1
|
Xu Y, Li M, Jia Z, Gong Y, Li X, Fu YH. Incorporating Drought Thresholds Improves Model Predictions of Autumn Phenology in Tropical and Subtropical Forests. GLOBAL CHANGE BIOLOGY 2025; 31:e70177. [PMID: 40237248 DOI: 10.1111/gcb.70177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 03/10/2025] [Accepted: 03/22/2025] [Indexed: 04/18/2025]
Abstract
Drought dramatically influences vegetation phenology, thereby impacting terrestrial carbon and water cycles. However, the mechanisms by which drought drives changes in autumn phenology remain unclear, hindering the accurate simulation of these processes in phenology models. In this study, we employed ridge regression analysis to quantify the dynamic effects of intensifying drought on the end-of-photosynthetic-growing-season (EOPS) and identified the drought threshold at which the vegetation's response to drought shifts. We demonstrate that the response of EOPS in tropical and subtropical forests reverses from a delay to an advancement as drought intensity surpasses specific thresholds, with the average drought threshold across the study area corresponding to a standardized precipitation evapotranspiration index (SPEI) value of -0.9. Drought thresholds, however, vary geographically, increasing along the precipitation gradient, potentially due to variations in drought stress-related gene expression and tolerance strategies across different humidity environments. Therefore, we developed a new autumn phenology model (DMPD) by incorporating a drought threshold parameter that distinguishes contrasting drought effects and predicts future EOPS under two scenarios (SSP245 and SSP585). The DMPD model substantially enhanced the representation of EOPS, as evidenced by a lower root mean square error (RMSE), higher correlation, and a greater proportion of significant correlations with EOPS derived from GOSIF. By the end of the century, EOPS is projected to be consistently delayed under both moderate (SSP245) and high (SSP585) warming scenarios, with the rate of delay decelerating under SSP245 after 2066. Our study confirms that increasing drought intensity leads to contrasting shifts in the autumnal photosynthetic phenology of tropical and subtropical forests and highlights the potential of integrating these contrasting drought effects into phenology models to improve the accuracy of vegetation phenology predictions under future climate change scenarios.
Collapse
Affiliation(s)
- Yue Xu
- College of Urban and Environmental Sciences, Central China Normal University, Wuhan, China
| | - Mingwei Li
- College of Water Sciences, Beijing Normal University, Beijing, China
| | - Zitong Jia
- College of Water Sciences, Beijing Normal University, Beijing, China
| | - Yufeng Gong
- College of Urban and Environmental Sciences, Central China Normal University, Wuhan, China
| | - Xiran Li
- College of Urban and Environmental Sciences, Central China Normal University, Wuhan, China
| | - Yongshuo H Fu
- College of Urban and Environmental Sciences, Central China Normal University, Wuhan, China
- College of Water Sciences, Beijing Normal University, Beijing, China
- Department of Biology, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
2
|
He L, Wang J, Peñuelas J, Zohner CM, Crowther TW, Fu Y, Zhang W, Xiao J, Liu Z, Wang X, Li JH, Li X, Peng S, Xie Y, Ye JS, Zhou C, Li ZL. Asymmetric temperature effect on leaf senescence and its control on ecosystem productivity. PNAS NEXUS 2024; 3:pgae477. [PMID: 39492950 PMCID: PMC11529893 DOI: 10.1093/pnasnexus/pgae477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/30/2024] [Indexed: 11/05/2024]
Abstract
Widespread autumn cooling occurred in the northern hemisphere (NH) during the period 2004-2018, primarily due to the strengthening of the Pacific Decadal Oscillation and Siberian High. Yet, while there has been considerable focus on the warming impacts, the effects of natural cooling on autumn leaf senescence and plant productivity have been largely overlooked. This gap in knowledge hinders our understanding of how vegetation adapts and acclimates to complex climate change. In this study, we utilize over 36,000 in situ phenological time series from 11,138 European sites dating back to the 1950s, and 30 years of satellite greenness data (1989-2018), to demonstrate that leaf senescence dates (LSD) in northern forests responded more strongly to warming than to cooling in autumn. Specifically, a 1 °C increase in temperature caused 7.5 ± 0.2 days' delay in LSD, whereas a 1 °C decrease led to an advance of LSD with 3.3 ± 0.1 days (P < 0.001). This asymmetry in temperature effects on LSD is attributed to greater preoverwintering plant-resource acquisition requirements, lower frost risk, and greater water availability under warming than cooling conditions. These differential LSD responses highlight the nonlinear impact of temperature on autumn plant productivity, which current process-oriented models fail to accurately capture. Our findings emphasize the need to account for the asymmetric effects of warming and cooling on leaf senescence in model projections and in understanding vegetation-climate feedback mechanisms.
Collapse
Affiliation(s)
- Lei He
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- College of Earth and Environment Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jian Wang
- The Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Josep Peñuelas
- CSIC, Global Ecology Unit, CREAF- CSIC-UAB, Cerdanyola del Vallès, 08193 Barcelona, Catalonia, Spain
- CREAF, Cerdanyola del Vallès, 08193 Barcelona, Catalonia, Spain
| | - Constantin M Zohner
- Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), 8092 Zurich, Switzerland
| | - Thomas W Crowther
- Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), 8092 Zurich, Switzerland
| | - Yongshuo Fu
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Wenxin Zhang
- Department of Physical Geography and Ecosystem Science, Lund University, Lund 22362, Sweden
| | - Jingfeng Xiao
- Earth Systems Research Center, Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH 03824, USA
| | - Zhihua Liu
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Xufeng Wang
- Key Laboratory of Remote Sensing of Gansu Province, Heihe Remote Sensing Experimental Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Jia-Hao Li
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaojun Li
- INRAE, UMR1391 ISPA, Université de Bordeaux, Villenave d'Ornon 33140, France
| | - Shouzhang Peng
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, China
| | - Yaowen Xie
- College of Earth and Environment Sciences, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), Lanzhou University, Lanzhou 730000, China
| | - Jian-Sheng Ye
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Chenghu Zhou
- Center for Ocean Remote Sensing of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou Institute of Geography, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Zhao-Liang Li
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
3
|
Sun H, Yan L, Li Z, Cheng W, Lu R, Xia X, Ping J, Bian C, Wei N, You C, Tang S, Du Y, Wang J, Qiao Y, Cui E, Zhou X, Xia J. Drought shortens subtropical understory growing season by advancing leaf senescence. GLOBAL CHANGE BIOLOGY 2024; 30:e17304. [PMID: 38711381 DOI: 10.1111/gcb.17304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/09/2024] [Accepted: 04/12/2024] [Indexed: 05/08/2024]
Abstract
Subtropical forests, recognized for their intricate vertical canopy stratification, exhibit high resistance to extreme drought. However, the response of leaf phenology to drought in the species-rich understory remains poorly understood. In this study, we constructed a digital camera system, amassing over 360,000 images through a 70% throughfall exclusion experiment, to explore the drought response of understory leaf phenology. The results revealed a significant advancement in understory leaf senescence phenology under drought, with 11.75 and 15.76 days for the start and end of the leaf-falling event, respectively. Pre-season temperature primarily regulated leaf development phenology, whereas soil water dominated the variability in leaf senescence phenology. Under drought conditions, temperature sensitivities for the end of leaf emergence decreased from -13.72 to -11.06 days °C-1, with insignificance observed for the start of leaf emergence. Consequently, drought treatment shortened both the length of the growing season (15.69 days) and the peak growth season (9.80 days) for understory plants. Moreover, this study identified diverse responses among intraspecies and interspecies to drought, particularly during the leaf development phase. These findings underscore the pivotal role of water availability in shaping understory phenology patterns, especially in subtropical forests.
Collapse
Affiliation(s)
- Huanfa Sun
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, Institute of Eco-Chongming, East China Normal University, Shanghai, China
- Research Center for Global Change and Complex Ecosystems, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Liming Yan
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, Institute of Eco-Chongming, East China Normal University, Shanghai, China
- Research Center for Global Change and Complex Ecosystems, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Zhao Li
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, Institute of Eco-Chongming, East China Normal University, Shanghai, China
- Department of Grassland Resource and Ecology, College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Wanying Cheng
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, Institute of Eco-Chongming, East China Normal University, Shanghai, China
- Research Center for Global Change and Complex Ecosystems, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Ruiling Lu
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, Institute of Eco-Chongming, East China Normal University, Shanghai, China
- Research Center for Global Change and Complex Ecosystems, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Xingli Xia
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, Institute of Eco-Chongming, East China Normal University, Shanghai, China
- Research Center for Global Change and Complex Ecosystems, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Jiaye Ping
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, Institute of Eco-Chongming, East China Normal University, Shanghai, China
- Research Center for Global Change and Complex Ecosystems, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Chenyu Bian
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, Institute of Eco-Chongming, East China Normal University, Shanghai, China
- Research Center for Global Change and Complex Ecosystems, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Ning Wei
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, Institute of Eco-Chongming, East China Normal University, Shanghai, China
- Research Center for Global Change and Complex Ecosystems, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Cuihai You
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, Institute of Eco-Chongming, East China Normal University, Shanghai, China
- Research Center for Global Change and Complex Ecosystems, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Songbo Tang
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, Institute of Eco-Chongming, East China Normal University, Shanghai, China
- Research Center for Global Change and Complex Ecosystems, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Ying Du
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, Institute of Eco-Chongming, East China Normal University, Shanghai, China
- Research Center for Global Change and Complex Ecosystems, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Jing Wang
- Northeast Asia Ecosystem Carbon Sink Research Center, Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin, China
| | - Yang Qiao
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, Institute of Eco-Chongming, East China Normal University, Shanghai, China
- Research Center for Global Change and Complex Ecosystems, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Erqian Cui
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, Institute of Eco-Chongming, East China Normal University, Shanghai, China
- Research Center for Global Change and Complex Ecosystems, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Xuhui Zhou
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, Institute of Eco-Chongming, East China Normal University, Shanghai, China
- Research Center for Global Change and Complex Ecosystems, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
- Northeast Asia Ecosystem Carbon Sink Research Center, Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin, China
| | - Jianyang Xia
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, Institute of Eco-Chongming, East China Normal University, Shanghai, China
- Research Center for Global Change and Complex Ecosystems, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
4
|
Ren P, Li P, Tang J, Li T, Liu Z, Zhou X, Peng C. Satellite monitoring reveals short-term cumulative and time-lag effect of drought and heat on autumn photosynthetic phenology in subtropical vegetation. ENVIRONMENTAL RESEARCH 2023; 239:117364. [PMID: 37827373 DOI: 10.1016/j.envres.2023.117364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 09/26/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
Comparing with the effect of the average climate change on vegetation phenology, the impacts of extreme climate events remain unclear, especially considering their characteristic cumulative and time-lag effects. Using solar-induced chlorophyll fluorescence (SIF) satellite records, we investigated the cumulative and time-lag effects of drought and heat events on photosynthesis, particularly for the end date of autumn photosynthesis (EOP), in subtropical vegetation in China. Our results showed a negative effect of drought on the delay of EOP, with the cumulative effect on 30.12% (maximum continuous dry days, CDD), 34.82% (dry days, DRD), and 26.14% (dry period, DSDI) of the study area and the general time-lag effect on 50.73% (maximum continuous dry days), 56.61% (dry days), and 47.55% (dry period) of the study area. The cumulative and lagged time were 1-3 months and 2-3 months, respectively. In contrast, the cumulative effect of heat on EOP was observed in 16.27% (warm nights, TN90P), 23.66% (moderate heat days, TX50P), and 19.19% (heavy heat days, TX90P) of the study area, with cumulative time of 1-3 months. The lagged time was 3-4 months, detected in 31.02% (warm nights), 45.86% (moderate heat days), and 36.52% (heavy heat days) of the study area. At the vegetation community level, drought and heat had relatively rapid impacts on EOP in the deciduous broadleaved forest, whereas evergreen forests and bushes responded to heat slowly and took a longer time. Our results revealed that drought and heat have short-term cumulative and time-lag effects on the EOP of subtropical vegetation in China, with varying effects among different vegetation types. These findings provide new insights into the effect of drought and heat on subtropical vegetation and confirm the need to consider these effects in the development of prediction models of autumn phenology for subtropical vegetation.
Collapse
Affiliation(s)
- Peixin Ren
- School of Geographical Sciences, Hunan Normal University, Changsha, 410081, China
| | - Peng Li
- School of Geographical Sciences, Hunan Normal University, Changsha, 410081, China.
| | - Jiayi Tang
- School of Geographical Sciences, Hunan Normal University, Changsha, 410081, China
| | - Tong Li
- School of Geographical Sciences, Hunan Normal University, Changsha, 410081, China
| | - Zelin Liu
- School of Geographical Sciences, Hunan Normal University, Changsha, 410081, China
| | - Xiaolu Zhou
- School of Geographical Sciences, Hunan Normal University, Changsha, 410081, China
| | - Changhui Peng
- School of Geographical Sciences, Hunan Normal University, Changsha, 410081, China; Department of Biology Sciences, Institute of Environment Sciences, University of Quebec at Montreal, C.P. 8888, Succ. Centre-Ville, Montreal, H3C 3P8, Canada.
| |
Collapse
|
5
|
Wang X, Wu C, Liu Y, Peñuelas J, Peng J. Earlier leaf senescence dates are constrained by soil moisture. GLOBAL CHANGE BIOLOGY 2023; 29:1557-1573. [PMID: 36541065 DOI: 10.1111/gcb.16569] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/22/2022] [Indexed: 05/28/2023]
Abstract
The unprecedented warming that has occurred in recent decades has led to later autumn leaf senescence dates (LSD) throughout the Northern Hemisphere. Yet, great uncertainties still exist regarding the strength of these delaying trends, especially in terms of how soil moisture affects them. Here we show that changes in soil moisture in 1982-2015 had a substantial impact on autumn LSD in one-fifth of the vegetated areas in the Northern Hemisphere (>30° N), and how it contributed more to LSD variability than either temperature, precipitation or radiation. We developed a new model based on soil-moisture-constrained cooling degree days (CDDSM ) to characterize the effects of soil moisture on LSD and compared its performance with the CDD, Delpierre and spring-influenced autumn models. We show that the CDDSM model with inputs of temperature and soil moisture outperformed the three other models for LSD modelling and had an overall higher correlation coefficient (R), a lower root mean square error and lower Akaike information criterion (AIC) between observations and model predictions. These improvements were particularly evident in arid and semi-arid regions. We studied future LSD using the CDDSM model under two scenarios (SSP126 and SSP585) and found that predicted LSD was 4.1 ± 1.4 days and 5.8 ± 2.8 days earlier under SSP126 and SSP585, respectively, than other models for the end of this century. Our study therefore reveals the importance of soil moisture in regulating autumn LSD and, in particular, highlights how coupling this effect with LSD models can improve simulations of the response of vegetation phenology to future climate change.
Collapse
Affiliation(s)
- Xiaoyue Wang
- The Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Chaoyang Wu
- The Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Ying Liu
- Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Josep Peñuelas
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Barcelona, Spain
- CREAF, Barcelona, Spain
| | - Jie Peng
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| |
Collapse
|