1
|
Ren Z, Wang M, Yu J, Zhang L, Lin Z, Li X, Zhang Y. Unearthing Vertical Stratified Archaeal Community and Associated Methane Metabolism in Thermokarst Sediments. Environ Microbiol 2025; 27:e70110. [PMID: 40390177 DOI: 10.1111/1462-2920.70110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 03/02/2025] [Accepted: 05/06/2025] [Indexed: 05/21/2025]
Abstract
Thermokarst lakes are hotspots for greenhouse gas emissions across the Arctic and Qinghai-Tibet Plateau. Investigating the vertical stratification of archaeal communities in thermokarst lake sediments is essential for understanding their ecological roles and contributions to methane production. Here, we analysed archaeal communities along a depth gradient in thermokarst lake sediments. Alpha diversity (richness and Shannon index) generally decreased with depth. Euryarchaeota was the most abundant phylum, though its relative abundance declined with depth, while Thaumarchaeota increased. At the order level, Methanosarcinales and Nitrosopumilales showed increased relative abundance with depth, indicating adaptation to deeper anoxic layers, whereas Methanomicrobiales and Methanotrichales decreased. Beta diversity increased with depth, shifting from stochastic to deterministic processes. Network topology revealed reduced species connectivity but heightened modularity at depth, signalling niche specialisation. Functionally, genes associated with the initial steps of methane metabolism (Fwd, Mtd, Mer) increased with depth, while those involved in later steps (Mtr, Mcr) decreased, suggesting reduced energy conservation efficiency and lower overall methanogenesis rates in deeper sediments. These findings highlight the significant impact of vertical stratification on archaeal community structure, interaction networks, and functional capabilities.
Collapse
Affiliation(s)
- Ze Ren
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Science, Beijing, China
| | - Mei Wang
- School of Geography, South China Normal University, Guangzhou, China
| | - Jinlei Yu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Science, Beijing, China
| | - Lixiang Zhang
- University of Chinese Academy of Science, Beijing, China
- School of Geography, South China Normal University, Guangzhou, China
| | - Zhenmei Lin
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Science, Beijing, China
| | - Xia Li
- Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, China
- State Key Laboratory of Wetland Conservation and Restoration, Beijing Normal University, Beijing, China
| | - Yunlin Zhang
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Science, Beijing, China
| |
Collapse
|
2
|
Keskitalo KH, Bröder L, Jong DJ, Mann PJ, Tesi T, Davydova A, Zimov N, Haghipour N, Eglinton TI, Vonk JE. Greenhouse Gas Emissions and Lateral Carbon Dynamics at an Eroding Yedoma Permafrost Site in Siberia (Duvanny Yar). GLOBAL CHANGE BIOLOGY 2025; 31:e70071. [PMID: 39950262 PMCID: PMC11826377 DOI: 10.1111/gcb.70071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/17/2024] [Accepted: 12/20/2024] [Indexed: 02/16/2025]
Abstract
Rapid Arctic warming is accelerating permafrost thaw and mobilizing previously frozen organic carbon (OC) into waterways. Upon thaw, permafrost-derived OC can become susceptible to microbial degradation that may lead to greenhouse gas emissions (GHG), thus accelerating climate change. Abrupt permafrost thaw (e.g., riverbank erosion, retrogressive thaw slumps) occurs in areas rich in OC. Given the high OC content and the increase in frequency of abrupt thaw events, these environments may increasingly contribute to permafrost GHG emissions in the future. To better assess these emissions from abrupt permafrost thaw, we incubated thaw stream waters from an abrupt permafrost thaw site (Duvanny Yar, Siberia) and additionally, waters from their outflow to the Kolyma River. Our results show that CO2 release by volume from thaw streams was substantially higher than CO2 emissions from the river outflow waters, while the opposite was true for CO2 release normalized to the suspended sediment weight (gram dry weight). The CH4 emissions from both thaw streams and outflow waters were at a similar range, but an order of magnitude lower than those of CO2. Additionally, we show that nearshore riverbank waters differ in their biogeochemistry from thaw streams and Kolyma River mainstem: particles resemble thaw streams while dissolved fraction is more alike to the Kolyma River thalweg. In these waters dissolved OC losses are faster than in the river thalweg. Our incubations offer a first insight into the GHG release from permafrost thaw streams that connect exposed and degrading permafrost outcrops to larger river systems.
Collapse
Affiliation(s)
- Kirsi H. Keskitalo
- Department of Geography and Environmental SciencesNorthumbria UniversityNewcastle Upon TyneUK
- Department of Earth SciencesVrije Universiteit AmsterdamAmsterdamthe Netherlands
| | - Lisa Bröder
- Department of Earth SciencesVrije Universiteit AmsterdamAmsterdamthe Netherlands
- Department of Earth SciencesSwiss Federal Institute of TechnologyZürichSwitzerland
| | - Dirk J. Jong
- Department of Earth SciencesVrije Universiteit AmsterdamAmsterdamthe Netherlands
| | - Paul J. Mann
- Department of Geography and Environmental SciencesNorthumbria UniversityNewcastle Upon TyneUK
| | - Tommaso Tesi
- National Research Council, Institute of Polar Sciences in BolognaBolognaItaly
| | - Anna Davydova
- Pacific Institute for Geography, Far East BranchRussian Academy of Sciences, Northeast Science StationCherskiy, Republic of Sakha, YakutiaRussia
| | - Nikita Zimov
- Pacific Institute for Geography, Far East BranchRussian Academy of Sciences, Northeast Science StationCherskiy, Republic of Sakha, YakutiaRussia
| | - Negar Haghipour
- Department of Earth SciencesSwiss Federal Institute of TechnologyZürichSwitzerland
- Laboratory of Ion Beam PhysicsSwiss Federal Institute of TechnologyZürichSwitzerland
| | - Timothy I. Eglinton
- Department of Earth SciencesSwiss Federal Institute of TechnologyZürichSwitzerland
| | - Jorien E. Vonk
- Department of Earth SciencesVrije Universiteit AmsterdamAmsterdamthe Netherlands
| |
Collapse
|
3
|
Sun Q, Wang Y, Cai Q, Pang T, Lan W, Li L. Comparative analysis of lipid components in fresh Crassostrea Hongkongensis (raw) and its dried products by using high-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (HPLC/Q-TOF-MS). Front Nutr 2023; 10:1123636. [PMID: 36969805 PMCID: PMC10037998 DOI: 10.3389/fnut.2023.1123636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/06/2023] [Indexed: 03/12/2023] Open
Abstract
The lipids of the oyster (Crassostrea hongkongensis) have a special physiological activity function, which is essential to maintain human health. However, comprehensive research on their lipids species and metabolism is not so common. In our study, based on the high-performance liquid chromatography/quadrupole time-of-flight mass spectrometer (HPLC/Q-TOF-MS), the non-targeted lipidomics research of Crassostrea hongkongensis fresh and dried products was determined. Meanwhile, we analyzed its lipid outline, screened the differences between the lipid molecules of Crassostrea hongkongensis fresh and dried products, and determined the lipid metabolic pathway. Results showed that 1,523 lipid molecules were detected, in which polyunsaturated fatty acids mostly existed in such lipids as phosphoglyceride. Through the multivariate statistical analysis, according to the conditions of P < 0.05, FC > 2 or FC < 0.05, and VIP > 1.2, 239 different lipid molecules were selected, including 37 fatty acids (FA), 60 glycerol phospholipids (GP), 20 glycerin (GL), 38 sheath lipids (SP), 31 steroid lipids (ST), 36 polyethylene (PK), and 17 progesterone lipids (PR). Combined with the Kyoto Encyclopedia of Genes and Genomes (KEGG), the differential lipid molecules were analyzed to mainly determine the role of the glycerin phospholipid metabolic pathway. As a whole, the results of this study provide the theoretical basis for the high-value utilization of oysters and are helpful to the development of oysters' physiological activity functions and deep utilization.
Collapse
Affiliation(s)
- Qunzhao Sun
- Guangxi College and University Key Laboratory of High-Value Utilization of Seafood and Prepared Food in Beibu Gulf, College of Food Engineering, Beibu Gulf University, Qinzhou, China
- College of Marine Science, Beibu Gulf University, Qinzhou, China
| | - Yunru Wang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Qiuxing Cai
- Guangxi College and University Key Laboratory of High-Value Utilization of Seafood and Prepared Food in Beibu Gulf, College of Food Engineering, Beibu Gulf University, Qinzhou, China
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- *Correspondence: Qiuxing Cai
| | - Tingcai Pang
- Guangxi College and University Key Laboratory of High-Value Utilization of Seafood and Prepared Food in Beibu Gulf, College of Food Engineering, Beibu Gulf University, Qinzhou, China
| | - Weibing Lan
- Guangxi College and University Key Laboratory of High-Value Utilization of Seafood and Prepared Food in Beibu Gulf, College of Food Engineering, Beibu Gulf University, Qinzhou, China
| | - Laihao Li
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Laihao Li
| |
Collapse
|
4
|
Organic matter composition and greenhouse gas production of thawing subsea permafrost in the Laptev Sea. Nat Commun 2022; 13:5057. [PMID: 36030269 PMCID: PMC9420143 DOI: 10.1038/s41467-022-32696-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/10/2022] [Indexed: 11/29/2022] Open
Abstract
Subsea permafrost represents a large carbon pool that might be or become a significant greenhouse gas source. Scarcity of observational data causes large uncertainties. We here use five 21-56 m long subsea permafrost cores from the Laptev Sea to constrain organic carbon (OC) storage and sources, degradation state and potential greenhouse gas production upon thaw. Grain sizes, optically-stimulated luminescence and biomarkers suggest deposition of aeolian silt and fluvial sand over 160 000 years, with dominant fluvial/alluvial deposition of forest- and tundra-derived organic matter. We estimate an annual thaw rate of 1.3 ± 0.6 kg OC m−2 in subsea permafrost in the area, nine-fold exceeding organic carbon thaw rates for terrestrial permafrost. During 20-month incubations, CH4 and CO2 production averaged 1.7 nmol and 2.4 µmol g−1 OC d−1, providing a baseline to assess the contribution of subsea permafrost to the high CH4 fluxes and strong ocean acidification observed in the region. Subsea permafrost underneath the Arctic Ocean is one of the least understood compartments of the global carbon cycle. Here, Wild et al. shed light on its carbon sources, degradation history and potential greenhouse gas release after thaw.
Collapse
|
5
|
Ren Z, Luo W, Zhang C. Rare bacterial biosphere is more environmental controlled and deterministically governed than abundant one in sediment of thermokarst lakes across the Qinghai-Tibet Plateau. Front Microbiol 2022; 13:944646. [PMID: 35958159 PMCID: PMC9358708 DOI: 10.3389/fmicb.2022.944646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/29/2022] [Indexed: 11/13/2022] Open
Abstract
Thermokarst lakes are widely distributed in cold regions as a result of ice-rich permafrost thaw. Disentangling the biogeography of abundant and rare microbes is essential to understanding the environmental influences, assembly mechanisms, and responses to climate change of bacterial communities in thermokarst lakes. In light of this, we assessed the abundant and rare bacterial subcommunities in sediments from thermokarst lakes across the Qinghai-Tibet Plateau (QTP). The operational taxonomic unit (OTU) richness was more strongly associated with location and climate factors for abundant subcommunities, while more strongly associated with physicochemical variables for rare subcommunities. The relative abundance of abundant and rare taxa showed opposite patterns with abundant taxa having greater relative abundance at higher latitude and pH, but at lower mean annual precipitation and nutrients. Both the abundant and rare subcommunities had a clear distribution pattern along the gradient of latitude and mean annual precipitation. Abundant subcommunities were dominantly shaped by dispersal limitation processes (80.9%), while rare subcommunities were shaped almost equally by deterministic (47.3%) and stochastic (52.7%) processes. The balance between stochastic and deterministic processes was strongly environmentally adjusted for rare subcommunities, while not associated with environmental changes for abundant subcommunities. The results shed light on biogeography patterns and structuring mechanisms of bacterial communities in thermokarst lakes, improving our ability to predict the influences of future climate change on these lakes.
Collapse
Affiliation(s)
- Ze Ren
- Research and Development Center for Watershed Environmental Eco-Engineering, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, China
- School of Environment, Beijing Normal University, Beijing, China
- *Correspondence: Ze Ren
| | - Wei Luo
- Key Laboratory for Polar Science, Polar Research Institute of China, Ministry of Natural Resources, Shanghai, China
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
- Wei Luo
| | - Cheng Zhang
- Research and Development Center for Watershed Environmental Eco-Engineering, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, China
- School of Engineering Technology, Beijing Normal University, Zhuhai, China
| |
Collapse
|
6
|
Ren Z, Zhang Y, Li X, Zhang C. Biogeography of Micro-Eukaryotic Communities in Sediment of Thermokarst Lakes Are Jointly Controlled by Spatial, Climatic, and Physicochemical Factors Across the Qinghai-Tibet Plateau. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.901107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Thermokarst lakes are formed following ice-rich permafrost thaw and widely distribute in the cold regions with high latitude and elevation. However, the micro-eukaryotic communities (MECs) in thermokarst lakes are not well studied. Employing 18S rRNA gene sequencing, we assessed the biogeography of MECs and their driving factors in sediments of thermokarst lakes across the Qinghai-Tibet Plateau (QTP). Results showed that Diatom, Gastrotricha, Nematozoa, Ciliophora, and Cercozoa were dominant lineages in relative abundance and OTU richness. MECs varied substantially across the lakes in terms of diversity and composition. Structural equation modeling and mantel test showed that both OTU richness and community structure of MECs had close relationships with spatial factors, climatic factors, and sediment properties, particularly with latitude, mean annual precipitation, pH, as well as nutrient concentrations and stoichiometric ratios. Moreover, different groups of microbial eukaryotes (taxonomic groups and co-occurrence modules) responded differentially to the measured environmental variables. The results suggested that the biogeography of sediment MECs of thermokarst lakes on the QTP were jointly controlled by spatial and climatic factors as well as sediment properties. This study provides the first view of the composition, diversity, and underlying drivers of MECs dynamic in surface sediments of thermokarst lakes across the QTP.
Collapse
|
7
|
Fan L, Dippold MA, Thiel V, Ge T, Wu J, Kuzyakov Y, Dorodnikov M. Temperature sensitivity of anaerobic methane oxidation versus methanogenesis in paddy soil: Implications for the CH 4 balance under global warming. GLOBAL CHANGE BIOLOGY 2022; 28:654-664. [PMID: 34653297 DOI: 10.1111/gcb.15935] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
The global methane (CH4 ) budget is based on a sensitive balance between methanogenesis and CH4 oxidation (aerobic and anaerobic). The response of these processes to climate warming, however, is not quantified. This largely reflects our lack of knowledge about the temperature sensitivity (Q10 ) of the anaerobic oxidation of CH4 (AOM)-a ubiquitous process in soils. Based on a 13 CH4 labeling experiment, we determined the rate, Q10 and activation energy of AOM and of methanogenesis in a paddy soil at three temperatures (5, 20, 35°C). The rates of AOM and of methanogenesis increased exponentially with temperature, whereby the AOM rate was significantly lower than methanogenesis. Both the activation energy and Q10 of AOM dropped significantly from 5-20 to 20-35°C, indicating that AOM is a highly temperature-dependent microbial process. Nonetheless, the Q10 of AOM and of methanogenesis were similar at 5-35°C, implying a comparable temperature dependence of AOM and methanogenesis in paddy soil. The continuous increase of AOM Q10 over the 28-day experiment reflects the successive utilization of electron acceptors according to their thermodynamic efficiency. The basic constant for Q10 of AOM was calculated to be 0.1 units for each 3.2 kJ mol-1 increase of activation energy. We estimate the AOM in paddy soils to consume 2.2~5.5 Tg CH4 per year on a global scale. Considering these results in conjunction with literature data, the terrestrial AOM in total consumes ~30% of overall CH4 production. Our data corroborate a similar Q10 of AOM and methanogenesis. As the rate of AOM in paddy soils is lower than methanogenesis, however, it will not fully compensate for an increased methane production under climate warming.
Collapse
Affiliation(s)
- Lichao Fan
- Department of Soil Science of Temperate Ecosystems, University of Göttingen, Göttingen, Germany
| | - Michaela A Dippold
- Department of Biogeochemistry of Agroecosystems, University of Göttingen, Göttingen, Germany
- Geo-Biosphere Interactions, University of Tuebingen, Tuebingen, Germany
| | - Volker Thiel
- Geobiology, Geoscience Center, University of Göttingen, Göttingen, Germany
| | - Tida Ge
- Key Laboratory of Agro-ecological Processes in Subtropical Region & Changsha Research Station for Agricultural and Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, China
| | - Jinshui Wu
- Key Laboratory of Agro-ecological Processes in Subtropical Region & Changsha Research Station for Agricultural and Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, China
| | - Yakov Kuzyakov
- Department of Soil Science of Temperate Ecosystems, University of Göttingen, Göttingen, Germany
- Department of Agricultural Soil Science, University of Göttingen, Göttingen, Germany
- Agro-Technological Institute, RUDN University, Moscow, Russia
- Tyumen State University, Tyumen, Russia
| | - Maxim Dorodnikov
- Department of Soil Science of Temperate Ecosystems, University of Göttingen, Göttingen, Germany
- Department of Biogeochemistry of Agroecosystems, University of Göttingen, Göttingen, Germany
- Tyumen State University, Tyumen, Russia
| |
Collapse
|