1
|
Elrys AS, Wen Y, Feng D, El-Mekkawy RM, Kong M, Qin X, Lu Q, Dan X, Zhu Q, Tang S, Wu Y, Meng L, Zhang J. Cadmium inhibits carbon and nitrogen cycling through soil microbial biomass and reduces soil nitrogen availability. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137524. [PMID: 39933467 DOI: 10.1016/j.jhazmat.2025.137524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/30/2025] [Accepted: 02/06/2025] [Indexed: 02/13/2025]
Abstract
Microbial mediated carbon and nitrogen cycling response to cadmium are often observed in soil; however, a unified framework of this response has not yet been established. By analyzing 1232 observations from 166 publications, we found that cadmium decreased microbial biomass carbon (-16 %) and nitrogen (-21 %), dissolved organic nitrogen (-27 %), nitrification rate (-17 %), microbial respiration rate (-12 %), and β-1,4-glucosidase (-21 %) and urease (-16 %) activities, but increased microbial metabolic quotient (+11 %) and fungal-to-bacterial ratio (+39 %). The cadmium impact was concentration-dependent, becoming more pronounced at higher concentrations. Increasing cadmium concentration reduced soil N mineralization rate and total N content, but increased microbial biomass carbon-to-nitrogen ratio. These results indicate that cadmium reduced carbon and nitrogen assimilation into microbial biomass and limited soil inorganic nitrogen production. Soil bulk density drove soil microbial biomass and nitrogen availability response to cadmium. Lower soil bulk density and higher initial carbon and clay contents and soil pH reduced the negative impact of cadmium on microbial biomass and nitrogen availability, suggesting that anthropogenic activities that enhance soil quality may mitigate the inhibitory effect of cadmium on soil carbon and nitrogen cycling. Our analysis provides critical implications for improving our understanding of the ecological consequences of cadmium on soil carbon and nitrogen cycling.
Collapse
Affiliation(s)
- Ahmed S Elrys
- College of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; Soil Science Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - YuHong Wen
- College of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Di Feng
- College of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Rasha M El-Mekkawy
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig 44511, Egypt
| | - Mengru Kong
- College of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Xiaofeng Qin
- College of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Qiqian Lu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
| | - Xiaoqian Dan
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
| | - Qilin Zhu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
| | - Shuirong Tang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
| | - Yanzheng Wu
- College of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Lei Meng
- College of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China.
| | - Jinbo Zhang
- College of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China.
| |
Collapse
|
2
|
Zhu Q, Liu J, Liu L, El-Tarabily KA, Uwiragiye Y, Dan X, Tang S, Wu Y, Zhu T, Meng L, Zhang J, Müller C, Elrys AS. Fire Reduces Soil Nitrate Retention While Increasing Soil Nitrogen Production and Loss Globally. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:23004-23017. [PMID: 39680856 DOI: 10.1021/acs.est.4c06208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Elucidating the response of soil gross nitrogen (N) transformations to fires could improve our understanding of how fire affects N availability and loss. Yet, how internal soil gross N transformation rates respond to fires remains unexplored globally. Here, we investigate the general response of gross soil N transformations to fire and its consequences for N availability and loss. The results showed that fire increased gross N mineralization rate (GNM; +38%) and ammonium concentration (+47%) as a result of decreased soil C/N ratio but decreased microbial nitrate immobilization (INO3; -56%), resulting in increased nitrous oxide (N2O; +50%) and nitric oxide (+121%) emissions and N leaching (+308%). Time since fire affected soil N cycling and loss. Fire increased GNM, ammonium concentration, and N2O emission, and decreased INO3 only when time since fire was less than one year, while increased N leaching in the short (one year) terms. Thus, the consequences of fire were a short-lived increase in N availability and N2O emissions (lasting less than one year) but with persistent risks of N loss by leaching over time. Overall, fire increased the potential risks of N loss by stimulating N production and inhibiting nitrate retention.
Collapse
Affiliation(s)
- Qilin Zhu
- School of Tropical Agriculture and Forest, Hainan University, Haikou 570228, China
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
| | - Juan Liu
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Lijun Liu
- School of Tropical Agriculture and Forest, Hainan University, Haikou 570228, China
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates
- Harry Butler Institute, Murdoch University, Murdoch, WA 6150, Australia
| | - Yves Uwiragiye
- School of Geography, Nanjing Normal University, Nanjing 210023, China
- Department of Agriculture, Faculty of Agriculture, Environmental Management and Renewable Energy, University of Technology and Arts of Byumba, Byumba 25, Rwanda
| | - Xiaoqian Dan
- School of Tropical Agriculture and Forest, Hainan University, Haikou 570228, China
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
| | - Shuirong Tang
- School of Tropical Agriculture and Forest, Hainan University, Haikou 570228, China
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
| | - Yanzheng Wu
- School of Tropical Agriculture and Forest, Hainan University, Haikou 570228, China
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
| | - Tongbin Zhu
- Institute of Karst Geology, Chinese Academy of Geological Sciences, Karst Dynamics Laboratory, MLR and Guangxi, Guilin 541004, China
| | - Lei Meng
- School of Tropical Agriculture and Forest, Hainan University, Haikou 570228, China
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
| | - Jinbo Zhang
- School of Tropical Agriculture and Forest, Hainan University, Haikou 570228, China
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- Liebig Centre of Agroecology and Climate Impact Research, Justus Liebig University, Heinrich-Buff-Ring 26, 35392 Giessen, Germany
| | - Christoph Müller
- Liebig Centre of Agroecology and Climate Impact Research, Justus Liebig University, Heinrich-Buff-Ring 26, 35392 Giessen, Germany
- Institute of Plant Ecology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26, 35392 Giessen, Germany
- School of Biology and Environmental Science and Earth Institute, University College Dublin, Dublin D4, Ireland
| | - Ahmed S Elrys
- School of Tropical Agriculture and Forest, Hainan University, Haikou 570228, China
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- Soil Science Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| |
Collapse
|
3
|
Byun E, Müller C, Parisse B, Napoli R, Zhang JB, Rezanezhad F, Van Cappellen P, Moser G, Jansen-Willems AB, Yang WH, Urakawa R, Arroyo JI, Neri U, Elrys AS, Nardi P. A global dataset of gross nitrogen transformation rates across terrestrial ecosystems. Sci Data 2024; 11:1022. [PMID: 39300081 PMCID: PMC11413239 DOI: 10.1038/s41597-024-03871-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024] Open
Abstract
Rates of nitrogen transformations support quantitative descriptions and predictive understanding of the complex nitrogen cycle, but measuring these rates is expensive and not readily available to researchers. Here, we compiled a dataset of gross nitrogen transformation rates (GNTR) of mineralization, nitrification, ammonium immobilization, nitrate immobilization, and dissimilatory nitrate reduction to ammonium in terrestrial ecosystems. Data were extracted from 331 studies published from 1984-2022, covering 581 sites. Globally, 1552 observations were appended with standardized soil, vegetation, and climate data (49 variables in total) potentially contributing to the observed variations of GNTR. We used machine learning-based data imputation to fill in partially missing GNTR, which improved statistical relationships between theoretically correlated processes. The dataset is currently the most comprehensive overview of terrestrial ecosystem GNTR and serves as a global synthesis of the extent and variability of GNTR across a wide range of environmental conditions. Future research can utilize the dataset to identify measurement gaps with respect to climate, soil, and ecosystem types, delineate GNTR for certain ecoregions, and help validate process-based models.
Collapse
Affiliation(s)
- Eunji Byun
- Department of Earth System Sciences, Yonsei University, Seoul, Republic of Korea
| | - Christoph Müller
- Institute for Plant Ecology, Justus Liebig University, Giessen, Germany
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
- Liebig Centre for Agroecology and Climate Impact Research, Giessen, Germany
| | - Barbara Parisse
- Council for Agricultural Research and Economics, Research Centre for Agriculture and Environment (CREA-AA), Rome, Italy
| | - Rosario Napoli
- Council for Agricultural Research and Economics, Research Centre for Agriculture and Environment (CREA-AA), Rome, Italy
| | - Jin-Bo Zhang
- Liebig Centre for Agroecology and Climate Impact Research, Giessen, Germany
- School of Geography, Nanjing Normal University, Nanjing, China
| | - Fereidoun Rezanezhad
- Ecohydrology Research Group, Water Institute and Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, ON, Canada
| | - Philippe Van Cappellen
- Ecohydrology Research Group, Water Institute and Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, ON, Canada
| | - Gerald Moser
- Institute for Plant Ecology, Justus Liebig University, Giessen, Germany
- Liebig Centre for Agroecology and Climate Impact Research, Giessen, Germany
| | - Anne B Jansen-Willems
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
- Liebig Centre for Agroecology and Climate Impact Research, Giessen, Germany
| | - Wendy H Yang
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Rieko Urakawa
- Asia Center for Air Pollution Research (ACAP), Japan Environmental Sanitation Center (JESC), Niigata, Japan
| | - José Ignacio Arroyo
- The Santa Fe Institute, Santa Fe, NM, USA
- Center for Mathematical Modeling, Universidad de Chile, Santiago, Chile
| | - Ulderico Neri
- Council for Agricultural Research and Economics, Research Centre for Agriculture and Environment (CREA-AA), Rome, Italy
| | - Ahmed S Elrys
- Liebig Centre for Agroecology and Climate Impact Research, Giessen, Germany
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
- Soil Science Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Pierfrancesco Nardi
- Liebig Centre for Agroecology and Climate Impact Research, Giessen, Germany.
- Council for Agricultural Research and Economics, Research Centre for Agriculture and Environment (CREA-AA), Rome, Italy.
| |
Collapse
|
4
|
Zhang X, Zhang H, Wang Z, Tian Y, Tian W, Liu Z. Diversity of Microbial Functional Genes Promotes Soil Nitrogen Mineralization in Boreal Forests. Microorganisms 2024; 12:1577. [PMID: 39203419 PMCID: PMC11355967 DOI: 10.3390/microorganisms12081577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 07/26/2024] [Accepted: 07/31/2024] [Indexed: 09/03/2024] Open
Abstract
Soil nitrogen (N) mineralization typically governs the availability and movement of soil N. Understanding how factors, especially functional genes, affect N transformations is essential for the protection and restoration of forest ecosystems. To uncover the underlying mechanisms driving soil N mineralization, this study investigated the effects of edaphic environments, substrates, and soil microbial assemblages on net soil N mineralization in boreal forests. Field studies were conducted in five representative forests: Larix principis-rupprechtii forest (LF), Betula platyphylla forest (BF), mixed forest of Larix principis-rupprechtii and Betula platyphylla (MF), Picea asperata forest (SF), and Pinus sylvestris var. mongolica forest (MPF). Results showed that soil N mineralization rates (Rmin) differed significantly among forests, with the highest rate in BF (p < 0.05). Soil properties and microbial assemblages accounted for over 50% of the variability in N mineralization. This study indicated that soil environmental factors influenced N mineralization through their regulatory impact on microbial assemblages. Compared with microbial community assemblages (α-diversity, Shannon and Richness), functional genes assemblages were the most important indexes to regulate N mineralization. It was thus determined that microbial functional genes controlled N mineralization in boreal forests. This study clarified the mechanisms of N mineralization and provided a mechanistic understanding to enhance biogeochemical models for forecasting soil N availability, alongside aiding species diversity conservation and fragile ecosystem revitalization in boreal forests.
Collapse
Affiliation(s)
- Xiumin Zhang
- Research Center for Engineering Ecology and Nonlinear Science, North China Electric Power University, Beijing 102206, China; (X.Z.); (Z.W.); (Y.T.); (W.T.)
| | - Huayong Zhang
- Research Center for Engineering Ecology and Nonlinear Science, North China Electric Power University, Beijing 102206, China; (X.Z.); (Z.W.); (Y.T.); (W.T.)
- Theoretical Ecology and Engineering Ecology Research Group, School of Life Sciences, Shandong University, Qingdao 266237, China;
| | - Zhongyu Wang
- Research Center for Engineering Ecology and Nonlinear Science, North China Electric Power University, Beijing 102206, China; (X.Z.); (Z.W.); (Y.T.); (W.T.)
| | - Yonglan Tian
- Research Center for Engineering Ecology and Nonlinear Science, North China Electric Power University, Beijing 102206, China; (X.Z.); (Z.W.); (Y.T.); (W.T.)
| | - Wang Tian
- Research Center for Engineering Ecology and Nonlinear Science, North China Electric Power University, Beijing 102206, China; (X.Z.); (Z.W.); (Y.T.); (W.T.)
| | - Zhao Liu
- Theoretical Ecology and Engineering Ecology Research Group, School of Life Sciences, Shandong University, Qingdao 266237, China;
| |
Collapse
|
5
|
Niu J, Wan Y, Ma Z, Wang Z, Dong W, Su X, Shen X, Zhai Y. Driving mechanism of different nutrient conditions on microbial mediated nitrate reduction in magnetite-present river infiltration zone. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171963. [PMID: 38537835 DOI: 10.1016/j.scitotenv.2024.171963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/07/2024] [Accepted: 03/23/2024] [Indexed: 04/17/2024]
Abstract
Significant research is focused on the ability of riparian zones to reduce groundwater nitrate contamination. Owing to the extremely high redox activity of nitrate, naturally existing electron donors, such as organic matter and iron minerals, are crucial in facilitating nitrate reduction in the riparian zone. Here, we examined the coexistence of magnetite, an iron mineral, and nitrate, a frequently observed coexisting system in sediments, to investigate nitrate reduction features at various C/N ratios and evaluate the response of microbial communities to these settings. Additionally, we aimed to use this information as a foundation for examining the effect of nutritional conditions on the nitrate reduction process in magnetite-present environments. These results emphasise the significance of organic matter in enabling dissimilatory nitrate reduction to ammonium (DNRA) and enhancing the connection between nitrate reduction and iron in sedimentary environments. In the later phases of nitrate reduction, nitrogen fixation was the prevailing process in low-carbon environments, whereas high-carbon environments tended to facilitate the breakdown of organic nitrogen. High-throughput sequencing analysis revealed a robust association between C/N ratios and alterations in microbial community composition, providing insights into notable modifications in essential functioning microorganisms. The nitrogen-fixing bacterium Ralstonia is more abundant in ecosystems with scarce organic matter. In contrast, in settings rich in organic matter, microorganisms, such as Acinetobacter and Clostridia, which may produce ammonia, play crucial roles. Moreover, the population of iron bacteria grows in such an environment. Hence, this study proposes that C/N ratios can influence Fe(II)/Fe(III) conversions and simultaneously affect the process of nitrate reduction by shaping the composition of specific microbial communities.
Collapse
Affiliation(s)
- Jia Niu
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, People's Republic of China; College of New Energy and Environment, Jilin University, Changchun 130021, People's Republic of China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, People's Republic of China
| | - Yuyu Wan
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, People's Republic of China; College of New Energy and Environment, Jilin University, Changchun 130021, People's Republic of China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, People's Republic of China.
| | - Zhe Ma
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, People's Republic of China; College of New Energy and Environment, Jilin University, Changchun 130021, People's Republic of China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, People's Republic of China
| | - Zhen Wang
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, People's Republic of China; College of New Energy and Environment, Jilin University, Changchun 130021, People's Republic of China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, People's Republic of China
| | - Weihong Dong
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, People's Republic of China; College of New Energy and Environment, Jilin University, Changchun 130021, People's Republic of China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, People's Republic of China
| | - Xiaosi Su
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, People's Republic of China; College of New Energy and Environment, Jilin University, Changchun 130021, People's Republic of China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, People's Republic of China
| | - Xiaofang Shen
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, People's Republic of China; College of New Energy and Environment, Jilin University, Changchun 130021, People's Republic of China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, People's Republic of China
| | - Yuanzheng Zhai
- College of Water Sciences, Beijing Normal University, Beijing 100875, People's Republic of China
| |
Collapse
|
6
|
Elrys AS, Desoky ESM, Zhu Q, Liu L, Yun-Xing W, Wang C, Shuirong T, Yanzheng W, Meng L, Zhang J, Müller C. Climate controls on nitrate dynamics and gross nitrogen cycling response to nitrogen deposition in global forest soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:171006. [PMID: 38369137 DOI: 10.1016/j.scitotenv.2024.171006] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 02/06/2024] [Accepted: 02/13/2024] [Indexed: 02/20/2024]
Abstract
Understanding the patterns and controls regulating nitrogen (N) transformation and its response to N enrichment is critical to re-evaluating soil N limitation or availability and its environmental consequences. Nevertheless, how climatic conditions affect nitrate dynamics and the response of gross N cycling rates to N enrichment in forest soils is still only rudimentarily known. Through collecting and analyzing 4426-single and 769-paired observations from 231 15N labeling studies, we found that nitrification capacity [the ratio of gross autotrophic nitrification (GAN) to gross N mineralization (GNM)] was significantly lower in tropical/subtropical (19%) than in temperate (68%) forest soils, mainly due to the higher GNM and lower GAN in tropical/subtropical regions resulting from low C/N ratio and high precipitation, respectively. However, nitrate retention capacity [the ratio of dissimilatory nitrate reduction to ammonium (DNRA) plus gross nitrate immobilization (INO3) to gross nitrification] was significantly higher in tropical/subtropical (86%) than in temperate (54%) forest soils, mainly due to the higher precipitation and GNM of tropical/subtropical regions, which stimulated DNRA and INO3. As a result, the ratio of GAN to ammonium immobilization (INH4) was significantly higher in temperate than in tropical/subtropical soils. Climatic rather than edaphic factors control heterotrophic nitrification rate (GHN) in forest soils. GHN significantly increased with increasing temperature in temperate regions and with decreasing precipitation in tropical/subtropical regions. In temperate forest soils, gross N transformation rates were insensitive to N enrichment. In tropical/subtropical forests, however, N enrichment significantly stimulated GNM, GAN and GAN to INH4 ratio, but inhibited INH4 and INO3 due to reduced microbial biomass and pH. We propose that temperate forest soils have higher nitrification capacity and lower nitrate retention capacity, implying a higher potential risk of N losses. However, tropical/subtropical forest systems shift from a conservative to a leaky N-cycling system in response to N enrichment.
Collapse
Affiliation(s)
- Ahmed S Elrys
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; College of Tropical Crops, Hainan University, Haikou 570228, China; Soil Science Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt; Liebig Centre for Agroecology and Climate Impact Research, Justus Liebig University, Germany
| | - El-Sayed M Desoky
- Botany Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Qilin Zhu
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Lijun Liu
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Wan Yun-Xing
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Chengzhi Wang
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Tang Shuirong
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Wu Yanzheng
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Lei Meng
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; College of Tropical Crops, Hainan University, Haikou 570228, China.
| | - Jinbo Zhang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; College of Tropical Crops, Hainan University, Haikou 570228, China; Liebig Centre for Agroecology and Climate Impact Research, Justus Liebig University, Germany; School of Geography, Nanjing Normal University, Nanjing 210023, China.
| | - Christoph Müller
- Liebig Centre for Agroecology and Climate Impact Research, Justus Liebig University, Germany; Institute of Plant Ecology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26, 35392 Giessen, Germany; School of Biology and Environmental Science and Earth Institute, University College Dublin 4, Ireland
| |
Collapse
|
7
|
Chen S, Elrys AS, Yang W, Du S, He M, Cai Z, Zhang J, Müller C. Soil recalcitrant but not labile organic nitrogen mineralization contributes to microbial nitrogen immobilization and plant nitrogen uptake. GLOBAL CHANGE BIOLOGY 2024; 30:e17290. [PMID: 38651789 DOI: 10.1111/gcb.17290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/25/2024]
Abstract
Soil organic nitrogen (N) mineralization not only supports ecosystem productivity but also weakens carbon and N accumulation in soils. Recalcitrant (mainly mineral-associated organic matter) and labile (mainly particulate organic matter) organic materials differ dramatically in nature. Yet, the patterns and drivers of recalcitrant (MNrec) and labile (MNlab) organic N mineralization rates and their consequences on ecosystem N retention are still unclear. By collecting MNrec (299 observations) and MNlab (299 observations) from 57 15N tracing studies, we found that soil pH and total N were the master factors controlling MNrec and MNlab, respectively. This was consistent with the significantly higher rates of MNrec in alkaline soils and of MNlab in natural ecosystems. Interestingly, our analysis revealed that MNrec directly stimulated microbial N immobilization and plant N uptake, while MNlab stimulated the soil gross autotrophic nitrification which discouraged ammonium immobilization and accelerated nitrate production. We also noted that MNrec was more efficient at lower precipitation and higher temperatures due to increased soil pH. In contrast, MNlab was more efficient at higher precipitation and lower temperatures due to increased soil total N. Overall, we suggest that increasing MNrec may lead to a conservative N cycle, improving the ecosystem services and functions, while increasing MNlab may stimulate the potential risk of soil N loss.
Collapse
Affiliation(s)
- Shending Chen
- School of Breeding and Multiplication, Hainan University, Sanya, China
- School of Geography, Nanjing Normal University, Nanjing, China
- Institute of Plant Ecology, Justus-Liebig University Giessen, Giessen, Germany
| | - Ahmed S Elrys
- School of Breeding and Multiplication, Hainan University, Sanya, China
- College of Tropical Agriculture and Forestry, Hainan University, Haikou, China
- Soil Science Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
- Liebig Centre for Agroecology and Climate Impact Research, Justus Liebig University, Giessen, Germany
| | - Wenyan Yang
- School of Breeding and Multiplication, Hainan University, Sanya, China
- School of Geography, Nanjing Normal University, Nanjing, China
| | - Siwen Du
- School of Geography, Nanjing Normal University, Nanjing, China
| | - Mengqiu He
- School of Geography, Nanjing Normal University, Nanjing, China
| | - Zucong Cai
- School of Geography, Nanjing Normal University, Nanjing, China
| | - Jinbo Zhang
- School of Breeding and Multiplication, Hainan University, Sanya, China
- School of Geography, Nanjing Normal University, Nanjing, China
- College of Tropical Agriculture and Forestry, Hainan University, Haikou, China
- Liebig Centre for Agroecology and Climate Impact Research, Justus Liebig University, Giessen, Germany
| | - Christoph Müller
- Institute of Plant Ecology, Justus-Liebig University Giessen, Giessen, Germany
- Liebig Centre for Agroecology and Climate Impact Research, Justus Liebig University, Giessen, Germany
- School of Biology and Environmental Science and Earth Institute, University College Dublin, Dublin, Ireland
| |
Collapse
|
8
|
Zhu S, Zhao W, Sun S, Yang X, Mao H, Sheng L, Chen Z. Metagenomic analysis revealed N-metabolizing microbial response of Iris tectorum to Cr stress after colonization by arbuscular mycorrhizal fungi. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 273:116157. [PMID: 38430578 DOI: 10.1016/j.ecoenv.2024.116157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/08/2023] [Accepted: 02/25/2024] [Indexed: 03/04/2024]
Abstract
Arbuscular mycorrhizal fungi (AMF) and plant growth-promoting bacteria enhance plant tolerance to abiotic stress and promote plant growth in contaminated soil. However, the interaction mechanism between rhizosphere microbial communities under chromium (Cr) stress remains unclear. This study conducted a greenhouse pot experiment and metagenomics analysis to reveal the comprehensive effects of the interaction between AMF (Rhizophagus intraradices) and nitrogen-N metabolizing plant growth promoters on the growth of Iris tectorum. The results showed that AMF significantly increased the biomass and nutrient levels of I. tectorum in contaminated soil and decreased the content of Cr in the soil. Metagenomics analysis revealed that the structure and composition of the rhizosphere microbial community involved in nitrogen metabolism changed significantly after inoculation with AMF under Cr stress. Functional genes related to soil nitrogen mineralization (gltB, gltD, gdhA, ureC, and glnA), nitrate reduction to ammonium (nirB, nrfA, and nasA), and soil nitrogen assimilation (NRT, nrtA, and nrtC) were up-regulated in the N-metabolizing microbial community. In contrast, the abundance of functional genes involved in denitrification (nirK and narI) was down-regulated. In addition, the inoculation of AMF regulates the synergies between the N-metabolic rhizosphere microbial communities and enhances the complexity and stability of the rhizosphere ecological network. This study provides a basis for improving plant tolerance to heavy metal stress by regulating the functional abundance of N-metabolizing plant growth-promoting bacteria through AMF inoculation. It helps to understand the potential mechanism of wetland plant remediation of Cr-contaminated soil.
Collapse
Affiliation(s)
- Sixi Zhu
- College of Eco-environment Engineering, Guizhou Minzu University, China; The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China.
| | - Wei Zhao
- College of Eco-environment Engineering, Guizhou Minzu University, China; The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China
| | - Suxia Sun
- College of Eco-environment Engineering, Guizhou Minzu University, China; The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China
| | - Xiuqin Yang
- College of Eco-environment Engineering, Guizhou Minzu University, China; The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China
| | - Huan Mao
- College of Eco-environment Engineering, Guizhou Minzu University, China; The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China
| | - Luying Sheng
- College of Eco-environment Engineering, Guizhou Minzu University, China; The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China
| | - Zhongbing Chen
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcka 129, Suchdol, Praha 16500, Czech Republic
| |
Collapse
|
9
|
Dong Y, Yang JL, Zhao XR, Yang SH, Zhang GL. Nitrate leaching characteristics of red soils from different parent materials in subtropical China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170049. [PMID: 38218497 DOI: 10.1016/j.scitotenv.2024.170049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/07/2024] [Accepted: 01/07/2024] [Indexed: 01/15/2024]
Abstract
Globally, nitrate (NO3-) leaching from agroecosystems has been of major concern. There is evidence that NO3- leaching exhibits intense seasonal variation in subtropical regions. However, influencing factors to the seasonal dynamics remain unclear. In this study, a two-year field lysimeters experiment was conducted with three red soils derived from different parent materials (Quaternary red clay (QR), red sandstone (RS), and basalt (BA)). An N fertilizer (15N-enriched urea, 10 atom% excess) of 200 kg N ha-1 yr-1 was applied for maize. The effect of parent material on NO3- leaching characteristics was examined in surface (0-20 cm) and subsoil (20-100 cm) layers. The results showed due to the weakening of abundant drainage, there was no significant effect of parent materials on NO3- leaching characteristics in surface layers. Environmental factors (precipitation and temperature) and fertilization together led to obvious seasonal characteristics, i.e. abundant NO3- leaching during both crop growth and fallow periods. In subsoil layers, NO3- leaching characteristics were completely different among three soils. The concentrations and δ15N of NO3- in QR and RS soils showed a continuous increase after first year's fertilization, while those in BA soil remained relatively stable after reaching peak levels around harvest in first year. Meanwhile, the NO3- leaching amount in BA soil was significantly lower than in the other two soils. These might be explained by different NO3- adsorption capacities caused by the differences in mineral composition and free iron and aluminium contents. These elucidated in subsoil layers, NO3- leaching characteristics highly depended on parent materials. Meanwhile, adsorption capacity was limited and cannot slow NO3- leaching in the long run. Our results suggest that seasonal variation of NO3- leaching in surface layers and temporary retardant effect from NO3- adsorption capacity in subsoil layers should receive much attention when calculating and predicting NO3- leaching in subtropical regions.
Collapse
Affiliation(s)
- Yue Dong
- Institute of Agricultural Resources and Environments, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Jin-Ling Yang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100081, China
| | - Xiao-Rui Zhao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Shun-Hua Yang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Gan-Lin Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100081, China; Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
10
|
Zhu Q, Liu L, Liu J, Wan Y, Yang R, Mou J, He Q, Tang S, Dan X, Wu Y, Zhu T, Meng L, Elrys AS, Müller C, Zhang J. Land Use Change from Natural Tropical Forests to Managed Ecosystems Reduces Gross Nitrogen Production Rates and Increases the Soil Microbial Nitrogen Limitation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2786-2797. [PMID: 38311839 DOI: 10.1021/acs.est.3c08104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Understanding the underlying mechanisms of soil microbial nitrogen (N) utilization under land use change is critical to evaluating soil N availability or limitation and its environmental consequences. A combination of soil gross N production and ecoenzymatic stoichiometry provides a promising avenue for nutrient limitation assessment in soil microbial metabolism. Gross N production via 15N tracing and ecoenzymatic stoichiometry through the vector and threshold element ratio (Vector-TER) model were quantified to evaluate the soil microbial N limitation in response to land use changes. We used tropical soil samples from a natural forest ecosystem and three managed ecosystems (paddy, rubber, and eucalyptus sites). Soil extracellular enzyme activities were significantly lower in managed ecosystems than in a natural forest. The Vector-TER model results indicated microbial carbon (C) and N limitations in the natural forest soil, and land use change from the natural forest to managed ecosystems increased the soil microbial N limitation. The soil microbial N limitation was positively related to gross N mineralization (GNM) and nitrification (GN) rates. The decrease in microbial biomass C and N as well as hydrolyzable ammonium N in managed ecosystems led to the decrease in N-acquiring enzymes, inhibiting GNM and GN rates and ultimately increasing the microbial N limitation. Soil GNM was also positively correlated with leucine aminopeptidase and β-N-acetylglucosaminidase. The results highlight that converting tropical natural forests to managed ecosystems can increase the soil microbial N limitation through reducing the soil microbial biomass and gross N production.
Collapse
Affiliation(s)
- Qilin Zhu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
| | - Lijun Liu
- School of Tropical Agriculture and Forest, Hainan University, Haikou 570228, China
| | - Juan Liu
- College of Resource and Environment Science, Yunnan AgriculturalUniversity, Kunming 650201, China
| | - Yunxing Wan
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
| | - Ruoyan Yang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
| | - Jinxia Mou
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
| | - Qiuxiang He
- School of Tropical Agriculture and Forest, Hainan University, Haikou 570228, China
| | - Shuirong Tang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
| | - Xiaoqian Dan
- School of Tropical Agriculture and Forest, Hainan University, Haikou 570228, China
| | - Yanzheng Wu
- School of Tropical Agriculture and Forest, Hainan University, Haikou 570228, China
| | - Tongbin Zhu
- Karst Dynamics Laboratory, MLR and Guangxi, Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin 541004, China
| | - Lei Meng
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
| | - Ahmed S Elrys
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forest, Hainan University, Haikou 570228, China
- Soil Science Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
- Liebig Centre for Agroecology and Climate Impact Research, Justus Liebig University, Giessen 35392, Germany
| | - Christoph Müller
- Liebig Centre for Agroecology and Climate Impact Research, Justus Liebig University, Giessen 35392, Germany
- Institute of Plant Ecology, Justus-Liebig University Giessen, Heinrich-Buff-Ring 26, Giessen 35392, Germany
- School of Biology and Environmental Science and Earth Institute, University College Dublin, Belfield, Dublin 4 D04 C1P1, Ireland
| | - Jinbo Zhang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- Liebig Centre for Agroecology and Climate Impact Research, Justus Liebig University, Giessen 35392, Germany
| |
Collapse
|
11
|
Elrys AS, Wen Y, Qin X, Chen Y, Zhu Q, Eltahawy AM, Dan X, Tang S, Wu Y, Zhu T, Meng L, Zhang J, Müller C. Initial evidence on the effect of copper on global cropland nitrogen cycling: A meta-analysis. ENVIRONMENT INTERNATIONAL 2024; 184:108491. [PMID: 38340405 DOI: 10.1016/j.envint.2024.108491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/11/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
Copper (Cu) is a key cofactor in ammonia monooxygenase functioning responsible for the first step of nitrification, but its excess availability impairs soil microbial functions and plant growth. Yet, the impact of Cu on nitrogen (N) cycling and process-related variables in cropland soils remains unexplored globally. Through a meta-analysis of 1209-paired and 319-single observations from 94 publications, we found that Cu (Cu addition or Cu-polluted soil) reduced soil potential nitrification by 33.8% and nitrite content by 73.5% due to reduced soil enzyme activities of nitrification and urease, microbial biomass content, and ammonia oxidizing archaea abundance. The response ratio of potential nitrification decreased with increasing Cu concentration, soil total N, and clay content. We further noted that soil potential nitrification inhibited by 46.5% only when Cu concentration was higher than 150 mg kg-1, while low Cu concentration (less than 150 mg kg-1) stimulated soil nitrate by 99.0%. Increasing initial soil Cu content stimulated gross N mineralization rate due to increased soil organic carbon and total N, but inhibited gross nitrification rate, which ultimately stimulated gross N immobilization rate as a result of increased the residence time of ammonium. This resulted in a lower ratio of gross nitrification rate to gross N immobilization rate, implying a lower potential risk of N loss as evidenced by decreased nitrous oxide emissions with increasing initial soil Cu content. Our analysis offers initial global evidence that Cu has an important role in controlling soil N availability and loss through its effect on N production and consumption.
Collapse
Affiliation(s)
- Ahmed S Elrys
- College of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; Soil Science Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt; Liebig Centre for Agroecology and Climate Impact Research, Justus Liebig University, Giessen, Germany
| | - YuHong Wen
- College of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Xiaofeng Qin
- College of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Yunzhong Chen
- College of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Qilin Zhu
- College of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Abdelsatar M Eltahawy
- Soil Science Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Xiaoqian Dan
- College of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Shuirong Tang
- College of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Yanzheng Wu
- College of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Tongbin Zhu
- The Institute of Karst Geology, Chinese Academy of Geological Sciences, Karst Dynamics Laboratory, MLR & GZAR, Guilin 541004, China
| | - Lei Meng
- College of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| | - Jinbo Zhang
- College of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; Liebig Centre for Agroecology and Climate Impact Research, Justus Liebig University, Giessen, Germany; School of Geography, Nanjing Normal University, Nanjing 210023, China.
| | - Christoph Müller
- Liebig Centre for Agroecology and Climate Impact Research, Justus Liebig University, Giessen, Germany; Institute of Plant Ecology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26, Giessen 35392, Germany; School of Biology and Environmental Science and Earth Institute, University College, Dublin 4, Ireland
| |
Collapse
|
12
|
Wen D, Yang L, Ni K, Xu X, Yu L, Elrys AS, Meng L, Zhou J, Zhu T, Müller C. Topography-driven differences in soil N transformation constrain N availability in karst ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168363. [PMID: 37939962 DOI: 10.1016/j.scitotenv.2023.168363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/19/2023] [Accepted: 11/04/2023] [Indexed: 11/10/2023]
Abstract
Fragile karst ecosystems are characterized by complex topographic landscapes associated with high variations in vegetation restoration. Identifying the characteristics and driving factors of nitrogen (N) availability across the topographic gradient is essential to guide vegetation restoration in karst regions. In this study, we collected soil samples and plant leaves along the topographic gradient (ridge, upper slope, middle slope, and foot slope) of convex slopes in the karst fault basin of southwest China, and determined the indicators reflecting soil N availability, N transformation rates, and their controlling factors. Our results showed that foliar N content and δ15N value, soil inorganic N content and δ15N value, and foliar N:P ratio were substantially lower on the steep hillslopes than on the flat top ridge. Steep slope soils also had a lower enzyme C:N ratio but a higher enzyme N:P ratio than the flat ridge soils. Furthermore, the vector angles calculated by soil extracellular enzyme analysis were below 45o in all studied soils and decreased significantly with increasing slope, indicating that microbial growth was generally limited by N. These results jointly suggest the declines in soil N availability across the topographic gradient, which are further explained by the changes in soil inherent N transformation processes. As the slope became steeper, soil mineralization and autotrophic nitrification (ONH4) rates decreased significantly, while ratio of microbial NH4+ immobilization to ONH4 and NH4+ adsorption rate increased significantly, indicating the decrease in soil inorganic N supply capacity. We further found that deteriorated soil structure, decreased soil organic matter and calcium content, altered microbial abundance, and increased ratios of fungi to bacteria and gram-positive bacteria to gram-negative bacteria were the primary drivers of reduced N transformation rates and N availability across the topographic gradient. Overall, this study highlights the critical role of the topography in controlling soil N availability by regulating N transformation processes in karst regions. The topography should be considered an important factor affecting the functions and services of karst ecosystems.
Collapse
Affiliation(s)
- Dongni Wen
- College of Tropical Crops, Hainan University, Haikou 570100, China; Key Laboratory of Karst Dynamics, MLR & Guangxi, Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin 541004, China
| | - Lin Yang
- Key Laboratory of Karst Dynamics, MLR & Guangxi, Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin 541004, China
| | - Kang Ni
- Tea Research Institute of Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Xingliang Xu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources, Chinese Academy of Sciences, Beijing 100101, China
| | - Longfei Yu
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Ahmed S Elrys
- College of Tropical Crops, Hainan University, Haikou 570100, China
| | - Lei Meng
- College of Tropical Crops, Hainan University, Haikou 570100, China
| | - Jinxing Zhou
- Jianshui Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
| | - Tongbin Zhu
- Key Laboratory of Karst Dynamics, MLR & Guangxi, Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin 541004, China; Liebig Centre for Agroecology and Climate Impact Research, Justus Liebig University, Germany.
| | - Christoph Müller
- Liebig Centre for Agroecology and Climate Impact Research, Justus Liebig University, Germany; Institute of Plant Ecology, Justus-Liebig University Giessen, Heinrich-Buff-Ring 26, 35392 Giessen, Germany; School of Biology and Environmental Science and Earth Science Centre, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
13
|
Elrys AS, Abo El-Maati MF, Dan X, Wen Y, Mou J, Abdelghany AE, Uwiragiye Y, Shuirong T, Yanzheng W, Meng L, Zhang J, Müller C. Aridity creates global thresholds in soil nitrogen retention and availability. GLOBAL CHANGE BIOLOGY 2024; 30:e17003. [PMID: 37943245 DOI: 10.1111/gcb.17003] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/12/2023] [Accepted: 10/12/2023] [Indexed: 11/10/2023]
Abstract
Identifying tipping points in the relationship between aridity and gross nitrogen (N) cycling rates could show critical vulnerabilities of terrestrial ecosystems to climate change. Yet, the global pattern of gross N cycling response to aridity across terrestrial ecosystems remains unknown. Here, we collected 14,144 observations from 451 15 N-labeled studies and used segmented regression to identify the global threshold responses of soil gross N cycling rates and soil process-related variables to aridity index (AI), which decreases as aridity increases. We found on a global scale that increasing aridity reduced soil gross nitrate consumption but increased soil nitrification capacity, mainly due to reduced soil microbial biomass carbon (MBC) and N (MBN) and increased soil pH. Threshold response of gross N production and retention to aridity was observed across terrestrial ecosystems. In croplands, gross nitrification and extractable nitrate were inhibited with increasing aridity below the threshold AI ~0.8-0.9 due to inhibited ammonia-oxidizing archaea and bacteria, while the opposite was favored above this threshold. In grasslands, gross N mineralization and immobilization decreased with increasing aridity below the threshold AI ~0.5 due to decreased MBN, but the opposite was true above this threshold. In forests, increased aridity stimulated nitrate immobilization below the threshold AI ~1.0 due to increased soil C/N ratio, but inhibited ammonium immobilization above the threshold AI ~1.3 due to decreased soil total N and increased MBC/MBN ratio. Soil dissimilatory nitrate reduction to ammonium decreased with increasing aridity globally and in forests when the threshold AI ~1.4 was passed. Overall, we suggest that any projected increase in aridity in response to climate change is likely to reduce plant N availability in arid regions while enhancing it in humid regions, affecting the provision of ecosystem services and functions.
Collapse
Affiliation(s)
- Ahmed S Elrys
- College of Tropical Crops, Hainan University, Haikou, China
- Soil Science Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
- Liebig Centre for Agroecology and Climate Impact Research, Justus Liebig University, Giessen, Germany
| | - Mohamed F Abo El-Maati
- Agriculture Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Xiaoqian Dan
- College of Tropical Crops, Hainan University, Haikou, China
| | - YuHong Wen
- College of Tropical Crops, Hainan University, Haikou, China
| | - Jinxia Mou
- College of Tropical Crops, Hainan University, Haikou, China
| | - Ahmed Elsayed Abdelghany
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid, Areas of Ministry of Education, Northwest A&F University, Yangling, China
- Water Relation and Field Irrigation Department, Agriculture and Biological Institute, National Research Centre, Cairo, Egypt
| | - Yves Uwiragiye
- Department of Agriculture, Faculty of Agriculture, Environmental Management and Renewable Energy, University of Technology and Arts of Byumba, Byumba, Rwanda
- School of Geography, Nanjing Normal University, Nanjing, China
| | - Tang Shuirong
- College of Tropical Crops, Hainan University, Haikou, China
| | - Wu Yanzheng
- College of Tropical Crops, Hainan University, Haikou, China
| | - Lei Meng
- College of Tropical Crops, Hainan University, Haikou, China
| | - JinBo Zhang
- College of Tropical Crops, Hainan University, Haikou, China
- Liebig Centre for Agroecology and Climate Impact Research, Justus Liebig University, Giessen, Germany
- School of Geography, Nanjing Normal University, Nanjing, China
| | - Christoph Müller
- Liebig Centre for Agroecology and Climate Impact Research, Justus Liebig University, Giessen, Germany
- Institute of Plant Ecology, Justus Liebig University Giessen, Giessen, Germany
- School of Biology and Environmental Science and Earth Institute, University College Dublin, Dublin, Ireland
| |
Collapse
|
14
|
Elrys AS, Wang J, Meng L, Zhu Q, El-Sawy MM, Chen Z, Tu X, El-Saadony MT, Zhang Y, Zhang J, Cai Z, Müller C, Cheng Y. Integrative knowledge-based nitrogen management practices can provide positive effects on ecosystem nitrogen retention. NATURE FOOD 2023; 4:1075-1089. [PMID: 38053005 DOI: 10.1038/s43016-023-00888-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 11/03/2023] [Indexed: 12/07/2023]
Abstract
Knowledge-based nitrogen (N) management provides better synchronization of crop N demand with N supply to enhance crop production while reducing N losses. Yet, how these N management practices contribute to reducing N losses globally is unclear. Here we compiled 5,448 paired observations from 336 publications representing 286 sites to assess the impacts of four common knowledge-based N management practices, including balanced fertilization, organic fertilization, co-application of synthetic and organic fertilizers, and nitrification inhibitors, on global ecosystem N cycling. We found that organic and balanced fertilization rather than N-only fertilization stimulated soil nitrate retention by enhancing microbial biomass, but also stimulated soil N leaching and emissions relative to no fertilizer addition. Nitrification inhibitors, however, stimulated soil ammonium retention and plant N uptake while reducing N leaching and emissions. Therefore, integrative application of knowledge-based N management practices is imperative to stimulate ecosystem N retention and minimize the risk of N loss globally.
Collapse
Affiliation(s)
- Ahmed S Elrys
- College of Tropical Crops, Hainan University, Haikou, China
- Soil Science Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Jing Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Lei Meng
- College of Tropical Crops, Hainan University, Haikou, China
| | - Qilin Zhu
- College of Tropical Crops, Hainan University, Haikou, China
| | - Mostafa M El-Sawy
- Soil Science Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - ZhaoXiong Chen
- School of Geography, Nanjing Normal University, Nanjing, China
| | - XiaoShun Tu
- School of Geography, Nanjing Normal University, Nanjing, China
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - YanHui Zhang
- School of Geography, Nanjing Normal University, Nanjing, China
| | - JinBo Zhang
- College of Tropical Crops, Hainan University, Haikou, China
- School of Geography, Nanjing Normal University, Nanjing, China
- Liebig Centre of Agroecology and Climate Impact Research, Justus Liebig University, Giessen, Germany
| | - ZuCong Cai
- School of Geography, Nanjing Normal University, Nanjing, China
- Liebig Centre of Agroecology and Climate Impact Research, Justus Liebig University, Giessen, Germany
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, China
| | - Christoph Müller
- Liebig Centre of Agroecology and Climate Impact Research, Justus Liebig University, Giessen, Germany
- Institute of Plant Ecology, Justus Liebig University Giessen, Giessen, Germany
- School of Biology and Environmental Science and Earth Institute, University College Dublin, Dublin, Ireland
| | - Yi Cheng
- School of Geography, Nanjing Normal University, Nanjing, China.
- Liebig Centre of Agroecology and Climate Impact Research, Justus Liebig University, Giessen, Germany.
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, China.
- Key Laboratory of Virtual Geographic Environment (Nanjing Normal University), Ministry of Education, Nanjing, China.
| |
Collapse
|
15
|
Luo Y, Wu X, Liu J, Xiao H, Liao B, Hu R. Mitigating runoff nitrate loss from soil organic nitrogen mineralization in citrus orchard catchments using green manure. WATER RESEARCH 2023; 243:120398. [PMID: 37506633 DOI: 10.1016/j.watres.2023.120398] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023]
Abstract
Nitrate-nitrogen (NO3--N) loss is a significant contributor to water quality degradation in agricultural catchments. The amount of nitrogen (N) fertilizer input in citrus orchard is relatively large and results in significant NO3--N loss, compared to cropland. To promote sustainable N fertilizer management, it is crucial to identify the sources of runoff NO3--N loss in citrus orchards catchments. Particularly, we poorly know the sources of NO3--N and the mitigation mechanisms in these areas, which are highly polluted with NO3--N in water bodies. In this study conducted in central China, we conducted a field experiment with four treatments (CK: no N fertilizer; CF: conventional N fertilizer, 371.3kg N ha-1 yr-1 urea; OM: CF with organic manure; GM: CF with legume green manure) and a catchment-scale experiment in two citrus orchards (34.3%; 51.6%) catchments. To determine the source of runoff NO3--N loss, we used the dual isotope tracer method (δ15N and δ18O of NO3-) to identify the sources of NO3--N, and a 15-day incubation experiment to determine the potential and rate of soil N mineralization. Our findings revealed that soil organic nitrogen (SON) mineralization was the primary contributor to runoff NO3--N loss, and soil N mineralization potential (0.65⁎⁎⁎) and rate (0.54⁎⁎⁎) were the key factors impacting NO3--N loss. Interestingly, organic manure significantly increased 29.0% of NO3--N loss derived from SON in the runoff by enhancing soil N mineralization potential (+36.6%) and rate (+77.1%). But green manure mulching significantly reduced the soil N mineralization rate (-18.6%) compared to organic manure application, making it the most effective measure to reduce NO3--N loss (-12.4%). Our study highlights the critical role of regulating SON mineralization in controlling NO3--N pollution in surface waters in citrus orchard catchments.
Collapse
Affiliation(s)
- Yue Luo
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Xian Wu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Ji Liu
- Hubei Province Key Laboratory for Geographical Process Analysis and Simulation, Central China Normal University, Wuhan 430079, China; Department of Ecohydrology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin 12587, Germany
| | - Hengbin Xiao
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Bin Liao
- School of Water Resources and Hydropower Engineering, Wuhan University, Wuhan 430072, China
| | - Ronggui Hu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
16
|
Song L, Wang J, Zhang R, Pan J, Li Y, Wang S, Niu S. Threshold responses of soil gross nitrogen transformation rates to aridity gradient. GLOBAL CHANGE BIOLOGY 2023; 29:4018-4027. [PMID: 37103000 DOI: 10.1111/gcb.16737] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/17/2023] [Indexed: 05/06/2023]
Abstract
The responses of soil nitrogen (N) transformations to climate change are crucial for biome productivity prediction under global change. However, little is known about the responses of soil gross N transformation rates to drought gradient. Along an aridity gradient across the 2700 km transect of drylands on the Qinghai-Tibetan Plateau, this study measured three main soil gross N transformation rates in both topsoil (0-10 cm) and subsoil (20-30 cm) using the laboratorial 15 N labeling. The relevant soil abiotic and biotic variables were also determined. The results showed that gross N mineralization and nitrification rates steeply decreased with increasing aridity when aridity was less than 0.5 but just slightly decreased with increasing aridity when aridity was larger than 0.5 at both soil layers. In topsoil, the decreases of the two gross rates were accompanied by the similar decreased patterns of soil total N content and microbial biomass carbon with increasing aridity (p < .05). In subsoil, although the decreased pattern of soil total N with increasing aridity was still similar to the decreases of the two gross rates (p < .05), microbial biomass carbon did not change (p > .05). Instead, bacteria and ammonia oxidizing archaea abundances decreased with increasing aridity when aridity was larger than 0.5 (p < .05). With an aridity threshold of 0.6, gross N immobilization rate increased with increasing aridity in wetter region (aridity < 0.6) accompanied with an increased bacteria/fungi ratio, but decreased with increasing aridity in drier region (aridity > 0.6) where mineral N and microbial biomass N also decreased at both soil layers (p < .05). This study provided new insight to understand the differential responses of soil N transformation to drought gradient. The threshold responses of the gross N transformation rates to aridity gradient should be noted in biogeochemical models to better predict N cycling and manage land in the context of global change.
Collapse
Affiliation(s)
- Lei Song
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, P.R. China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Jinsong Wang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, P.R. China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Ruiyang Zhang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, P.R. China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Junxiao Pan
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, P.R. China
| | - Yang Li
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, P.R. China
| | - Song Wang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, P.R. China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Shuli Niu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, P.R. China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, P.R. China
| |
Collapse
|
17
|
Elrys AS, Zhu Q, Jiang C, Liu J, Sobhy HHH, Shen Q, Uwiragiye Y, Wu Y, El-Tarabily KA, Meng L, Müller C, Zhang J. Global soil nitrogen cycle pattern and nitrogen enrichment effects: Tropical versus subtropical forests. GLOBAL CHANGE BIOLOGY 2023; 29:1905-1921. [PMID: 36660889 DOI: 10.1111/gcb.16603] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/04/2023] [Accepted: 01/11/2023] [Indexed: 05/28/2023]
Abstract
Tropical and subtropical forest biomes are a main hotspot for the global nitrogen (N) cycle. Yet, our understanding of global soil N cycle patterns and drivers and their response to N deposition in these biomes remains elusive. By a meta-analysis of 2426-single and 161-paired observations from 89 published 15 N pool dilution and tracing studies, we found that gross N mineralization (GNM), immobilization of ammonium ( I NH 4 ) and nitrate ( I NO 3 ), and dissimilatory nitrate reduction to ammonium (DNRA) were significantly higher in tropical forests than in subtropical forests. Soil N cycle was conservative in tropical forests with ratios of gross nitrification (GN) to I NH 4 (GN/ I NH 4 ) and of soil nitrate to ammonium (NO3 - /NH4 + ) less than one, but was leaky in subtropical forests with GN/ I NH 4 and NO3 - /NH4 + higher than one. Soil NH4 + dynamics were mainly controlled by soil substrate (e.g., total N), but climatic factors (e.g., precipitation and/or temperature) were more important in controlling soil NO3 - dynamics. Soil texture played a role, as GNM and I NH 4 were positively correlated with silt and clay contents, while I NO 3 and DNRA were positively correlated with sand and clay contents, respectively. The soil N cycle was more sensitive to N deposition in tropical forests than in subtropical forests. Nitrogen deposition leads to a leaky N cycle in tropical forests, as evidenced by the increase in GN/ I NH 4 , NO3 - /NH4 + , and nitrous oxide emissions and the decrease in I NO 3 and DNRA, mainly due to the decrease in soil microbial biomass and pH. Dominant tree species can also influence soil N cycle pattern, which has changed from conservative in deciduous forests to leaky in coniferous forests. We provide global evidence that tropical, but not subtropical, forests are characterized by soil N dynamics sustaining N availability and that N deposition inhibits soil N retention and stimulates N losses in these biomes.
Collapse
Affiliation(s)
- Ahmed S Elrys
- College of Tropical Crops, Hainan University, Haikou, China
- Liebig Centre for Agroecology and Climate Impact Research, Justus Liebig University, Giessen, Germany
- Soil Science Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - QiLin Zhu
- College of Tropical Crops, Hainan University, Haikou, China
| | - Chunlan Jiang
- College of Tropical Crops, Hainan University, Haikou, China
| | - Juan Liu
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Hamida H H Sobhy
- Soil Science Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Qunli Shen
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Yves Uwiragiye
- Department of Agriculture, Faculty of Agriculture, Environmental Management and Renewable Energy, University of Technology and Arts of Byumba, Byumba, Rwanda
| | - Yanzheng Wu
- College of Tropical Crops, Hainan University, Haikou, China
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain, United Arab Emirates
- Harry Butler Institute, Murdoch University, Murdoch, Australia
| | - Lei Meng
- College of Tropical Crops, Hainan University, Haikou, China
| | - Christoph Müller
- Liebig Centre for Agroecology and Climate Impact Research, Justus Liebig University, Giessen, Germany
- Institute of Plant Ecology, Justus Liebig University Giessen, Giessen, Germany
- School of Biology and Environmental Science and Earth Institute, University College Dublin, Dublin 4, Ireland
| | - Jinbo Zhang
- College of Tropical Crops, Hainan University, Haikou, China
- Liebig Centre for Agroecology and Climate Impact Research, Justus Liebig University, Giessen, Germany
- School of Geography, Nanjing Normal University, Nanjing, China
| |
Collapse
|
18
|
Effects of Temperature and Humidity on Soil Gross Nitrogen Transformation in a Typical Shrub Ecosystem in Yanshan Mountain and Hilly Region. Life (Basel) 2023; 13:life13030643. [PMID: 36983797 PMCID: PMC10056162 DOI: 10.3390/life13030643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/19/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
Shrubland is a pivotal terrestrial ecosystem in China. Soil nitrogen transformations play a crucial role in maintaining the productivity of this ecosystem, yet the driving forces underlying it have not been sufficiently addressed, particularly under ongoing climate changes. Herein, by incorporating 15N isotope pool dilution method in laboratory incubation, the rates of gross N ammonification, nitrification, and inorganic N consumption in soils in response to varying temperature and humidity conditions were determined at different depths (SL10: 0–10 cm, and SL20: 10–20 cm) in a typical shrub ecosystem in the Yanshan mountain and hilly region, North China. The gross rates of ammonification and nitrification of soils in SL10 were higher than those in SL20, which was likely affected by the higher soil organic matter and total N contents at a shallower depth. Both temperature and humidity significantly affected the N transformations. The gross ammonification and nitrification were significantly stimulated as the incubation temperature increased from 5 to 35 °C. The gross ammonification increased exponentially, while the gross nitrification increased differently in different temperature ranges. The increment of soil water contents (from 30% WHC to 60% and 100% WHC) promoted the gross nitrification rate more significantly than the gross ammonification rate. The gross nitrification ceased until soil water content reached 60%WHC, indicating that soil water availability between 60% and 100% WHC was not a limiting factor in the nitrification process for the shrubland soils in this study. The ammonium (NH4+) immobilization was significantly lower than nitrification irrespective of varying environmental conditions, even though the NH4+ consumption rate might be overestimated, uncovering two putative processes: (1) heterotrophic nitrification process; (2) and more competitive nitrifying bacteria than NH4+-immobilizing microorganisms. Our study is indispensable for assessing the stability and sustainability of soil N cycling in the shrub ecosystem under climate changes.
Collapse
|
19
|
Yang Y, Chen X, Liu L, Li T, Dou Y, Qiao J, Wang Y, An S, Chang SX. Nitrogen fertilization weakens the linkage between soil carbon and microbial diversity: A global meta-analysis. GLOBAL CHANGE BIOLOGY 2022; 28:6446-6461. [PMID: 35971768 DOI: 10.1111/gcb.16361] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 07/18/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Soil microbes make up a significant portion of the genetic diversity and play a critical role in belowground carbon (C) cycling in terrestrial ecosystems. Soil microbial diversity and organic C are often tightly coupled in C cycling processes; however, this coupling can be weakened or broken by rapid global change. A global meta-analysis was performed with 1148 paired comparisons extracted from 229 articles published between January 1998 and December 2021 to determine how nitrogen (N) fertilization affects the relationship between soil C content and microbial diversity in terrestrial ecosystems. We found that N fertilization decreased soil bacterial (-11%) and fungal diversity (-17%), but increased soil organic C (SOC) (+19%), microbial biomass C (MBC) (+17%), and dissolved organic C (DOC) (+25%) across different ecosystems. Organic N (urea) fertilization had a greater effect on SOC, MBC, DOC, and bacterial and fungal diversity than inorganic N fertilization. Most importantly, soil microbial diversity decreased with increasing SOC, MBC, and DOC, and the absolute values of the correlation coefficients decreased with increasing N fertilization rate and duration, suggesting that N fertilization weakened the linkage between soil C and microbial diversity. The weakened linkage might negatively impact essential ecosystem services under high rates of N fertilization; this understanding is important for mitigating the negative impact of global N enrichment on soil C cycling.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
- CAS Center for Excellence in Quaternary Science and Global Change, Xi'an, China
- National Observation and Research Station of Earth Critical Zone on the Loess Plateau, Xi'an, China
| | - Xinli Chen
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
| | - Liangxu Liu
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
- Urat Desert-Grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou, China
| | - Ting Li
- Guangzhou Academy of Forestry and Landscape Architecture, Guangzhou, China
| | - Yanxing Dou
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, China
| | - Jiangbo Qiao
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, China
| | - Yunqiang Wang
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
- CAS Center for Excellence in Quaternary Science and Global Change, Xi'an, China
- National Observation and Research Station of Earth Critical Zone on the Loess Plateau, Xi'an, China
| | - Shaoshan An
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, China
| | - Scott X Chang
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
20
|
Tu X, Wang J, Liu X, Elrys AS, Cheng Y, Zhang J, Cai ZC, Müller C. Inhibition of Elevated Atmospheric Carbon Dioxide to Soil Gross Nitrogen Mineralization Aggravated by Warming in an Agroecosystem. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:12745-12754. [PMID: 35985002 DOI: 10.1021/acs.est.2c04378] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The response of soil gross nitrogen (N) cycling to elevated carbon dioxide (CO2) concentration and temperature has been extensively studied in natural and semi-natural ecosystems. However, how these factors and their interaction affect soil gross N dynamics in agroecosystems, strongly disturbed by human activity, remains largely unknown. Here, a 15N tracer study under aerobic incubation was conducted to quantify soil gross N transformation rates in a paddy field exposed to elevated CO2 and/or temperature for 9 years in a warming and free air CO2 enrichment experiment. Results show that long-term exposure to elevated CO2 significantly inhibited or tended to inhibit gross N mineralization at elevated and ambient temperatures, respectively. The inhibition of soil gross N mineralization by elevating CO2 was aggravated by warming in this paddy field. The inhibition of gross N mineralization under elevated CO2 could be due to decreased soil pH. Long-term exposure to elevated CO2 also significantly reduced gross autotrophic nitrification at ambient temperature, probably due to decreased soil pH and gross N mineralization. In contrast, none of the gross N transformation rates were affected by long-term exposure to warming alone. Our study provides strong evidence that long-term dual exposure to elevated CO2 and temperature has a greater negative effect on gross N mineralization rate than the single exposure, potentially resulting in progressive N limitation in this agroecosystem and ultimately increasing demand for N fertilizer.
Collapse
Affiliation(s)
- Xiaoshun Tu
- School of Geography, Nanjing Normal University, Nanjing 210023, China
| | - Jing Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaoyu Liu
- Institute of Resource, Ecosystem and Environment of Agriculture, and Center of Agricultural and Climate Change, Nanjing Agricultural University, Nanjing 210095, China
| | - Ahmed S Elrys
- Soil Science Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Yi Cheng
- School of Geography, Nanjing Normal University, Nanjing 210023, China
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China
- Ministry of Education, Key Laboratory of Virtual Geographic Environment (Nanjing Normal University), Nanjing 210023, China
| | - Jinbo Zhang
- School of Geography, Nanjing Normal University, Nanjing 210023, China
| | - Zu-Cong Cai
- School of Geography, Nanjing Normal University, Nanjing 210023, China
| | - Christoph Müller
- Institute of Plant Ecology, Justus Liebig University Giessen, Giessen 35392, Germany
- School of Biology and Environmental Science and Earth Institute, University College Dublin, Dublin D04, Ireland
| |
Collapse
|