1
|
Peters JR, Reed DC, Shrestha J, Hamilton SL, Burkepile DE. Frequent disturbance to a foundation species disrupts consumer-mediated nutrient cycling in giant kelp forests. Ecology 2025; 106:e70019. [PMID: 40066697 DOI: 10.1002/ecy.70019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 10/19/2024] [Accepted: 11/14/2024] [Indexed: 05/13/2025]
Abstract
Structure-forming foundation species facilitate consumers by providing habitat and refugia. In return, consumers can benefit foundation species by reducing top-down pressures and increasing the supply of nutrients. Consumer-mediated nutrient dynamics (CND) fuel the growth of autotrophic foundation species and generate more habitat for consumers, forming reciprocal feedbacks. Such feedbacks are threatened when foundation species are lost to disturbances, yet testing these interactions requires long-term studies, which are rare. Here, we experimentally evaluated how disturbance to giant kelp, a marine foundation species, affects (1) CND of the forest animal community and (2) nutrient feedbacks that help sustain forest primary production during extended periods of low nitrate. Our experiment involved removing giant kelp annually during the winter for 10 years at four sites to mimic frequent wave disturbance. We paired temporal changes in the forest community in kelp removal and control plots with estimates of taxon-specific ammonium excretion rates (reef fishes and macroinvertebrates) and nitrogen (N) demand (giant kelp and understory macroalgae) to determine the effects of disturbance on CND as measured by ammonium excretion, N demand by kelp forest macroalgae, and the percentage of nitrogen demand met by ammonium excretion. We found that disturbance to giant kelp decreased ammonium excretion by 66% over the study, mostly due to declines in fishes. Apart from a few fish species that dominated CND, most reef-associated consumers were unaffected by disturbance. Disturbance to giant kelp reduced its N demand by 56% but increased that of the understory by 147% due to its increased abundance in the absence of a kelp canopy. Overall, disturbance had little effect on the fraction of N demand of macroalgae met by consumer excretion due to the offsetting responses of giant kelp, understory macroalgae, and consumers to disturbance. Across both disturbance regimes, on average, consumers supported 11%-12% of the N required by all kelp forest macroalgae and 48% of N demand by the understory macroalgae (which are confined to the benthos where most reef-associated consumers reside). Our findings suggest that CND constitutes a considerable contribution of N required in kelp forests, yet nutrient inputs decrease following reductions in essential habitat perpetuated by frequent disturbances.
Collapse
Affiliation(s)
- Joseph R Peters
- Marine Science Institute, University of California, Santa Barbara, California, USA
| | - Daniel C Reed
- Marine Science Institute, University of California, Santa Barbara, California, USA
| | - June Shrestha
- Moss Landing Marine Laboratories, San Jose State University, Moss Landing, California, USA
| | - Scott L Hamilton
- Moss Landing Marine Laboratories, San Jose State University, Moss Landing, California, USA
| | - Deron E Burkepile
- Marine Science Institute, University of California, Santa Barbara, California, USA
- Department of Ecology, Evolution, & Marine Biology, University of California, Santa Barbara, California, USA
| |
Collapse
|
2
|
Bracken MES, Bernatchez G, Badten AJ, Chatfield RA. Unraveling the multiple facilitative effects of consumers on marine primary producers. Ecology 2024; 105:e4439. [PMID: 39358884 DOI: 10.1002/ecy.4439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/25/2024] [Indexed: 10/04/2024]
Abstract
The loss of consumers threatens the integrity of ecological systems, but the mechanisms underlying the effects on communities and ecosystems remain difficult to predict. This is, in part, due to the complex roles that consumers play in those systems. Here, we highlight this complexity by quantifying two mechanisms by which molluscan grazers-typically thought of as consumers of their algal resources-facilitate algae on rocky shores. Initial observations in high-zone tide pools revealed that both water-column ammonium concentrations and photosynthetic biomass were higher in pools containing higher densities of grazers, suggesting that local-scale nutrient recycling by the grazers could be enhancing algal biomass. We assessed this possibility by experimentally manipulating grazer abundances at the level of whole tide pools but controlling access of those grazers to experimental plots within each pool. Contrary to predictions that algal biomass inside grazer exclusions would increase as grazer abundances in the pools increased, we found that algal biomass inside grazer-exclusion fences was unaffected by grazer abundances. Instead, the consumptive effects of grazers that were evident at low grazer abundances transitioned to facilitative effects as experimentally manipulated grazer abundances increased. This finding suggested that these positive interactions were associated with the physical presence of grazers and not just grazers' effects on nutrient availability. Subsequent experiments highlighted the potential role of "slime"-the pedal mucous trails left behind as the mollusks crawl on the substratum-in promoting the recruitment of algae and thereby mediating a spatial subsidy of new organic matter into the system. Furthermore, different grazer groups contributed disproportionately to ammonium excretion (i.e., turban snails) versus slime production (i.e., littorine snails), suggesting a potential role for grazer diversity. Our work highlights the complex ways in which consumers affect their resources, including multiple, complementary mechanisms by which these grazers facilitate the algae they consume.
Collapse
Affiliation(s)
- Matthew E S Bracken
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, USA
| | - Genevieve Bernatchez
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, USA
| | - Alexander J Badten
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, USA
| | - Rachel A Chatfield
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, USA
| |
Collapse
|
3
|
DiFiore BP, Stier AC. Variation in body size drives spatial and temporal variation in lobster-urchin interaction strength. J Anim Ecol 2023; 92:1075-1088. [PMID: 37038648 DOI: 10.1111/1365-2656.13918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/06/2023] [Indexed: 03/20/2023]
Abstract
How strongly predators and prey interact is both notoriously context dependent and difficult to measure. Yet across taxa, interaction strength is strongly related to predator size, prey size and prey density, suggesting that general cross-taxonomic relationships could be used to predict how strongly individual species interact. Here, we ask how accurately do general size-scaling relationships predict variation in interaction strength between specific species that vary in size and density across space and time? To address this question, we quantified the size and density dependence of the functional response of the California spiny lobster Panulirus interruptus, foraging on a key ecosystem engineer, the purple sea urchin Strongylocentrotus purpuratus, in experimental mesocosms. Based on these results, we then estimated variation in lobster-urchin interaction strength across five sites and 9 years of observational data. Finally, we compared our experimental estimates to predictions based on general size-scaling relationships from the literature. Our results reveal that predator and prey body size has the greatest effect on interaction strength when prey abundance is high. Due to consistently high urchin densities in the field, our simulations suggest that body size-relative to density-accounted for up to 87% of the spatio-temporal variation in interaction strength. However, general size-scaling relationships failed to predict the magnitude of interactions between lobster and urchin; even the best prediction from the literature was, on average, an order of magnitude (+18.7×) different than our experimental predictions. Harvest and climate change are driving reductions in the average body size of many marine species. Anticipating how reductions in body size will alter species interactions is critical to managing marine systems in an ecosystem context. Our results highlight the extent to which differences in size-frequency distributions can drive dramatic variation in the strength of interactions across narrow spatial and temporal scales. Furthermore, our work suggests that species-specific estimates for the scaling of interaction strength with body size, rather than general size-scaling relationships, are necessary to quantitatively predict how reductions in body size will alter interaction strengths.
Collapse
Affiliation(s)
- Bartholomew P DiFiore
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, California, 93106, USA
| | - Adrian C Stier
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, California, 93106, USA
- Marine Science Institute, University of California Santa Barbara, Santa Barbara, California, 93116, USA
| |
Collapse
|
4
|
Young MA, Critchell K, Miller AD, Treml EA, Sams M, Carvalho R, Ierodiaconou D. Mapping the impacts of multiple stressors on the decline in kelps along the coast of Victoria, Australia. DIVERS DISTRIB 2022. [DOI: 10.1111/ddi.13654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Mary A. Young
- Centre for Integrative Ecology, School of Life and Environmental Sciences Deakin University Warrnambool Vic. Australia
| | - Kay Critchell
- Centre for Integrative Ecology, School of Life and Environmental Sciences Deakin University Queenscliff Vic. Australia
| | - Adam D. Miller
- Centre for Integrative Ecology, School of Life and Environmental Sciences Deakin University Warrnambool Vic. Australia
| | - Eric A. Treml
- Centre for Integrative Ecology, School of Life and Environmental Sciences Deakin University Queenscliff Vic. Australia
| | - Michael Sams
- Parks Victoria, Marine and Coastal Science and Programs Melbourne Vic. Australia
| | - Rafael Carvalho
- School of Earth, Atmosphere and Environment Monash University Melbourne Vic. Australia
| | - Daniel Ierodiaconou
- Centre for Integrative Ecology, School of Life and Environmental Sciences Deakin University Warrnambool Vic. Australia
| |
Collapse
|
5
|
Holland OJ, Young MA, Sherman CDH, Tan MH, Gorfine H, Matthews T, Miller AD. Ocean warming threatens key trophic interactions supporting a commercial fishery in a climate change hotspot. GLOBAL CHANGE BIOLOGY 2021; 27:6498-6511. [PMID: 34529873 DOI: 10.1111/gcb.15889] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 09/09/2021] [Accepted: 09/12/2021] [Indexed: 06/13/2023]
Abstract
Worldwide, rising ocean temperatures are causing declines and range shifts in marine species. The direct effects of climate change on the biology of marine organisms are often well documented; yet, knowledge on the indirect effects, particularly through trophic interactions, is largely lacking. We provide evidence of ocean warming decoupling critical trophic interactions supporting a commercially important mollusc in a climate change hotspot. Dietary assessments of the Australian blacklip abalone (Haliotis rubra) indicate primary dependency on a widespread macroalgal species (Phyllospora comosa) which we show to be in state of decline due to ocean warming, resulting in abalone biomass reductions. Niche models suggest further declines in P. comosa over the coming decades and ongoing risks to H. rubra. This study highlights the importance of studies from climate change hotspots and understanding the interplay between climate and trophic interactions when determining the likely response of marine species to environmental changes.
Collapse
Affiliation(s)
- Owen J Holland
- School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University, Geelong, Victoria, Australia
- Deakin Genomics Centre, Deakin University, Geelong, Victoria, Australia
| | - Mary A Young
- School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University, Geelong, Victoria, Australia
| | - Craig D H Sherman
- School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University, Geelong, Victoria, Australia
- Deakin Genomics Centre, Deakin University, Geelong, Victoria, Australia
| | - Mun Hua Tan
- School of Biosciences, University of Melbourne, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Victoria, Australia
| | - Harry Gorfine
- School of Biosciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Ty Matthews
- School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University, Geelong, Victoria, Australia
| | - Adam D Miller
- School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University, Geelong, Victoria, Australia
- Deakin Genomics Centre, Deakin University, Geelong, Victoria, Australia
| |
Collapse
|
6
|
Bayley D, Brickle P, Brewin P, Golding N, Pelembe T. Valuation of kelp forest ecosystem services in the Falkland Islands: A case study integrating blue carbon sequestration potential. ONE ECOSYSTEM 2021. [DOI: 10.3897/oneeco.6.e62811] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Kelp forests provide many important ecosystem services to people, including mitigating storm damage, cycling nutrients, and providing commercially-harvestable resources. However, kelp forests’ ability to sequester carbon dioxide, and therefore help regulate the climate, has until recently, been overlooked in assessments of the beneficial services they provide. In this study we incorporate updated knowledge on the potential of kelp to sequester ‘blue carbon’, and use the extensive kelp forests of the Falkland Islands as a case study to assess the value of kelp forest to society through multiple associated ecosystem services. Our analysis shows kelp forests provide a highly valuable range of direct and indirect services, which if managed correctly, will continue to benefit people, both now and in the future. The total estimated value of the Falkland Islands’ kelp system is currently equivalent to ~ £2.69 billion per year (or £3.24 million km-2 year-1). However, the true value of the kelp forest surrounding the Falkland Islands is likely to be higher still, given that our estimate does not account for elements such as associated scientific research, tourism, and cultural services, due to the necessary data currently being unavailable. Similarly, the full value of these highly biodiverse ecosystems in supplying habitat and food to a large range of associated species is crucial, yet extremely difficult to fully quantify. This study illustrates the importance of maintaining kelp ecosystems in a healthy state to ensure they continue to supply valuable ecological processes, functional roles, and ecosystem services, including their overlooked role as significant long-term carbon sinks.
Collapse
|
7
|
Munsterman KS, Allgeier JE, Peters JR, Burkepile DE. A View From Both Ends: Shifts in Herbivore Assemblages Impact Top-Down and Bottom-Up Processes on Coral Reefs. Ecosystems 2021. [DOI: 10.1007/s10021-021-00612-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Lenihan HS, Gallagher JP, Peters JR, Stier AC, Hofmeister JKK, Reed DC. Evidence that spillover from Marine Protected Areas benefits the spiny lobster (Panulirus interruptus) fishery in southern California. Sci Rep 2021; 11:2663. [PMID: 33514853 PMCID: PMC7846765 DOI: 10.1038/s41598-021-82371-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 01/14/2021] [Indexed: 01/30/2023] Open
Abstract
Marine Protected Areas (MPAs) are designed to enhance biodiversity and ecosystem services. Some MPAs are also established to benefit fisheries through increased egg and larval production, or the spillover of mobile juveniles and adults. Whether spillover influences fishery landings depend on the population status and movement patterns of target species both inside and outside of MPAs, as well as the status of the fishery and behavior of the fleet. We tested whether an increase in the lobster population inside two newly established MPAs influenced local catch, fishing effort, and catch-per-unit-effort (CPUE) within the sustainable California spiny lobster fishery. We found greater build-up of lobsters within MPAs relative to unprotected areas, and greater increases in fishing effort and total lobster catch, but not CPUE, in fishing zones containing MPAs vs. those without MPAs. Our results show that a 35% reduction in fishing area resulting from MPA designation was compensated for by a 225% increase in total catch after 6-years, thus indicating at a local scale that the trade-off of fishing ground for no-fishing zones benefitted the fishery.
Collapse
Affiliation(s)
- Hunter S. Lenihan
- grid.133342.40000 0004 1936 9676Bren School of Environmental Science and Management, University of California Santa Barbara, Santa Barbara, CA 93116 USA
| | - Jordan P. Gallagher
- grid.133342.40000 0004 1936 9676Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara, CA 93116 USA
| | - Joseph R. Peters
- grid.133342.40000 0004 1936 9676Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara, CA 93116 USA
| | - Adrian C. Stier
- grid.133342.40000 0004 1936 9676Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara, CA 93116 USA ,grid.133342.40000 0004 1936 9676Marine Science Institute, University of California Santa Barbara, Santa Barbara, CA 93116 USA
| | | | - Daniel C. Reed
- grid.133342.40000 0004 1936 9676Marine Science Institute, University of California Santa Barbara, Santa Barbara, CA 93116 USA
| |
Collapse
|