, highlighting the strong regulation of local climate on the impact of regional extreme climate events. Our findings emphasise the importance of employing climate data with optimal spatial and temporal resolution for improved δ18OTR-climate relationships at the intra-annual scale while considering the influence of site-specific local environmental conditions. Assessing climate data sets with station data is vital for accurately interpreting climate change's impact on forest response and long-term climate reconstructions.
Collapse
Affiliation(s)
- Sugam Aryal
- Institute für Geographie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Wetterkreuz 15, 91058, Erlangen, Germany.
| | - Jussi Grießinger
- Institute für Geographie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Wetterkreuz 15, 91058, Erlangen, Germany
- Department of Environment and Biodiversity, University Salzburg, Salzburg, Austria
| | | | | | - Achim Bräuning
- Institute für Geographie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Wetterkreuz 15, 91058, Erlangen, Germany
| |
Collapse
|
5
|
Strange BM, Monson RK, Szejner P, Ehleringer J, Hu J. The North American Monsoon buffers forests against the ongoing megadrought in the Southwestern United States. GLOBAL CHANGE BIOLOGY 2023; 29:4354-4367. [PMID: 37283085 DOI: 10.1111/gcb.16762] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 04/05/2023] [Accepted: 04/08/2023] [Indexed: 06/08/2023]
Abstract
The US Southwest has been entrenched in a two-decade-long megadrought (MD), the most severe since 800 CE, which threatens the long-term vitality and persistence of regional montane forests. Here, we report that in the face of record low winter precipitation and increasing atmospheric aridity, seasonal activity of the North American Monsoon (NAM) climate system brings sufficient precipitation during the height of the summer to alleviate extreme tree water stress. We studied seasonally resolved, tree-ring stable carbon isotope ratios across a 57-year time series (1960-2017) in 17 Ponderosa pine forests distributed across the NAM geographic domain. Our study focused on the isotope dynamics of latewood (LW), which is produced in association with NAM rains. During the MD, populations growing within the core region of the NAM operated at lower intrinsic and higher evaporative water-use efficiencies (WUEi and WUEE , respectively), compared to populations growing in the periphery of the NAM domain, indicating less physiological water stress in those populations with access to NAM moisture. The disparities in water-use efficiencies in periphery populations are due to a higher atmospheric vapor pressure deficit (VPD) and reduced access to summer soil moisture. The buffering advantage of the NAM, however, is weakening. We observed that since the MD, the relationship between WUEi and WUEE in forests within the core NAM domain is shifting toward a drought response similar to forests on the periphery of the NAM. After correcting for past increases in the atmospheric CO2 concentration, we were able to isolate the LW time-series responses to climate alone. This showed that the shift in the relation between WUEi and WUEE was driven by the extreme increases in MD-associated VPD, with little advantageous influence on stomatal conductance from increases in atmospheric CO2 concentration.
Collapse
Affiliation(s)
- Brandon M Strange
- School of Natural Resources and the Environment, University of Arizona, Tucson, Arizona, USA
- Laboratory of Tree Ring Research, University of Arizona, Tucson, Arizona, USA
| | - Russell K Monson
- Laboratory of Tree Ring Research, University of Arizona, Tucson, Arizona, USA
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, USA
| | - Paul Szejner
- Laboratory of Tree Ring Research, University of Arizona, Tucson, Arizona, USA
- Instituto de Geología, Universidad Nacional Autónoma de México, México City, Mexico
| | - Jim Ehleringer
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Jia Hu
- School of Natural Resources and the Environment, University of Arizona, Tucson, Arizona, USA
- Laboratory of Tree Ring Research, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
6
|
Saurer M, Sahlstedt E, Rinne-Garmston KT, Lehmann MM, Oettli M, Gessler A, Treydte K. Progress in high-resolution isotope-ratio analysis of tree rings using laser ablation. TREE PHYSIOLOGY 2023; 43:694-705. [PMID: 36519757 DOI: 10.1093/treephys/tpac141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/29/2022] [Accepted: 12/11/2022] [Indexed: 05/13/2023]
Abstract
Stable isotope ratio analysis of tree rings has been widely and successfully applied in recent decades for climatic and environmental reconstructions. These studies were mostly conducted at an annual resolution, considering one measurement per tree ring, often focusing on latewood. However, much more information could be retrieved with high-resolution intra-annual isotope studies, based on the fact that the wood cells and the corresponding organic matter are continuously laid down during the growing season. Such studies are still relatively rare, but have a unique potential for reconstructing seasonal climate variations or short-term changes in physiological plant properties, like water-use efficiency. The reason for this research gap is mostly technical, as on the one hand sub-annual, manual splitting of rings is very tedious, while on the other hand automated laser ablation for high-resolution analyses is not yet well established and available. Here, we give an update on the current status of laser ablation research for analysis of the carbon isotope ratio (δ13C) of wood, describe an easy-to-use laser ablation system, its operation and discuss practical issues related to tree core preparation, including cellulose extraction. The results show that routine analysis with up to 100 laser shot-derived δ13C-values daily and good precision and accuracy (ca. 0.1‰) comparable to conventional combustion in an elemental analyzer are possible. Measurements on resin-extracted wood is recommended as most efficient, but laser ablation is also possible on cellulose extracted wood pieces. Considering the straightforward sample preparation, the technique is therefore ripe for wide-spread application. With this work, we hope to stimulate future progress in the promising field of high-resolution environmental reconstruction using laser ablation.
Collapse
Affiliation(s)
- Matthias Saurer
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, Birmensdorf 8903, Switzerland
| | - Elina Sahlstedt
- Natural Resources Institute Finland (Luke), Latokartanonkaari 9, Helsinki 00790, Finland
| | - Katja T Rinne-Garmston
- Natural Resources Institute Finland (Luke), Latokartanonkaari 9, Helsinki 00790, Finland
| | - Marco M Lehmann
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, Birmensdorf 8903, Switzerland
| | - Manuela Oettli
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, Birmensdorf 8903, Switzerland
| | - Arthur Gessler
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, Birmensdorf 8903, Switzerland
- Institute of Terrestrial Ecosystems, ETH Zurich, Universitaetstrasse 16, Zurich 8092, Switzerland
| | - Kerstin Treydte
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, Birmensdorf 8903, Switzerland
| |
Collapse
|
7
|
Schönbeck LC, Santiago LS. Time will tell: towards high-resolution temporal tree-ring isotope analyses. TREE PHYSIOLOGY 2022; 42:2401-2403. [PMID: 36222495 DOI: 10.1093/treephys/tpac121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Affiliation(s)
- Leonie C Schönbeck
- Department of Botany & Plant Sciences, 2150 Batchelor Hall, University of California, Riverside, CA 92521, USA
| | - Louis S Santiago
- Department of Botany & Plant Sciences, 2150 Batchelor Hall, University of California, Riverside, CA 92521, USA
- Smithsonian Tropical Research Institute, Balboa, Ancón, Panamá, Republic of Panamá
| |
Collapse
|
8
|
Xu G, Liu X, Hu J, Dorado-Liñán I, Gagen M, Szejner P, Chen T, Trouet V. Intra-annual tree-ring δ18O and δ13C reveal a trade-off between isotopic source and humidity in moist environments. TREE PHYSIOLOGY 2022; 42:2203-2223. [PMID: 35796563 DOI: 10.1093/treephys/tpac076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
Tree-ring intra-annual stable isotopes (δ13C and δ18O) are powerful tools for revealing plant ecophysiological responses to climatic extremes. We analyzed interannual and fine-scale intra-annual variability of tree-ring δ13C and δ18O in Chinese red pine (Pinus massoniana) from southeastern China to explore environmental drivers and potential trade-offs between the main physiological controls. We show that wet season relative humidity (May-October RH) drove interannual variability of δ18O and intra-annual variability of tree-ring δ18O. It also drove intra-annual variability of tree-ring δ13C, whereas interannual variability was mainly controlled by February-May temperature and September-October RH. Furthermore, intra-annual tree-ring δ18O variability was larger during wet years compared with dry years, whereas δ13C variability was lower during wet years compared with dry years. As a result of these differences in intra-annual variability amplitude, process-based models (we used the Roden model for δ18O and the Farquhar model for δ13C) captured the intra-annual δ18O pattern better in wet years compared with dry years, whereas intra-annual δ13C pattern was better simulated in dry years compared with wet years. This result suggests a potential asymmetric bias in process-based models in capturing the interplay of the different mechanistic processes (i.e., isotopic source and leaf-level enrichment) operating in dry versus wet years. We therefore propose an intra-annual conceptual model considering a dynamic trade-off between the isotopic source and leaf-level enrichment in different tree-ring parts to understand how climate and ecophysiological processes drive intra-annual tree-ring stable isotopic variability under humid climate conditions.
Collapse
Affiliation(s)
- Guobao Xu
- National Field Science Observation and Research Station of Yulong Mountain Cryosphere and Sustainable Development, State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- Laboratory of Tree-Ring Research, University of Arizona, Tucson 85721, USA
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
| | - Xiaohong Liu
- National Field Science Observation and Research Station of Yulong Mountain Cryosphere and Sustainable Development, State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Jia Hu
- Laboratory of Tree-Ring Research, University of Arizona, Tucson 85721, USA
- School of Natural Resources and the Environment, University of Arizona, Tucson 85721, USA
| | - Isabel Dorado-Liñán
- Dpto. de Sistemas y Recursos Naturales, Universidad Politécnica de Madrid, Madrid, Spain
| | - Mary Gagen
- Department of Geography, Swansea University, Singleton Park, Swansea SA28PP, UK
| | - Paul Szejner
- Laboratory of Tree-Ring Research, University of Arizona, Tucson 85721, USA
- Instituto de Geología, Universidad Nacional Autónoma de México, México City 04510, México
| | - Tuo Chen
- National Field Science Observation and Research Station of Yulong Mountain Cryosphere and Sustainable Development, State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Valerie Trouet
- Laboratory of Tree-Ring Research, University of Arizona, Tucson 85721, USA
- School of Natural Resources and the Environment, University of Arizona, Tucson 85721, USA
| |
Collapse
|
9
|
Pompa-García M, Camarero JJ, Valeriano C, Vivar-Vivar ED. Climate sensitivity of seasonal radial growth in young stands of Mexican conifers. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2022; 66:1711-1723. [PMID: 35672588 PMCID: PMC9300551 DOI: 10.1007/s00484-022-02312-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Alteration of forest by climate change and human activities modify the growth response of trees to temperature and moisture. Growth trends of young forests with even-aged stands recruited recently when the climate became warmer and drier are not well known. We analyze the radial growth response of young conifer trees (37-63 years old) to climatic parameters and drought stress employing Pearson correlations and the Vaganov-Shashkin Lite (VS-Lite) model. This study uses tree rings of six species of conifer trees (Pinus teocote, Pinus pseudostrobus, Pinus pinceana, Pinus montezumae, Pinus ayacahuite, and Taxodium mucronatum) collected from young forests with diverse growth conditions in northern and central Mexico. Seasonal ring growth and earlywood width (EW) were modeled as a function of temperature and soil moisture using the VS-Lite model. Wet and cool conditions in the previous winter and current spring enhance ring growth and EW production, mainly in sensitive species from dry sites (P. teocote, P. pseudostrobus, P. pinceana, and P. montezumae), whereas the growth of species from mesic sites (P. ayacahuite and T. mucronatum) shows little responsiveness to soil moisture. In P. ayacahuite and T. mucronatum, latewood growth is enhanced by warm summer conditions. The VS-Lite model shows that low soil moisture during April and May constrains growth in the four sensitive species, particularly in P. pinceana, the species dominant in the most xeric sites. Assessing seasonal ring growth and combining its response to climate with process-based growth models could complement xylogenesis data. Such framework should be widely applied, given the predicted warming and its impact on young forests.
Collapse
Affiliation(s)
- Marin Pompa-García
- Facultad de Ciencias Forestales y Ambientales de la Universidad Juárez del Estado de Durango, Rio Papaloapan Y Blvd. Durango S/N. Col. Valle del Sur, 34120 Durango, Mexico
| | - J. Julio Camarero
- Instituto Pirenaico de Ecología (IPE-CSIC), Avda. Montañana 1005, 50192 Zaragoza, Spain
| | - Cristina Valeriano
- Instituto Pirenaico de Ecología (IPE-CSIC), Avda. Montañana 1005, 50192 Zaragoza, Spain
| | - Eduardo D. Vivar-Vivar
- Facultad de Ciencias Forestales y Ambientales de la Universidad Juárez del Estado de Durango, Rio Papaloapan Y Blvd. Durango S/N. Col. Valle del Sur, 34120 Durango, Mexico
| |
Collapse
|
10
|
Gong XY, Ma WT, Yu YZ, Fang K, Yang Y, Tcherkez G, Adams MA. Overestimated gains in water-use efficiency by global forests. GLOBAL CHANGE BIOLOGY 2022; 28:4923-4934. [PMID: 35490304 DOI: 10.1111/gcb.16221] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 05/09/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
Increases in terrestrial water-use efficiency (WUE) have been reported in many studies, pointing to potential changes in physiological forcing of global carbon and hydrological cycles. However, gains in WUE are of uncertain magnitude over longer (i.e. >10 years) periods of time largely owing to difficulties in accounting for structural and physiological acclimation. 13 C signatures (i.e. δ13 C) of plant organic matter have long been used to estimate WUE at temporal scales ranging from days to centuries. Mesophyll conductance is a key uncertainty in estimated WUE owing to its influence on diffusion of CO2 to sites of carboxylation. Here we apply new knowledge of mesophyll conductance to 464 δ13 C chronologies in tree-rings of 143 species spanning global biomes. Adjusted for mesophyll conductance, gains in WUE during the 20th century (0.15 ppm year-1 ) were considerably smaller than those estimated from conventional modelling (0.26 ppm year-1 ). Across the globe, mean sensitivity of WUE to atmospheric CO2 was 0.15 ppm ppm-1 . Ratios of internal-to-atmospheric CO2 (on a mole fraction basis; ci /ca ) in leaves were mostly constant over time but differed among biomes and plant taxa-highlighting the significance of both plant structure and physiology. Together with synchronized responses in stomatal and mesophyll conductance, our results suggest that ratios of chloroplastic-to-atmospheric CO2 (cc /ca ) are constrained over time. We conclude that forest WUE may have not increased as much as previously suggested and that projections of future climate forcing via CO2 fertilization may need to be adjusted accordingly.
Collapse
Affiliation(s)
- Xiao Ying Gong
- Key Laboratory for Subtropical Mountain Ecology (Ministry of Science and Technology and Fujian Province Funded), College of Geographical Sciences, Fujian Normal University, Fuzhou, China
| | - Wei Ting Ma
- Key Laboratory for Subtropical Mountain Ecology (Ministry of Science and Technology and Fujian Province Funded), College of Geographical Sciences, Fujian Normal University, Fuzhou, China
| | - Yong Zhi Yu
- Key Laboratory for Subtropical Mountain Ecology (Ministry of Science and Technology and Fujian Province Funded), College of Geographical Sciences, Fujian Normal University, Fuzhou, China
| | - Keyan Fang
- Key Laboratory for Subtropical Mountain Ecology (Ministry of Science and Technology and Fujian Province Funded), College of Geographical Sciences, Fujian Normal University, Fuzhou, China
| | - Yusheng Yang
- Key Laboratory for Subtropical Mountain Ecology (Ministry of Science and Technology and Fujian Province Funded), College of Geographical Sciences, Fujian Normal University, Fuzhou, China
| | - Guillaume Tcherkez
- Research School of Biology, ANU College of Medicine, Biology and Environment, Australian National University, Canberra, Australia
- Institut de Recherche en Horticulture et Semences, INRAe, Université d'Angers, Beaucouzé, France
| | - Mark A Adams
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Melbourne, Victoria, Australia
| |
Collapse
|
11
|
Tree growth sensitivity to climate varies across a seasonal precipitation gradient. Oecologia 2022; 198:933-946. [DOI: 10.1007/s00442-022-05156-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 03/28/2022] [Indexed: 10/18/2022]
|
12
|
Pérez-de-Lis G, Rathgeber CBK, Fernández-de-Uña L, Ponton S. Cutting tree rings into time slices: how intra-annual dynamics of wood formation help decipher the space-for-time conversion. THE NEW PHYTOLOGIST 2022; 233:1520-1534. [PMID: 34797916 DOI: 10.1111/nph.17869] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
Tree-ring anatomy, microdensity and isotope records provide valuable intra-annual information. However, extracting signals at that scale is challenged by the complexity of xylogenesis, where two major processes - cell enlargement and wall thickening - occur at different times and rates. We characterized the space-for-time association in the tree rings of three conifer species by examining the duration, overlapping, inter-tree synchronicity and interannual stability during cell enlargement and wall thickening across regular tree-ring sectors (portions of equal tangential width). The number of cells and cell differentiation rates determined the duration of sector formation, which augmented more rapidly throughout the ring for wall thickening than for enlargement. Increasing the number of sectors above c. 15 had a limited effect on improving time resolution because consecutive sector formation overlapped greatly in time, especially in narrow rings and during wall thickening. Increasing the number of sectors also resulted in lower synchronicity and stability of intermediate-sector enlargement, whereas all sectors showed high synchronicity and stability during wall thickening. Increasing the number of sectors had a stronger effect on enhancing time-series resolution for enlargement- than for wall-thickening-related traits, which would nevertheless produce more reliable intra-annual chronologies as a result of the more similar calendars across trees and years in wall thickening.
Collapse
Affiliation(s)
- Gonzalo Pérez-de-Lis
- SILVA, Université de Lorraine, AgroParisTech, INRAE, Nancy, 54000, France
- BIOAPLIC, Departamento de Botánica, EPSE, Universidade de Santiago de Compostela, Campus Terra, Lugo, 27002, Spain
| | - Cyrille B K Rathgeber
- SILVA, Université de Lorraine, AgroParisTech, INRAE, Nancy, 54000, France
- Swiss Federal Research Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, CH-8903, Switzerland
| | - Laura Fernández-de-Uña
- SILVA, Université de Lorraine, AgroParisTech, INRAE, Nancy, 54000, France
- CREAF, Bellaterra (Cerdanyola del Vallés), Catalonia, E08193, Spain
| | - Stéphane Ponton
- SILVA, Université de Lorraine, AgroParisTech, INRAE, Nancy, 54000, France
| |
Collapse
|
13
|
Lee EH, Beedlow PA, Brooks JR, Tingey DT, Wickham C, Rugh W. Physiological responses of Douglas-fir to climate and forest disturbances as detected by cellulosic carbon and oxygen isotope ratios. TREE PHYSIOLOGY 2022; 42:5-25. [PMID: 34528693 PMCID: PMC9394118 DOI: 10.1093/treephys/tpab122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/19/2020] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
Swiss needle cast (SNC), caused by a fungal pathogen, Nothophaeocryptopus gaeumannii, is a major forest disease of Douglas-fir (Pseudotsuga menziesii) stands of the Pacific Northwest (PNW). There is mounting concern that the current SNC epidemic occurring in Oregon and Washington will continue to increase in severity, frequency and spatial extent with future warming. Nothophaeocryptopus gaeumannii occurs wherever its host is found, but very little is known about the history and spatial distribution of SNC and its effects on growth and physiological processes of mature and old-growth forests within the Douglas-fir region of the PNW. Our findings show that stem growth and physiological responses of infected Douglas-fir to climate and SNC were different between sites, growth periods and disease severity based on cellulosic stable carbon and oxygen isotope ratios and ring width data in tree rings. At a coastal Oregon site within the SNC impact zone, variations in stem growth and Δ13C were primarily influenced by disproportional reductions in stomatal conductance (gs) and assimilation (A) caused by a loss of functioning stomates through early needle abscission and stomatal occlusion by pseudothecia of N. gaeumannii. At the less severely infected inland sites on the west slopes of Oregon's Cascade Range, stem growth correlated negatively with δ18O and positively with Δ13C, indicating that gs decreased in response to high evaporative demand with a concomitant reduction in A. Current- and previous-years summer vapor pressure deficit was the principal seasonal climatic variable affecting radial stem growth and the dual stable isotope ratios at all sites. Our results indicate that rising temperatures since the mid-1970s has strongly affected Douglas-fir growth in the PNW directly by a physiological response to higher evaporative demand during the annual summer drought and indirectly by a major SNC epidemic that is expanding regionally to higher latitudes and higher elevations.
Collapse
Affiliation(s)
- Edward Henry Lee
- US Environmental Protection Agency, 200 SW 35 Street, Corvallis, OR 97333, USA
| | - Peter A. Beedlow
- US Environmental Protection Agency, 200 SW 35 Street, Corvallis, OR 97333, USA
| | - J. Renée Brooks
- US Environmental Protection Agency, 200 SW 35 Street, Corvallis, OR 97333, USA
| | - David T. Tingey
- US Environmental Protection Agency, 200 SW 35 Street, Corvallis, OR 97333, USA
- Retired
| | - Charlotte Wickham
- Oregon State University, Department of Statistics, Weniger Hall Room 255, Corvallis, OR 97331, USA
| | - William Rugh
- US Environmental Protection Agency, 200 SW 35 Street, Corvallis, OR 97333, USA
| |
Collapse
|
14
|
Rapid increases in shrubland and forest intrinsic water-use efficiency during an ongoing megadrought. Proc Natl Acad Sci U S A 2021; 118:2118052118. [PMID: 34930849 DOI: 10.1073/pnas.2118052118] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2021] [Indexed: 11/18/2022] Open
Abstract
Globally, intrinsic water-use efficiency (iWUE) has risen dramatically over the past century in concert with increases in atmospheric CO2 concentration. This increase could be further accelerated by long-term drought events, such as the ongoing multidecadal "megadrought" in the American Southwest. However, direct measurements of iWUE in this region are rare and largely constrained to trees, which may bias estimates of iWUE trends toward more mesic, high elevation areas and neglect the responses of other key plant functional types such as shrubs that are dominant across much of the region. Here, we found evidence that iWUE is increasing in the Southwest at one of the fastest rates documented due to the recent drying trend. These increases were particularly large across three common shrub species, which had a greater iWUE sensitivity to aridity than Pinus ponderosa, a common tree species in the western United States. The sensitivity of both shrub and tree iWUE to variability in atmospheric aridity exceeded their sensitivity to increasing atmospheric [CO2]. The shift to more water-efficient vegetation would be, all else being equal, a net positive for plant health. However, ongoing trends toward lower plant density, diminished growth, and increasing vegetation mortality across the Southwest indicate that this increase in iWUE is unlikely to offset the negative impacts of aridification.
Collapse
|
15
|
Balanzategui D, Nordhauß H, Heinrich I, Biondi F, Miley N, Hurley AG, Ziaco E. Wood Anatomy of Douglas-Fir in Eastern Arizona and Its Relationship With Pacific Basin Climate. FRONTIERS IN PLANT SCIENCE 2021; 12:702442. [PMID: 34539695 PMCID: PMC8440974 DOI: 10.3389/fpls.2021.702442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Dendroclimatic reconstructions, which are a well-known tool for extending records of climatic variability, have recently been expanded by using wood anatomical parameters. However, the relationships between wood cellular structures and large-scale climatic patterns, such as El Niño-Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO), are still not completely understood, hindering the potential for wood anatomy as a paleoclimatic proxy. To better understand the teleconnection between regional and local climate processes in the western United States, our main objective was to assess the value of these emerging tree-ring parameters for reconstructing climate dynamics. Using Confocal Laser Scanning Microscopy, we measured cell lumen diameter and cell wall thickness (CWT) for the period 1966 to 2015 in five Douglas-firs [Pseudotsuga menziesii (Mirb.) Franco] from two sites in eastern Arizona (United States). Dendroclimatic analysis was performed using chronologies developed for 10 equally distributed sectors of the ring and daily climatic records to identify the strongest climatic signal for each sector. We found that lumen diameter in the first ring sector was sensitive to previous fall-winter temperature (September 25th to January 23rd), while a precipitation signal (October 27th to February 13th) persisted for the entire first half of the ring. The lack of synchronous patterns between trees for CWT prevented conducting meaningful climate-response analysis for that anatomical parameter. Time series of lumen diameter showed an anti-phase relationship with the Southern Oscillation Index (a proxy for ENSO) at 10 to 14year periodicity and particularly in 1980-2005, suggesting that chronologies of wood anatomical parameters respond to multidecadal variability of regional climatic modes. Our findings demonstrate the potential of cell structural characteristics of southwestern United States conifers for reconstructing past climatic variability, while also improving our understanding of how large-scale ocean-atmosphere interactions impact local hydroclimatic patterns.
Collapse
Affiliation(s)
- Daniel Balanzategui
- GFZ German Research Centre for Geosciences, Potsdam, Germany
- Institute of Geography, Humboldt-University, Berlin, Germany
- Department of Natural Sciences, DAI German Archaeological Institute, Berlin, Germany
| | - Henry Nordhauß
- GFZ German Research Centre for Geosciences, Potsdam, Germany
| | - Ingo Heinrich
- GFZ German Research Centre for Geosciences, Potsdam, Germany
- Institute of Geography, Humboldt-University, Berlin, Germany
- Department of Natural Sciences, DAI German Archaeological Institute, Berlin, Germany
| | - Franco Biondi
- DendroLab, Department of Natural Resources & Environmental Science, University of Nevada, Reno, NV, United States
| | - Nicholas Miley
- DendroLab, Department of Natural Resources & Environmental Science, University of Nevada, Reno, NV, United States
| | - Alexander G. Hurley
- DendroLab, Department of Natural Resources & Environmental Science, University of Nevada, Reno, NV, United States
| | - Emanuele Ziaco
- GFZ German Research Centre for Geosciences, Potsdam, Germany
- Department of Ecology and Genetics, Plant Ecology and Evolution, University of Uppsala, Uppsala, Sweden
| |
Collapse
|
16
|
Rodriguez-Caton M, Andreu-Hayles L, Morales MS, Daux V, Christie DA, Coopman RE, Alvarez C, Rao MP, Aliste D, Flores F, Villalba R. Different climate sensitivity for radial growth, but uniform for tree-ring stable isotopes along an aridity gradient in Polylepis tarapacana, the world's highest elevation tree species. TREE PHYSIOLOGY 2021; 41:1353-1371. [PMID: 33601406 DOI: 10.1093/treephys/tpab021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/22/2021] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
Tree growth is generally considered to be temperature limited at upper elevation treelines, yet climate factors controlling tree growth at semiarid treelines are poorly understood. We explored the influence of climate on stem growth and stable isotopes for Polylepis tarapacana Philipi, the world's highest elevation tree species, which is found only in the South American Altiplano. We developed tree-ring width index (RWI), oxygen (δ18O) and carbon (δ13C) chronologies for the last 60 years at four P. tarapacana stands located above 4400 m in elevation, along a 500 km latitude aridity gradient. Total annual precipitation decreased from 300 to 200 mm from the northern to the southern sites. We used RWI as a proxy of wood formation (carbon sink) and isotopic tree-ring signatures as proxies of leaf-level gas exchange processes (carbon source). We found distinct climatic conditions regulating carbon sink processes along the gradient. Current growing-season temperature regulated RWI at northern-wetter sites, while prior growing-season precipitation determined RWI at arid southern sites. This suggests that the relative importance of temperature to precipitation in regulating tree growth is driven by site water availability. By contrast, warm and dry growing seasons resulted in enriched tree-ring δ13C and δ18O at all study sites, suggesting that similar climate conditions control carbon-source processes along the gradient. Site-level δ13C and δ18O chronologies were significantly and positively related at all sites, with the strongest relationships among the southern drier stands. This indicates an overall regulation of intercellular carbon dioxide via stomatal conductance for the entire P. tarapacana network, with greater stomatal control when aridity increases. This manuscript also highlights a coupling (decoupling) between physiological processes at leaf level and wood formation as a function of similarities (differences) in their climatic sensitivity. This study contributes to a better understanding and prediction of the response of high-elevation Polylepis woodlands to rapid climate changes and projected drying in the Altiplano.
Collapse
Affiliation(s)
| | - Laia Andreu-Hayles
- Lamont-Doherty Earth Observatory, Columbia University, 61 Route 9W, Palisades, NY 10964, USA
- CREAF, Bellaterra (Cerdanyola del Vallés), Barcelona, Spain
- ICREA, Pg. Lluís Companys 23, Barcelona, Spain
| | - Mariano S Morales
- Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales (IANIGLA), CONICET, Av. Ruiz Leal s/n, Mendoza 5500, Argentina
- Laboratorio de Dendrocronología, Universidad Continental, Av. San Carlos 1980, Huancayo 12003, Perú
| | - Valérie Daux
- Laboratoire des Sciences du Climat et de l'Environnement, CEA/CNRS/UVSQ/IPSL, Gif-sur-Yvette, France
| | - Duncan A Christie
- Laboratorio de Dendrocronología y Cambio Global, Instituto de Conservación Biodiversidad y Territorio, Universidad Austral de Chile, Campus Isla Teja, Valdivia 5110566, Los Ríos, Chile
- Center for Climate and Resilience Research, (CR)2, Blanco Encalada 2002, Santiago 8370415, Chile
| | - Rafael E Coopman
- Ecophysiology Laboratory for Forest Conservation, Instituto de Conservación, Biodiversidad y Territorio, Facultad de Ciencias Forestales y Recursos Naturales, Universidad Austral de Chile, Independencia 631, Valdivia 5110566, Los Ríos, Chile
| | - Claudio Alvarez
- Laboratorio de Dendrocronología y Cambio Global, Instituto de Conservación Biodiversidad y Territorio, Universidad Austral de Chile, Campus Isla Teja, Valdivia 5110566, Los Ríos, Chile
| | - Mukund Palat Rao
- Lamont-Doherty Earth Observatory, Columbia University, 61 Route 9W, Palisades, NY 10964, USA
- Department of Earth and Environmental Sciences, Columbia University, 5th Floor Schermerhorn Extension, 1200 Amsterdam Ave., New York, NY 10027, USA
| | - Diego Aliste
- Laboratorio de Dendrocronología y Cambio Global, Instituto de Conservación Biodiversidad y Territorio, Universidad Austral de Chile, Campus Isla Teja, Valdivia 5110566, Los Ríos, Chile
- Center for Climate and Resilience Research, (CR)2, Blanco Encalada 2002, Santiago 8370415, Chile
| | - Felipe Flores
- Laboratorio de Dendrocronología y Cambio Global, Instituto de Conservación Biodiversidad y Territorio, Universidad Austral de Chile, Campus Isla Teja, Valdivia 5110566, Los Ríos, Chile
| | - Ricardo Villalba
- Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales (IANIGLA), CONICET, Av. Ruiz Leal s/n, Mendoza 5500, Argentina
| |
Collapse
|
17
|
Szejner P, Belmecheri S, Babst F, Wright WE, Frank DC, Hu J, Monson RK. Stable isotopes of tree rings reveal seasonal-to-decadal patterns during the emergence of a megadrought in the Southwestern US. Oecologia 2021; 197:1079-1094. [PMID: 33870457 DOI: 10.1007/s00442-021-04916-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 04/08/2021] [Indexed: 11/24/2022]
Abstract
Recent evidence has revealed the emergence of a megadrought in southwestern North America since 2000. Megadroughts extend for at least 2 decades, making it challenging to identify such events until they are well established. Here, we examined tree-ring growth and stable isotope ratios in Pinus ponderosa at its driest niche edge to investigate whether trees growing near their aridity limit were sensitive to the megadrought climatic pre-conditions, and were capable of informing predictive efforts. During the decade before the megadrought, trees in four populations revealed increases in the cellulose δ13C content of earlywood, latewood, and false latewood, which, based on past studies are correlated with increased intrinsic water-use efficiency. However, radial growth and cellulose δ18O were not sensitive to pre-megadrought conditions. During the 2 decades preceding the megadrought, at all four sites, the changes in δ13C were caused by the high sensitivity of needle carbon and water exchange to drought trends in key winter months, and for three of the four sites during crucial summer months. Such pre-megadrought physiological sensitivity appears to be unique for trees near their arid range limit, as similar patterns were not observed in trees in ten reference sites located along a latitudinal gradient in the same megadrought domain, despite similar drying trends. Our results reveal the utility of tree-ring δ13C to reconstruct spatiotemporal patterns during the organizational phase of a megadrought, demonstrating that trees near the arid boundaries of a species' distribution might be useful in the early detection of long-lasting droughts.
Collapse
Affiliation(s)
- Paul Szejner
- Instituto de Geología, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico. .,Laboratory of Tree‑Ring Research, University of Arizona, 1215 E Lowell St, Tucson, AZ, 85721, USA.
| | - Soumaya Belmecheri
- Laboratory of Tree‑Ring Research, University of Arizona, 1215 E Lowell St, Tucson, AZ, 85721, USA
| | - Flurin Babst
- Laboratory of Tree‑Ring Research, University of Arizona, 1215 E Lowell St, Tucson, AZ, 85721, USA.,W. Szafer Institute of Botany, Polish Academy of Science, ul. Lubicz 46, 31-512, Krakow, Poland.,School of Natural Resources and the Environment, University of Arizona, 1064 E. Lowell St., Tucson, AZ, 85721, USA
| | - William E Wright
- Laboratory of Tree‑Ring Research, University of Arizona, 1215 E Lowell St, Tucson, AZ, 85721, USA
| | - David C Frank
- Laboratory of Tree‑Ring Research, University of Arizona, 1215 E Lowell St, Tucson, AZ, 85721, USA
| | - Jia Hu
- Laboratory of Tree‑Ring Research, University of Arizona, 1215 E Lowell St, Tucson, AZ, 85721, USA.,School of Natural Resources and the Environment, University of Arizona, 1064 E. Lowell St., Tucson, AZ, 85721, USA
| | - Russell K Monson
- Laboratory of Tree‑Ring Research, University of Arizona, 1215 E Lowell St, Tucson, AZ, 85721, USA.,Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| |
Collapse
|
18
|
Belmecheri S, Maxwell RS, Taylor AH, Davis KJ, Guerrieri R, Moore DJP, Rayback SA. Precipitation alters the CO 2 effect on water-use efficiency of temperate forests. GLOBAL CHANGE BIOLOGY 2021; 27:1560-1571. [PMID: 33464665 DOI: 10.1111/gcb.15491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 05/08/2023]
Abstract
Increasing water-use efficiency (WUE), the ratio of carbon gain to water loss, is a key mechanism that enhances carbon uptake by terrestrial vegetation under rising atmospheric CO2 (ca ). Existing theory and empirical evidence suggest a proportional WUE increase in response to rising ca as plants maintain a relatively constant ratio between the leaf intercellular (ci ) and ambient (ca ) partial CO2 pressure (ci /ca ). This has been hypothesized as the main driver of the strengthening of the terrestrial carbon sink over the recent decades. However, proportionality may not characterize CO2 effects on WUE on longer time-scales and the role of climate in modulating these effects is uncertain. Here, we evaluate long-term WUE responses to ca and climate from 1901 to 2012 CE by reconstructing intrinsic WUE (iWUE, the ratio of photosynthesis to stomatal conductance) using carbon isotopes in tree rings across temperate forests in the northeastern USA. We show that iWUE increased steadily from 1901 to 1975 CE but remained constant thereafter despite continuously rising ca . This finding is consistent with a passive physiological response to ca and coincides with a shift to significantly wetter conditions across the region. Tree physiology was driven by summer moisture at multi-decadal time-scales and did not maintain a constant ci /ca in response to rising ca indicating that a point was reached where rising CO2 had a diminishing effect on tree iWUE. Our results challenge the mechanism, magnitude, and persistence of CO2 's effect on iWUE with significant implications for projections of terrestrial productivity under a changing climate.
Collapse
Affiliation(s)
- Soumaya Belmecheri
- Laboratory of Tree Ring Research, University of Arizona, Tucson, AZ, USA
| | | | - Alan H Taylor
- Department of Geography and Earth and Environmental Systems Institute, The Pennsylvania State University, University Park, PA, USA
| | - Kenneth J Davis
- Department of Meteorology and Atmospheric Science and Earth and Environmental Systems Institute, The Pennsylvania State University, University Park, PA, USA
| | - Rossella Guerrieri
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Bologna, Italy
| | - David J P Moore
- School of Natural Resources and the Environment, University of Arizona, Tucson, AZ, USA
| | - Shelly A Rayback
- Department of Geography, University of Vermont, Burlington, VT, USA
| |
Collapse
|
19
|
Increased water use efficiency leads to decreased precipitation sensitivity of tree growth, but is offset by high temperatures. Oecologia 2021; 197:1095-1110. [PMID: 33743068 PMCID: PMC8591026 DOI: 10.1007/s00442-021-04892-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 03/02/2021] [Indexed: 11/30/2022]
Abstract
Both increases in temperature and changes in precipitation may limit future tree growth, but rising atmospheric CO2 could offset some of these stressors through increased plant Water Use Efficiency (WUE). The net balance between the negative impacts of climate change and positive effects of CO2 on tree growth is crucial for ecotones, where increased climate stress could drive mortality and shifts in range. Here, we quantify the effects of climate, stand structure, and rising CO2 on both annual tree-ring growth increment and intrinsic WUE (iWUE) at a savanna-forest boundary in the Upper Midwest United States. Taking a Bayesian hierarchical modelling approach, we find that plant iWUE increased by ~ 16–23% over the course of the twentieth century, but on average, tree-ring growth increments do not significantly increase. Consistent with higher iWUE under increased CO2 and recent wetting, we observe a decrease in sensitivity of tree growth to annual precipitation, leading to ~ 35–41% higher growth under dry conditions compared to trees of similar size in the past. However, an emerging interaction between summer maximum temperatures and annual precipitation diminishes the water-savings benefit under hot and dry conditions. This decrease in precipitation sensitivity, and the interaction between temperature and precipitation are strongest in open canopy microclimates, suggesting that stand structure may modulate response to future changes. Overall, while higher iWUE may provide some water savings benefits to growth under normal drought conditions, near-term future temperature increases combined with drought events could drive growth declines of about 50%.
Collapse
|
20
|
Tepley AJ, Hood SM, Keyes CR, Sala A. Forest restoration treatments in a ponderosa pine forest enhance physiological activity and growth under climatic stress. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2020; 30:e02188. [PMID: 32492227 DOI: 10.1002/eap.2188] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 01/28/2020] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
As the climate warms, drought will increasingly occur under elevated temperatures, placing forest ecosystems at growing risk of extensive dieback and mortality. In some cases, increases in tree density following early 20th-century fire suppression may exacerbate this risk. Treatments designed to restore historical stand structure and enhance resistance to high-severity fire might also alleviate drought stress by reducing competition, but the duration of these effects and the underlying mechanisms remain poorly understood. To elucidate these mechanisms, we evaluate tree growth, mortality, and tree-ring stable-carbon isotope responses to stand-density reduction treatments with and without prescribed fire in a ponderosa pine forest of western Montana. Moderate and heavier cutting experiments (basal area reductions of 35% and 56%, respectively) were initiated in 1992, followed by prescribed burning in a subset of the thinned units. All treatments led to a growth release that persisted to the time of resampling. The treatments had little effect on climate-growth relationships, but they markedly altered seasonal carbon isotope signals and their relationship to climate. In burned and unburned treatments, carbon isotope discrimination (Δ13 C) increased in the earlywood (EW) and decreased in the latewood (LW) relative to the control. The sensitivity of LW Δ13 C to late-summer climate also increased in all treatments, but not in the control. Such increased sensitivity indicates that the reduction in competition enabled trees to continue to fix carbon for new stem growth, even when the climate became sufficiently stressful to stop new assimilation in slower-growing trees in untreated units. These findings would have been masked had we not separated EW and LW. The importance of faster growth and enhanced carbon assimilation under late-summer climatic stress became evident in the second decade post-treatment, when mountain pine beetle activity increased locally, and tree mortality rates in the controls of both experiments increased to more than twice those in their respective treatments. These findings highlight that, when thinning is used to restore historical forest structure or increase resistance to high-severity fire, there will likely be additional benefits of enhanced growth and physiological activity under climatic stress, and the effects may persist for more than two decades.
Collapse
Affiliation(s)
- Alan J Tepley
- Division of Biological Sciences, University of Montana, Missoula, Montana, 59812, USA
- W.A. Franke College of Forestry & Conservation, University of Montana, Missoula, Montana, 59812, USA
| | - Sharon M Hood
- Fire, Fuel and Smoke Science Program, Rocky Mountain Research Station, USDA Forest Service, Missoula, Montana, 59808, USA
| | - Christopher R Keyes
- W.A. Franke College of Forestry & Conservation, University of Montana, Missoula, Montana, 59812, USA
| | - Anna Sala
- Division of Biological Sciences, University of Montana, Missoula, Montana, 59812, USA
- W.A. Franke College of Forestry & Conservation, University of Montana, Missoula, Montana, 59812, USA
| |
Collapse
|
21
|
Peltier DMP, Ogle K. Tree growth sensitivity to climate is temporally variable. Ecol Lett 2020; 23:1561-1572. [DOI: 10.1111/ele.13575] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/14/2020] [Accepted: 06/25/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Drew M. P. Peltier
- Center for Ecosystem Science and Society Northern Arizona University Flagstaff Arizona USA
- School of Informatics, Computing, and Cyber Systems Northern Arizona University Flagstaff Arizona USA
| | - Kiona Ogle
- Center for Ecosystem Science and Society Northern Arizona University Flagstaff Arizona USA
- School of Informatics, Computing, and Cyber Systems Northern Arizona University Flagstaff Arizona USA
- Department of Biological Sciences Northern Arizona University Flagstaff Arizona USA
| |
Collapse
|
22
|
Szejner P, Clute T, Anderson E, Evans MN, Hu J. Reduction in lumen area is associated with the δ 18 O exchange between sugars and source water during cellulose synthesis. THE NEW PHYTOLOGIST 2020; 226:1583-1593. [PMID: 32058599 DOI: 10.1111/nph.16484] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 02/10/2020] [Indexed: 06/10/2023]
Abstract
High temporal resolution measurements of wood anatomy and the isotopic composition in tree-rings have the potential to enhance our interpretation of climate variability, but the sources of variation within the growing season are still not well understood. Here we test the response of wood anatomical features in Pinus ponderosa and Pseudotsuga menziesii, including cell-wall thickness (CWT) and lumen area (LA), along with the oxygen isotopic composition of α-cellulose (δ18 Ocell ) to shifts in relative humidity (RH) in two treatments, one from high-low RH and the second one form low-high RH. We observed a significant decrease in LA and a small increase in CWT within the experimental growing season in both treatments. The measured δ18 Ocell along the ring was responsive to RH variations in both treatments. However, estimated δ18 Ocell did not agree with measured δ18 Ocell when the proportion of exchangeable oxygen during cellulose synthesis (Pex ) was kept constant. We found that Pex increased throughout the ring as LA decreased. Based on this varying Pex within an annual ring, we propose a targeted sampling strategy for different hydroclimate signals: earlier season cellulose is a better recorder of RH while late-season cellulose is a better recorder of the source water.
Collapse
Affiliation(s)
- Paul Szejner
- School of Natural Resources and Environment, University of Arizona, Tucson, AZ, 85721, USA
- Instituto de Geología, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| | - Timothy Clute
- Department of Ecology, Montana State University, Bozeman, MT, 59717, USA
| | - Erik Anderson
- School of Natural Resources and Environment, University of Arizona, Tucson, AZ, 85721, USA
| | - Michael N Evans
- Department of Geology and Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, 20742, USA
| | - Jia Hu
- School of Natural Resources and Environment, University of Arizona, Tucson, AZ, 85721, USA
| |
Collapse
|
23
|
Kannenberg SA, Schwalm CR, Anderegg WRL. Ghosts of the past: how drought legacy effects shape forest functioning and carbon cycling. Ecol Lett 2020; 23:891-901. [DOI: 10.1111/ele.13485] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/29/2019] [Accepted: 02/12/2020] [Indexed: 01/06/2023]
|
24
|
Szejner P, Belmecheri S, Ehleringer JR, Monson RK. Recent increases in drought frequency cause observed multi-year drought legacies in the tree rings of semi-arid forests. Oecologia 2019; 192:241-259. [DOI: 10.1007/s00442-019-04550-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 10/29/2019] [Indexed: 01/07/2023]
|
25
|
Voelker SL, Merschel AG, Meinzer FC, Ulrich DEM, Spies TA, Still CJ. Fire deficits have increased drought sensitivity in dry conifer forests: Fire frequency and tree-ring carbon isotope evidence from Central Oregon. GLOBAL CHANGE BIOLOGY 2019; 25:1247-1262. [PMID: 30536531 DOI: 10.1111/gcb.14543] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 10/04/2018] [Indexed: 06/09/2023]
Abstract
A century of fire suppression across the Western United States has led to more crowded forests and increased competition for resources. Studies of forest thinning or stand conditions after mortality events have provided indirect evidence for how competition can promote drought stress and predispose forests to severe fire and/or bark beetle outbreaks. Here, we demonstrate linkages between fire deficits and increasing drought stress through analyses of annually resolved tree-ring growth, fire scars, and carbon isotope discrimination (Δ13 C) across a dry mixed-conifer forest landscape. Fire deficits across the study area have increased the sensitivity of leaf gas exchange to drought stress over the past >100 years. Since 1910, stand basal area in these forests has more than doubled and fire-return intervals have increased from 25 to 140 years. Meanwhile, the portion of interannual variation in tree-ring Δ13 C explained by the Palmer Drought Severity Index has more than doubled in ca. 300-500-year-old Pinus ponderosa as well as in fire-intolerant, ca. 90-190-year-old Abies grandis. Drought stress has increased in stands with a basal area of ≥25 m2 /ha in 1910, as indicated by negative temporal Δ13 C trends, whereas stands with basal area ≤25 m2 /ha in 1910, due to frequent or intense wildfire activity in decades beforehand, were initially buffered from increased drought stress and have benefited more from rising ambient carbon dioxide concentrations, [CO2 ], as demonstrated by positive temporal Δ13 C trends. Furthermore, the average Δ13 C response across all P. ponderosa since 1830 indicates that photosynthetic assimilation rates and stomatal conductance have been reduced by ~10% and ~20%, respectively, compared to expected trends due to increasing [CO2 ]. Although disturbance legacies contribute to local-scale intensity of drought stress, fire deficits have reduced drought resistance of mixed-conifer forests and made them more susceptible to challenges by pests and pathogens and other disturbances.
Collapse
Affiliation(s)
- Steven L Voelker
- Plants, Soils and Climate Department, Utah State University, Logan, Utah
| | - Andrew G Merschel
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, Oregon
| | | | | | - Thomas A Spies
- USDA Forest Service Pacific Northwest Research Station, Portland, Oregon
| | - Christopher J Still
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, Oregon
| |
Collapse
|
26
|
Peltier DMP, Ogle K. Legacies of La Niña: North American monsoon can rescue trees from winter drought. GLOBAL CHANGE BIOLOGY 2019; 25:121-133. [PMID: 30346088 DOI: 10.1111/gcb.14487] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/04/2018] [Accepted: 10/04/2018] [Indexed: 06/08/2023]
Abstract
While we often assume tree growth-climate relationships are time-invariant, impacts of climate phenomena such as the El Niño Southern Oscillation (ENSO) and the North American Monsoon (NAM) may challenge this assumption. To test this assumption, we grouped ring widths (1900-present) in three southwestern US conifers into La Niña periods (LNP) and other years (OY). The 4 years following each La Niña year are included in LNP, and despite 1-2 year growth declines, compensatory adjustments in tree growth responses result in essentially equal mean growth in LNP and OY, as average growth exceeds OY means 2-4 years after La Niña events. We found this arises because growth responses in the two periods are not interchangeable: Due to differences in growth-climate sensitivities and climatic memory, parameters representing LNP growth fail to predict OY growth and vice versa (decreases in R2 up to 0.63; lowest R2 = 0.06). Temporal relationships between growth and antecedent climate (memory) show warmer springs and longer growing seasons negatively impact growth following dry La Niña winters, but that NAM moisture can rescue trees after these events. Increased importance of monsoonal precipitation during LNP is key, as the largest La Niña-related precipitation deficits and monsoonal precipitation contributions both occur in the southern part of the region. Decreases in first order autocorrelation during LNP were largest in the heart of the monsoon region, reflecting both the greatest initial growth declines and the largest recovery. Understanding the unique climatic controls on growth in Southwest conifers requires consideration of both the influences and interactions of drought, ENSO, and NAM, each of which is likely to change with continued warming. While plasticity of growth sensitivity and memory has allowed relatively quick recovery in the tree-ring record, recent widespread mortality events suggest conditions may soon exceed the capacity for adjustment in current populations.
Collapse
Affiliation(s)
- Drew M P Peltier
- School of Informatics, Computing, and Cyber-Systems, Northern Arizona University, Flagstaff, Arizona
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona
| | - Kiona Ogle
- School of Informatics, Computing, and Cyber-Systems, Northern Arizona University, Flagstaff, Arizona
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona
| |
Collapse
|