1
|
Liu S, Liu Y, Xing Q, Li Y, Tian H, Luo Y, Ito SI, Tian Y. Climate change drives fish communities: Changing multiple facets of fish biodiversity in the Northwest Pacific Ocean. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176854. [PMID: 39396784 DOI: 10.1016/j.scitotenv.2024.176854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 09/17/2024] [Accepted: 10/08/2024] [Indexed: 10/15/2024]
Abstract
Global marine biodiversity is experiencing significant alterations due to climate change. Incorporating phylogenetic and functional diversity may provide novel insights into these impacts. This study used an ensemble model approach (random forest and boosted regression tree), to predict the habitat distribution of 47 fish species in the Northwestern Pacific under contemporary (2000-2014) and future scenarios (2040-2050, 2090-2100). We first examined the relationship between eleven functional traits and habitat changes, predicting the spatial distribution of functional traits within fish communities. A significant correlation was observed between temperature preference and habitat changes, highlighting the vulnerability of cold-water species and potential advantages for warm-water species in the future. Moreover, fish communities exhibited a spatial gradient distribution with southern regions characterized by shorter-lived and earlier maturity, contrasting with longer-lived and later maturity species in the north. Secondly, to assess the impact of climate change on marine biodiversity, we explored the taxonomic, phylogenetic, and functional diversity under contemporary and future scenarios, revealing higher indices in the East China Sea (ECS) and the coastal sea of Japan, with the Taiwan Strait emerging as a contemporary biodiversity hotspot. In future scenarios, the three biodiversity indices would decline in the Yellow Sea and ECS, but increase in the sea beyond the continental shelf, coastal sea of Hokkaido, and Sea of Okhotsk. Lastly, we explored processes and mechanisms in the change of community composition. By quantifying β-diversity, we identified species loss (nestedness) as the primary driver of fish community change by 2040-2050, with species replacement (turnover) predicted to become dominant in the far future. Our results explore the potential changes in multiple facets of fish biodiversity, providing crucial insights for policymakers aiming to protect fish resources and biodiversity.
Collapse
Affiliation(s)
- Shuhao Liu
- Deep Sea and Polar Fisheries Research Center and Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266100, China; First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Yang Liu
- Deep Sea and Polar Fisheries Research Center and Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266100, China; Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China.
| | - Qinwang Xing
- Institude of Marine Science and Technology, Shangdong University, Qingdao 266237, China
| | - Yuru Li
- School of Fishery, Zhejiang Ocean University, Zhoushan 316022, China
| | - Hao Tian
- Deep Sea and Polar Fisheries Research Center and Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Yanping Luo
- Deep Sea and Polar Fisheries Research Center and Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Shin-Ichi Ito
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa 2778564, Japan
| | - Yongjun Tian
- Deep Sea and Polar Fisheries Research Center and Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266100, China; Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
2
|
Dischereit A, Throm JK, Werner KM, Neuhaus S, Havermans C. A belly full of jelly? DNA metabarcoding shows evidence for gelatinous zooplankton predation by several fish species in Greenland waters. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240797. [PMID: 39144497 PMCID: PMC11321860 DOI: 10.1098/rsos.240797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 08/16/2024]
Abstract
The waters of Greenland harbour a high species richness and biomass of gelatinous zooplankton (GZP); however, their role in the diet of the many fish species, including commercially exploited species, has not yet been verified. Traditionally, GZP was considered to be a trophic dead end, i.e. with a limited contribution as prey for higher trophic levels. We applied DNA metabarcoding of two gene fragments (COI, 18S V1-V2) to the stomach contents of seven pelagic and demersal fish species in Greenland waters, to identify their prey composition as well as the occurrence of GZP predation. We detected GZP DNA reads in the stomachs of all investigated fish species, with frequency of occurrences ranging from 12.5% (for Melanogrammus aeglefinus) to 50% (for Argentina silus). GZP predation had not yet been reported for several of these species. GZP were found to majorly contribute to the diet of A. silus and Anarhichas denticulatus, particularly, the siphonophore Nanomia cara and the scyphozoan Atolla were of a high importance as prey, respectively. The use of multiple genetic markers enabled us to detect a total of 59 GZP taxa in the fish stomachs with several GZP species being detected only by one of the markers.
Collapse
Affiliation(s)
- Annkathrin Dischereit
- HYIG ARJEL, Benthic Ecology, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- Marine Zoology, BreMarE—Bremen Marine Ecology, Fachbereich 2, Universität Bremen, Bremen28334, Germany
| | - Julia Katharina Throm
- HYIG ARJEL, Benthic Ecology, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | | | - Stefan Neuhaus
- Data Division, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Charlotte Havermans
- HYIG ARJEL, Benthic Ecology, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- Marine Zoology, BreMarE—Bremen Marine Ecology, Fachbereich 2, Universität Bremen, Bremen28334, Germany
| |
Collapse
|
3
|
Smith JG, Free CM, Lopazanski C, Brun J, Anderson CR, Carr MH, Claudet J, Dugan JE, Eurich JG, Francis TB, Hamilton SL, Mouillot D, Raimondi PT, Starr RM, Ziegler SL, Nickols KJ, Caselle JE. A marine protected area network does not confer community structure resilience to a marine heatwave across coastal ecosystems. GLOBAL CHANGE BIOLOGY 2023; 29:5634-5651. [PMID: 37439293 DOI: 10.1111/gcb.16862] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 07/14/2023]
Abstract
Marine protected areas (MPAs) have gained attention as a conservation tool for enhancing ecosystem resilience to climate change. However, empirical evidence explicitly linking MPAs to enhanced ecological resilience is limited and mixed. To better understand whether MPAs can buffer climate impacts, we tested the resistance and recovery of marine communities to the 2014-2016 Northeast Pacific heatwave in the largest scientifically designed MPA network in the world off the coast of California, United States. The network consists of 124 MPAs (48 no-take state marine reserves, and 76 partial-take or special regulation conservation areas) implemented at different times, with full implementation completed in 2012. We compared fish, benthic invertebrate, and macroalgal community structure inside and outside of 13 no-take MPAs across rocky intertidal, kelp forest, shallow reef, and deep reef nearshore habitats in California's Central Coast region from 2007 to 2020. We also explored whether MPA features, including age, size, depth, proportion rock, historic fishing pressure, habitat diversity and richness, connectivity, and fish biomass response ratios (proxy for ecological performance), conferred climate resilience for kelp forest and rocky intertidal habitats spanning 28 MPAs across the full network. Ecological communities dramatically shifted due to the marine heatwave across all four nearshore habitats, and MPAs did not facilitate habitat-wide resistance or recovery. Only in protected rocky intertidal habitats did community structure significantly resist marine heatwave impacts. Community shifts were associated with a pronounced decline in the relative proportion of cold water species and an increase in warm water species. MPA features did not explain resistance or recovery to the marine heatwave. Collectively, our findings suggest that MPAs have limited ability to mitigate the impacts of marine heatwaves on community structure. Given that mechanisms of resilience to climate perturbations are complex, there is a clear need to expand assessments of ecosystem-wide consequences resulting from acute climate-driven perturbations, and the potential role of regulatory protection in mitigating community structure changes.
Collapse
Affiliation(s)
- Joshua G Smith
- National Center for Ecological Analysis and Synthesis, University of California, Santa Barbara, Santa Barbara, California, USA
- Conservation and Science Division, Monterey Bay Aquarium, Monterey, California, USA
| | - Christopher M Free
- Bren School of Environmental Science and Management, University of California, Santa Barbara, Santa Barbara, California, USA
- Marine Science Institute, University of California, Santa Barbara, Santa Barbara, California, USA
| | - Cori Lopazanski
- National Center for Ecological Analysis and Synthesis, University of California, Santa Barbara, Santa Barbara, California, USA
- Bren School of Environmental Science and Management, University of California, Santa Barbara, Santa Barbara, California, USA
| | - Julien Brun
- National Center for Ecological Analysis and Synthesis, University of California, Santa Barbara, Santa Barbara, California, USA
| | - Clarissa R Anderson
- Scripps Institution of Oceanography/Southern California Coastal Ocean Observing System, University of California, San Diego, La Jolla, California, USA
| | - Mark H Carr
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, California, USA
| | - Joachim Claudet
- National Center for Scientific Research, PSL Université Paris, CRIOBE, CNRS-EPHE-UPVD, Paris, France
| | - Jenifer E Dugan
- Marine Science Institute, University of California, Santa Barbara, Santa Barbara, California, USA
| | - Jacob G Eurich
- National Center for Ecological Analysis and Synthesis, University of California, Santa Barbara, Santa Barbara, California, USA
- Environmental Defense Fund, Santa Barbara, California, USA
| | - Tessa B Francis
- Puget Sound Institute, University of Washington, Tacoma, Washington, USA
| | - Scott L Hamilton
- Moss Landing Marine Laboratories, San Jose State University, Moss Landing, California, USA
| | - David Mouillot
- MARBEC, University of Montpellier, CNRS, IFREMER, IRD, Montpellier, France
- Institut Universitaire de France (IUF), Paris, France
| | - Peter T Raimondi
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, California, USA
| | - Richard M Starr
- Moss Landing Marine Laboratories, San Jose State University, Moss Landing, California, USA
| | - Shelby L Ziegler
- Odum School of Ecology, University of Georgia, Athens, Georgia, USA
| | - Kerry J Nickols
- Department of Biology, California State University Northridge, Northridge, California, USA
| | - Jennifer E Caselle
- Marine Science Institute, University of California, Santa Barbara, Santa Barbara, California, USA
| |
Collapse
|
4
|
Axler KE, Goldstein ED, Nielsen JM, Deary AL, Duffy-Anderson JT. Shifts in the composition and distribution of Pacific Arctic larval fish assemblages in response to rapid ecosystem change. GLOBAL CHANGE BIOLOGY 2023; 29:4212-4233. [PMID: 37058084 DOI: 10.1111/gcb.16721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 03/03/2023] [Accepted: 04/05/2023] [Indexed: 05/16/2023]
Abstract
The Pacific Arctic marine ecosystem has undergone rapid changes in recent years due to ocean warming, sea ice loss, and increased northward transport of Pacific-origin waters into the Arctic. These climate-mediated changes have been linked to range shifts of juvenile and adult subarctic (boreal) and Arctic fish populations, though it is unclear whether distributional changes are also occurring during the early life stages. We analyzed larval fish abundance and distribution data sampled in late summer from 2010 to 2019 in two interconnected Pacific Arctic ecosystems: the northern Bering Sea and Chukchi Sea, to determine whether recent warming and loss of sea ice has restricted habitat for Arctic species and altered larval fish assemblage composition from Arctic- to boreal-associated taxa. Multivariate analyses revealed the presence of three distinct multi-species assemblages across all years: (1) a boreal assemblage dominated by yellowfin sole (Limanda aspera), capelin (Mallotus catervarius), and walleye pollock (Gadus chalcogrammus); (2) an Arctic assemblage composed of Arctic cod (Boreogadus saida) and other common Arctic species; and (3) a mixed assemblage composed of the dominant species from the other two assemblages. We found that the wind- and current-driven northward advection of warmer, subarctic waters and the unprecedented low-ice conditions observed in the northern Bering and Chukchi seas beginning in 2017 and persisting into 2018 and 2019 have precipitated community-wide shifts, with the boreal larval fish assemblage expanding northward and offshore and the Arctic assemblage retreating poleward. We conclude that Arctic warming is most significantly driving changes in abundance at the leading and trailing edges of the Chukchi Sea larval fish community as boreal species increase in abundance and Arctic species decline. Our analyses document how quickly larval fish assemblages respond to environmental change and reveal that the impacts of Arctic borealization on fish community composition spans multiple life stages over large spatial scales.
Collapse
Affiliation(s)
- Kelia E Axler
- Alaska Fisheries Science Center, National Marine Fisheries Service, National Oceanic & Atmospheric Administration, Seattle, Washington, USA
| | - Esther D Goldstein
- Alaska Fisheries Science Center, National Marine Fisheries Service, National Oceanic & Atmospheric Administration, Seattle, Washington, USA
| | - Jens M Nielsen
- Alaska Fisheries Science Center, National Marine Fisheries Service, National Oceanic & Atmospheric Administration, Seattle, Washington, USA
- Cooperative Institute for Climate, Ocean, and Ecosystem Studies, University of Washington, Seattle, Washington, USA
| | - Alison L Deary
- Alaska Fisheries Science Center, National Marine Fisheries Service, National Oceanic & Atmospheric Administration, Seattle, Washington, USA
- U.S. Fish & Wildlife Service, Longview, Washington, USA
| | - Janet T Duffy-Anderson
- Alaska Fisheries Science Center, National Marine Fisheries Service, National Oceanic & Atmospheric Administration, Seattle, Washington, USA
- Gulf of Maine Research Institute, Portland, Maine, USA
| |
Collapse
|
5
|
Emblemsvåg M, Pecuchet L, Velle LG, Nogueira A, Primicerio R. Recent warming causes functional borealization and diversity loss in deep fish communities east of Greenland. DIVERS DISTRIB 2022. [DOI: 10.1111/ddi.13604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|