1
|
Krinos AI, Shapiro SK, Li W, Haley ST, Dyhrman ST, Dutkiewicz S, Follows MJ, Alexander H. Intraspecific Diversity in Thermal Performance Determines Phytoplankton Ecological Niche. Ecol Lett 2025; 28:e70055. [PMID: 39887926 DOI: 10.1111/ele.70055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 11/04/2024] [Accepted: 12/08/2024] [Indexed: 02/01/2025]
Abstract
Temperature has a primary influence on phytoplankton physiology and ecology. We grew 12 strains of Gephyrocapsa huxleyi isolated from different-temperature regions for ~45 generations (2 months) and characterised acclimated thermal response curves across a temperature range. Even with similar temperature optima and overlapping cell size, strain growth rates varied between 0.45 and 1 day-1. Thermal niche widths varied from 16.7°C to 24.8°C, suggesting that strains use distinct thermal response mechanisms. We investigated the implications of this thermal intraspecific diversity using an ocean ecosystem simulation resolving phytoplankton thermal phenotypes. Model analogues of thermal 'generalists' and 'specialists' resulted in a distinctive global biogeography of thermal niche widths with a nonlinear latitudinal pattern. We leveraged model output to predict ranges of the 12 lab-reared strains and demonstrated how this approach could broadly refine geographic range predictions. Our combination of observations and modelled biogeography highlights the capacity of diverse groups to survive temperature shifts.
Collapse
Affiliation(s)
- Arianna I Krinos
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
- Department of Earth, Environmental, and Planetary Sciences, Brown University, Providence, RI, USA
- Department of Earth, Atmospheric, and Planetary Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- MIT-WHOI Joint Program in Oceanography/Applied Ocean Science and Engineering, Cambridge and Woods Hole, Massachusetts, USA
| | - Sara K Shapiro
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | - Weixuan Li
- Department of Earth, Atmospheric, and Planetary Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Sheean T Haley
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | - Sonya T Dyhrman
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York, USA
- Department of Earth and Environmental Science, Columbia University, New York, New York, USA
| | - Stephanie Dutkiewicz
- Department of Earth, Atmospheric, and Planetary Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Michael J Follows
- Department of Earth, Atmospheric, and Planetary Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Harriet Alexander
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| |
Collapse
|
2
|
Agarwal V, Sonnet V, Inomura K, Ciochetto AB, Mouw CB. Image-derived indicators of phytoplankton community responses to Pseudo-nitzschia blooms. HARMFUL ALGAE 2024; 138:102702. [PMID: 39244237 DOI: 10.1016/j.hal.2024.102702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/18/2024] [Accepted: 07/24/2024] [Indexed: 09/09/2024]
Abstract
Phytoplankton populations in the natural environment interact with each other. Despite rising global concern with Pseudo-nitzschia blooms, which can produce the potent neurotoxin domoic acid, we still do not fully understand how other phytoplankton genera respond to the presence of Pseudo-nitzschia. Here, we used a 4-year high-resolution imaging dataset for 9 commonly found phytoplankton genera in Narragansett Bay, alongside environmental data, to identify potential interactions between phytoplankton genera and their response to elevated Pseudo-nitzschia abundance. Our results indicate that Pseudo-nitzschia tends to bloom either concurrently with or right after other phytoplankton genera. Such bloom periods coincide with higher water temperatures and lower salinity. Pseudo-nitzschia image abundance tends to increase the most from March-May and peaks during May-Jun, whereas the image-derived biovolume and width of Pseudo-nitzschia chains increase the most during Jan-Feb. For most phytoplankton genera, their relationship with Pseudo-nitzschia abundance is noticeably different from their relationship with Pseudo-nitzschia image features. Despite the complexity in the phytoplankton community, our analysis suggests several ecological indicators that may be used to determine the risk of harmful algal blooms.
Collapse
Affiliation(s)
- Vitul Agarwal
- Graduate School of Oceanography, University of Rhode Island, Narragansett, USA.
| | - Virginie Sonnet
- Graduate School of Oceanography, University of Rhode Island, Narragansett, USA; Laboratoire d'Océanographie de Villefanche, Sorbonne Université, CNRS, Villefranche-sur-mer, France
| | - Keisuke Inomura
- Graduate School of Oceanography, University of Rhode Island, Narragansett, USA
| | - Audrey B Ciochetto
- Graduate School of Oceanography, University of Rhode Island, Narragansett, USA
| | - Colleen B Mouw
- Graduate School of Oceanography, University of Rhode Island, Narragansett, USA.
| |
Collapse
|
3
|
Wolf KKE, Hoppe CJM, Rehder L, Schaum E, John U, Rost B. Heatwave responses of Arctic phytoplankton communities are driven by combined impacts of warming and cooling. SCIENCE ADVANCES 2024; 10:eadl5904. [PMID: 38758795 PMCID: PMC11100554 DOI: 10.1126/sciadv.adl5904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 04/15/2024] [Indexed: 05/19/2024]
Abstract
Marine heatwaves are increasing in frequency and intensity as climate change progresses, especially in the highly productive Arctic regions. Although their effects on primary producers will largely determine the impacts on ecosystem services, mechanistic understanding on phytoplankton responses to these extreme events is still very limited. We experimentally exposed Arctic phytoplankton assemblages to stable warming, as well as to repeated heatwaves, and measured temporally resolved productivity, physiology, and composition. Our results show that even extreme stable warming increases productivity, while the response to heatwaves depends on the specific scenario applied and is not predictable from stable warming responses. This appears to be largely due to the underestimated impact of the cool phase following a heatwave, which can be at least as important as the warm phase for the overall response. We show that physiological and compositional adjustments to both warm and cool phases drive overall phytoplankton productivity and need to be considered mechanistically to predict overall ecosystem impacts.
Collapse
Affiliation(s)
- Klara K. E. Wolf
- Institute of Marine Ecosystem and Fishery Science, University of Hamburg, Hamburg, Germany
- Environmental Genomics, University of Konstanz, Konstanz, Germany
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Clara J. M. Hoppe
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Linda Rehder
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Elisa Schaum
- Institute of Marine Ecosystem and Fishery Science, University of Hamburg, Hamburg, Germany
| | - Uwe John
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- Helmholtz Institute for Functional Marine Biodiversity (HIFMB), Oldenburg, Germany
| | - Björn Rost
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- FB2, University of Bremen, Bremen, Germany
| |
Collapse
|
4
|
Anderson SI, Fronda C, Barton AD, Clayton S, Rynearson TA, Dutkiewicz S. Phytoplankton thermal trait parameterization alters community structure and biogeochemical processes in a modeled ocean. GLOBAL CHANGE BIOLOGY 2024; 30:e17093. [PMID: 38273480 DOI: 10.1111/gcb.17093] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/19/2023] [Accepted: 11/20/2023] [Indexed: 01/27/2024]
Abstract
Phytoplankton exhibit diverse physiological responses to temperature which influence their fitness in the environment and consequently alter their community structure. Here, we explored the sensitivity of phytoplankton community structure to thermal response parameterization in a modelled marine phytoplankton community. Using published empirical data, we evaluated the maximum thermal growth rates (μmax ) and temperature coefficients (Q10 ; the rate at which growth scales with temperature) of six key Phytoplankton Functional Types (PFTs): coccolithophores, cyanobacteria, diatoms, diazotrophs, dinoflagellates, and green algae. Following three well-documented methods, PFTs were either assumed to have (1) the same μmax and the same Q10 (as in to Eppley, 1972), (2) a unique μmax but the same Q10 (similar to Kremer et al., 2017), or (3) a unique μmax and a unique Q10 (following Anderson et al., 2021). These trait values were then implemented within the Massachusetts Institute of Technology biogeochemistry and ecosystem model (called Darwin) for each PFT under a control and climate change scenario. Our results suggest that applying a μmax and Q10 universally across PFTs (as in Eppley, 1972) leads to unrealistic phytoplankton communities, which lack diatoms globally. Additionally, we find that accounting for differences in the Q10 between PFTs can significantly impact each PFT's competitive ability, especially at high latitudes, leading to altered modeled phytoplankton community structures in our control and climate change simulations. This then impacts estimates of biogeochemical processes, with, for example, estimates of export production varying by ~10% in the Southern Ocean depending on the parameterization. Our results indicate that the diversity of thermal response traits in phytoplankton not only shape community composition in the historical and future, warmer ocean, but that these traits have significant feedbacks on global biogeochemical cycles.
Collapse
Affiliation(s)
- Stephanie I Anderson
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Clara Fronda
- Laboratoire de Physique, Ecole Normale Supérieure, Paris, France
| | - Andrew D Barton
- Scripps Institution of Oceanography and Department of Ecology, Behavior and Evolution, San Diego, California, USA
| | - Sophie Clayton
- Department of Ocean and Earth Sciences, Old Dominion University, Norfolk, Virginia, USA
| | - Tatiana A Rynearson
- Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island, USA
| | - Stephanie Dutkiewicz
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
5
|
Schmidt K, Graeve M, Hoppe CJM, Torres-Valdes S, Welteke N, Whitmore LM, Anhaus P, Atkinson A, Belt ST, Brenneis T, Campbell RG, Castellani G, Copeman LA, Flores H, Fong AA, Hildebrandt N, Kohlbach D, Nielsen JM, Parrish CC, Rad-Menéndez C, Rokitta SD, Tippenhauer S, Zhuang Y. Essential omega-3 fatty acids are depleted in sea ice and pelagic algae of the Central Arctic Ocean. GLOBAL CHANGE BIOLOGY 2024; 30:e17090. [PMID: 38273483 DOI: 10.1111/gcb.17090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/04/2023] [Accepted: 11/14/2023] [Indexed: 01/27/2024]
Abstract
Microalgae are the main source of the omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), essential for the healthy development of most marine and terrestrial fauna including humans. Inverse correlations of algal EPA and DHA proportions (% of total fatty acids) with temperature have led to suggestions of a warming-induced decline in the global production of these biomolecules and an enhanced importance of high latitude organisms for their provision. The cold Arctic Ocean is a potential hotspot of EPA and DHA production, but consequences of global warming are unknown. Here, we combine a full-seasonal EPA and DHA dataset from the Central Arctic Ocean (CAO), with results from 13 previous field studies and 32 cultured algal strains to examine five potential climate change effects; ice algae loss, community shifts, increase in light, nutrients, and temperature. The algal EPA and DHA proportions were lower in the ice-covered CAO than in warmer peripheral shelf seas, which indicates that the paradigm of an inverse correlation of EPA and DHA proportions with temperature may not hold in the Arctic. We found no systematic differences in the summed EPA and DHA proportions of sea ice versus pelagic algae, and in diatoms versus non-diatoms. Overall, the algal EPA and DHA proportions varied up to four-fold seasonally and 10-fold regionally, pointing to strong light and nutrient limitations in the CAO. Where these limitations ease in a warming Arctic, EPA and DHA proportions are likely to increase alongside increasing primary production, with nutritional benefits for a non-ice-associated food web.
Collapse
Affiliation(s)
- Katrin Schmidt
- School of Geography, Earth and Environmental Sciences, University of Plymouth, Plymouth, UK
| | - Martin Graeve
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
| | - Clara J M Hoppe
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
| | - Sinhué Torres-Valdes
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
| | - Nahid Welteke
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
| | - Laura M Whitmore
- International Arctic Research Center, University of Alaska Fairbanks, Fairbanks, Alaska, USA
| | - Philipp Anhaus
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
| | | | - Simon T Belt
- School of Geography, Earth and Environmental Sciences, University of Plymouth, Plymouth, UK
| | - Tina Brenneis
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
| | - Robert G Campbell
- Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island, USA
| | - Giulia Castellani
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
| | - Louise A Copeman
- NOAA Alaska Fisheries Science Center, Hatfield Marine Science Center, Newport, Oregon, USA
| | - Hauke Flores
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
| | - Allison A Fong
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
| | - Nicole Hildebrandt
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
| | - Doreen Kohlbach
- Norwegian Polar Institute, Fram Centre, Tromsø, Norway
- Department of Arctic and Marine Biology, The Arctic University of Tromsø, Tromsø, Norway
| | - Jens M Nielsen
- Cooperative Institute for Climate, Ocean, and Ecosystem Studies, University of Washington, Seattle, Washington, USA
- NOAA Alaska Fisheries Science Center, Seattle, Washington, USA
| | - Christopher C Parrish
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Cecilia Rad-Menéndez
- Culture Collection of Algae and Protozoa, Scottish Association for Marine Science, Oban, UK
| | - Sebastian D Rokitta
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
| | - Sandra Tippenhauer
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
| | - Yanpei Zhuang
- Polar and Marine Research Institute, Jimei University, Xiamen, China
| |
Collapse
|
6
|
Wang J, Zeng C, Feng Y. Meta-analysis reveals responses of coccolithophores and diatoms to warming. MARINE ENVIRONMENTAL RESEARCH 2024; 193:106275. [PMID: 37992480 DOI: 10.1016/j.marenvres.2023.106275] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 11/02/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023]
Abstract
A meta-analysis was conducted to explore the effects of warming on the physiological processes of coccolithophores and diatoms by synthesizing a large number of published literatures. A total of 154 studies consisting 301 experiments were synthesized in this study. Under a projected temperature increase of 3-5 °C by IPCC AR6 at the end of this century, our results suggest that the growth and photosynthetic rate of coccolithophores were significantly enhanced by the rising temperature, while the calcification of coccolithophores was only slightly promoted. Warming also had significantly positive effects on the growth but not photosynthesis of diatoms. In comparison, the effect size of warming on the growth rate of coccolithophores was larger than that of diatoms. However, there was no significant effect of warming on either the ratio of particulate inorganic carbon to particulate organic carbon (PIC:POC) of coccolithophores or the ratio of biogenic silica to carbon (BSi:C) of diatoms. Furthermore, the results reveal latitudinal and size-specific patterns of the effect sizes of warming. For diatoms, the effects of warming on growth were more prominent in high latitudes, specifically for the Southern Hemisphere species. In addition, the effect size of warming on the small-sized diatoms was larger than that of the large-sized diatoms. For coccolithophores, the growth of the Southern Hemisphere temperate strains was significantly promoted by warming. Overall, the results based on the meta-analysis indicate that the projected warming of the end of this century will be more favor to the growth of coccolithophores than that of diatoms, thus potentially affect the competitive advantages of coccolithophores over diatoms; while the mid-to high latitude species/strains of both coccolithophores and diatoms will benefit more than their counterparts in the lower latitudes. Therefore, this study offers novel insights into predicting both the inter- and intra-group competitive advantages of diatoms and coccolithophores under the future warming climate change scenario.
Collapse
Affiliation(s)
- Jiawei Wang
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, 200030, China; Shanghai Frontiers Science Center of Polar Research, Shanghai, 200030, China
| | - Cong Zeng
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Yuanyuan Feng
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, 200030, China; Shanghai Frontiers Science Center of Polar Research, Shanghai, 200030, China.
| |
Collapse
|
7
|
Delva S, De Baets B, Baetens JM, De Clerck O, Stock W. No bacterial-mediated alleviation of thermal stress in a brown seaweed suggests the absence of ecological bacterial rescue effects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162532. [PMID: 36870499 DOI: 10.1016/j.scitotenv.2023.162532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 06/18/2023]
Abstract
While microbiome alterations are increasingly proposed as a rapid mechanism to buffer organisms under changing environmental conditions, studies of these processes in the marine realm are lagging far behind their terrestrial counterparts. Here, we used a controlled laboratory experiment to examine whether the thermal tolerance of the brown seaweed Dictyota dichotoma, a common species in European coastal ecosystems, could be enhanced by the repeated addition of bacteria from its natural environment. Juvenile algae from three genotypes were subjected for two weeks to a temperature gradient, spanning almost the entire thermal range that can be tolerated by the species (11-30 °C). At the start of the experiment and again in the middle of the experiment, the algae were inoculated with bacteria from their natural environment or left untouched as a control. Relative growth rate was measured over the two-week period, and we assessed bacterial community composition prior to and at the end of the experiment. Since the growth of D. dichotoma over the full thermal gradient was not affected by supplementing bacteria, our results indicate no scope for bacterial-mediated stress alleviation. The minimal changes in the bacterial communities linked to bacterial addition, particularly at temperatures above the thermal optimum (22-23 °C), suggest the existence of a barrier to bacterial recruitment. These findings indicate that ecological bacterial rescue is unlikely to play a role in mitigating the effects of ocean warming on this brown seaweed.
Collapse
Affiliation(s)
- Soria Delva
- Phycology Research Group, Department of Biology, Ghent University, Krijgslaan 281-S8, 9000 Ghent, Belgium; Research Unit Knowledge-Based Systems (KERMIT), Department of Data Analysis and Mathematical Modelling, Ghent University, Coupure links 653, 9000 Ghent, Belgium.
| | - Bernard De Baets
- Research Unit Knowledge-Based Systems (KERMIT), Department of Data Analysis and Mathematical Modelling, Ghent University, Coupure links 653, 9000 Ghent, Belgium.
| | - Jan M Baetens
- Research Unit Knowledge-Based Systems (KERMIT), Department of Data Analysis and Mathematical Modelling, Ghent University, Coupure links 653, 9000 Ghent, Belgium.
| | - Olivier De Clerck
- Phycology Research Group, Department of Biology, Ghent University, Krijgslaan 281-S8, 9000 Ghent, Belgium.
| | - Willem Stock
- Phycology Research Group, Department of Biology, Ghent University, Krijgslaan 281-S8, 9000 Ghent, Belgium.
| |
Collapse
|
8
|
Ye M, Xiao M, Zhang S, Huang J, Lin J, Lu Y, Liang S, Zhao J, Dai X, Xu L, Li M, Zhou Y, Overmans S, Xia J, Jin P. Multi-trait analysis reveals large interspecific differences for phytoplankton in response to thermal change. MARINE ENVIRONMENTAL RESEARCH 2023; 188:106008. [PMID: 37121174 DOI: 10.1016/j.marenvres.2023.106008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/17/2023] [Accepted: 04/25/2023] [Indexed: 06/11/2023]
Abstract
Understanding the responses of multiple traits in phytoplankton, and identifying interspecific variabilities to thermal changes is crucial for predicting the impacts of ocean warming on phytoplankton distributions and community structures in future scenarios. Here, we applied a trait-based approach by examining the patterns in multi-traits variations (eight traits) and interspecific variabilities in five phytoplankton species (two diatoms, three dinoflagellates) in response to a wide range of ecologically relevant temperatures (14-30 °C). Our results show large inter-traits and interspecific variabilities of thermal reaction norms in all of the tested traits. We also found that the interspecific variability exceeded the variations induced by thermal changes. Constrained variations and trade-offs between traits both revealed substantial interspecific differences and shifted as the temperature changed. Our study helps to understand the species-specific response patterns of multiple traits to ocean warming and to investigate the implications of these responses in the context of global change.
Collapse
Affiliation(s)
- Mengcheng Ye
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Mengting Xiao
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Shufei Zhang
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Jiali Huang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Jiamin Lin
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Yucong Lu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Shiman Liang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Jingyuan Zhao
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Xiaoying Dai
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Leyao Xu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Mingke Li
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Yunyue Zhou
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Sebastian Overmans
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Jianrong Xia
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Peng Jin
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China.
| |
Collapse
|
9
|
Winners and Losers of Atlantification: The Degree of Ocean Warming Affects the Structure of Arctic Microbial Communities. Genes (Basel) 2023; 14:genes14030623. [PMID: 36980894 PMCID: PMC10048660 DOI: 10.3390/genes14030623] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
Arctic microbial communities (i.e., protists and bacteria) are increasingly subjected to an intrusion of new species via Atlantification and an uncertain degree of ocean warming. As species differ in adaptive traits, these oceanic conditions may lead to compositional changes with functional implications for the ecosystem. In June 2021, we incubated water from the western Fram Strait at three temperatures (2 °C, 6 °C, and 9 °C), mimicking the current and potential future properties of the Arctic Ocean. Our results show that increasing the temperature to 6 °C only minorly affects the community, while an increase to 9 °C significantly lowers the diversity and shifts the composition. A higher relative abundance of large hetero- and mixotrophic protists was observed at 2 °C and 6 °C compared to a higher abundance of intermediate-sized temperate diatoms at 9 °C. The compositional differences at 9 °C led to a higher chlorophyll a:POC ratio, but the C:N ratio remained similar. Our results contradict the common assumption that smaller organisms and heterotrophs are favored under warming and strongly indicate a thermal limit between 6 °C and 9 °C for many Arctic species. Consequently, the magnitude of temperature increase is a crucial factor for microbial community reorganization and the ensuing ecological consequences in the future Arctic Ocean.
Collapse
|