1
|
Cheaib A, Waring EF, McNellis R, Perkowski EA, Martina JP, Seabloom EW, Borer ET, Wilfahrt PA, Dong N, Prentice IC, Wright IJ, Power SA, Hersch-Green EI, Risch AC, Caldeira MC, Nogueira C, Chen Q, Smith NG. Soil Nitrogen Supply Exerts Largest Influence on Leaf Nitrogen in Environments with the Greatest Leaf Nitrogen Demand. Ecol Lett 2025; 28:e70015. [PMID: 39824754 DOI: 10.1111/ele.70015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 01/20/2025]
Abstract
Accurately representing the relationships between nitrogen supply and photosynthesis is crucial for reliably predicting carbon-nitrogen cycle coupling in Earth System Models (ESMs). Most ESMs assume positive correlations amongst soil nitrogen supply, leaf nitrogen content, and photosynthetic capacity. However, leaf photosynthetic nitrogen demand may influence the leaf nitrogen response to soil nitrogen supply; thus, responses to nitrogen supply are expected to be the largest in environments where demand is the greatest. Using a nutrient addition experiment replicated across 26 sites spanning four continents, we demonstrated that climate variables were stronger predictors of leaf nitrogen content than soil nutrient supply. Leaf nitrogen increased more strongly with soil nitrogen supply in regions with the highest theoretical leaf nitrogen demand, increasing more in colder and drier environments than warmer and wetter environments. Thus, leaf nitrogen responses to nitrogen supply are primarily influenced by climatic gradients in photosynthetic nitrogen demand, an insight that could improve ESM predictions.
Collapse
Affiliation(s)
- Alissar Cheaib
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, USA
| | - Elizabeth F Waring
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, USA
- Department of Biological Sciences, Northeastern State University, Tahlequah, Oklahoma, USA
| | - Risa McNellis
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, USA
| | - Evan A Perkowski
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, USA
| | - Jason P Martina
- Department of Biology, Texas State University, San Marcos, Texas, USA
| | - Eric W Seabloom
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, Minnesota, USA
| | - Elizabeth T Borer
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, Minnesota, USA
| | - Peter A Wilfahrt
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, Minnesota, USA
| | - Ning Dong
- Department of Life Sciences, Georgina Mace Centre for the Living Planet, Imperial College London, Silwood Park, UK
- School of Natural Sciences, Macquarie University, North Ryde, Australia
| | - Iain Colin Prentice
- Department of Life Sciences, Georgina Mace Centre for the Living Planet, Imperial College London, Silwood Park, UK
- School of Natural Sciences, Macquarie University, North Ryde, Australia
- Ministry of Education Key Laboratory for Earth System Modelling, Department of Earth System Science, Tsinghua University, Beijing, China
| | - Ian J Wright
- School of Natural Sciences, Macquarie University, North Ryde, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Sydney, Australia
| | - Sally A Power
- Hawkesbury Institute for the Environment, Western Sydney University, Sydney, Australia
| | - Erika I Hersch-Green
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan, USA
| | - Anita C Risch
- Snow and Landscape Research WSL, Community Ecology, Swiss Federal Institute for Forest, Birmensdorf, Switzerland
| | - Maria C Caldeira
- Forest Research Centre, School of Agriculture, University of Lisbon, Lisbon, Portugal
| | - Carla Nogueira
- Forest Research Centre, School of Agriculture, University of Lisbon, Lisbon, Portugal
| | - Qingqing Chen
- Institute of Ecology, College of Urban and Environmental Science, Peking University, Beijing, China
| | - Nicholas G Smith
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, USA
| |
Collapse
|
2
|
Towers IR, O'Reilly-Nugent A, Sabot MEB, Vesk PA, Falster DS. Optimising height-growth predicts trait responses to water availability and other environmental drivers. PLANT, CELL & ENVIRONMENT 2024; 47:4849-4869. [PMID: 39101679 DOI: 10.1111/pce.15042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/14/2024] [Accepted: 07/04/2024] [Indexed: 08/06/2024]
Abstract
Future changes in climate, together with rising atmosphericCO 2 , may reorganise the functional composition of ecosystems. Without long-term historical data, predicting how traits will respond to environmental conditions-in particular, water availability-remains a challenge. While eco-evolutionary optimality theory (EEO) can provide insight into how plants adapt to their environment, EEO approaches to date have been formulated on the assumption that plants maximise carbon gain, which omits the important role of tissue construction and size in determining growth rates and fitness. Here, we show how an expanded optimisation framework, focussed on individual growth rate, enables us to explain shifts in four key traits: leaf mass per area, sapwood area to leaf area ratio (Huber value), wood density and sapwood-specific conductivity in response to soil moisture, atmospheric aridity,CO 2 and light availability. In particular, we predict that as conditions become increasingly dry, height-growth optimising traits shift from resource-acquisitive strategies to resource-conservative strategies, consistent with empirical responses across current environmental gradients of rainfall. These findings can explain both the shift in traits and turnover of species along existing environmental gradients and changing future conditions and highlight the importance of both carbon assimilation and tissue construction in shaping the functional composition of vegetation across climates.
Collapse
Affiliation(s)
- Isaac R Towers
- Evolution & Ecology Research Centre, The University of New South Wales, Sydney, New South Wales, Australia
| | - Andrew O'Reilly-Nugent
- Evolution & Ecology Research Centre, The University of New South Wales, Sydney, New South Wales, Australia
- Climate Friendly, Sydney, New South Wales, Australia
| | - Manon E B Sabot
- Max Planck Institute for Biogeochemistry, Jena, Germany
- ARC Centre of Excellence for Climate Extremes and Climate Change Research Centre, The University of New South Wales, Sydney, New South Wales, Australia
| | - Peter A Vesk
- School of Agriculture, Food and Ecosystem Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Daniel S Falster
- Evolution & Ecology Research Centre, The University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
3
|
de la Fuente A, Youngentob KN, Marsh KJ, Krockenberger AK, Williams SE, Cernusak LA. Relationships between abiotic factors, foliage chemistry and herbivory in a tropical montane ecosystem. Oecologia 2024; 206:293-304. [PMID: 39453448 PMCID: PMC11599541 DOI: 10.1007/s00442-024-05630-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 10/01/2024] [Indexed: 10/26/2024]
Abstract
Herbivore-plant interactions are fundamental processes shaping ecosystems, yet their study is challenged by their complex connections within broader ecosystem processes, requiring a nuanced understanding of ecosystem dynamics. This study investigated the relationship between nutrient availability and insect herbivory in the Australian Wet Tropics. Our objectives were threefold. Firstly, to understand what factors influence nutrient availability for plants and herbivores across the landscape; secondly, to investigate how trees of different species respond to nutrient availability; and thirdly, to unravel how the relationships between resources and plant chemistry affect herbivory. We established a network of 25 study sites covering important abiotic gradients, including temperature, precipitation, and geology. Employing a hierarchical modelling approach, we assessed the influence of climate and geology on resource availability for plants, primarily in the form of soil nutrients. Then, we explored the influence of the above factors on the interaction between herbivory and foliage chemistry across three widespread rainforest tree species, comparing how these relationships emerged across genera. Our findings suggest an overarching influence of climate and geology over soil chemistry, foliar nitrogen, and insect herbivory, both directly and indirectly. However, individual constituents of soil fertility showed equivocal influences on spatial patterns of foliage chemistry once site geological origin was accounted for, suggesting a questionable relationship between individual soil nutrients and foliar composition. We have demonstrated that herbivore-plant interactions are complex dynamics regulated by an intricate web of relationships spanning different biogeochemical processes. While our results provide some support to the notion that herbivory is affected by resource availability, different species growing under the same conditions can show differing responses to the same resources, highlighting the importance of identifying specific limiting factors rather than simpler proxies of resource availability.
Collapse
Affiliation(s)
| | - Kara N Youngentob
- The Fenner School of Environment and Society, Australian National University, Canberra, ACT, Australia
| | - Karen J Marsh
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | | | - Stephen E Williams
- College of Science and Engineering, James Cook University, Townsville, QLD, Australia
| | - Lucas A Cernusak
- College of Science and Engineering, James Cook University, Cairns, QLD, Australia
| |
Collapse
|
4
|
Pan S, Wang X, Yan Z, Wu J, Guo L, Peng Z, Wu Y, Li J, Wang B, Su Y, Liu L. Leaf stomatal configuration and photosynthetic traits jointly affect leaf water use efficiency in forests along climate gradients. THE NEW PHYTOLOGIST 2024; 244:1250-1262. [PMID: 39223910 DOI: 10.1111/nph.20100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
Water use efficiency (WUE) represents the trade-off between carbon assimilation and water loss in plants. It remains unclear how leaf stomatal and photosynthetic traits regulate the spatial variation of leaf WUE in different natural forest ecosystems. We investigated 43 broad-leaf tree species spanning from cold-temperate to tropical forests in China. We quantified leaf WUE using leaf δ13C and measured stomatal traits, photosynthetic traits as well as maximum stomatal conductance (G w max ) and maximum carboxylation capacity (V c max ). We found that leaves in cold-temperate forests displayed 'fast' carbon economics, characterized by higher leaf nitrogen, Chl, specific leaf area, andV c max , as an adaptation to the shorter growing season. However, these leaves exhibited 'slow' hydraulic traits, with larger but fewer stomata and similarG w max , resulting in higher leaf WUE. By contrast, leaves in tropical forests had smaller and denser stomata, enabling swift response to heterogeneous light conditions. However, this stomatal configuration increased potential water loss, and coupled with their low photosynthetic capacity, led to lower WUE. Our findings contribute to understanding how plant photosynthetic and stomatal traits regulate carbon-water trade-offs across climatic gradients, advancing our ability to predict the impacts of climate changes on forest carbon and water cycles.
Collapse
Affiliation(s)
- Shengnan Pan
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Yuquan Road, Beijing, 100049, China
| | - Xin Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Zhengbing Yan
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- School of Biological Sciences, The University of Hong Kong, Hong Kong, 999077, China
| | - Jin Wu
- School of Biological Sciences, The University of Hong Kong, Hong Kong, 999077, China
| | - Lulu Guo
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Yuquan Road, Beijing, 100049, China
| | - Ziyang Peng
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Yuquan Road, Beijing, 100049, China
| | - Yuntao Wu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Yuquan Road, Beijing, 100049, China
| | - Jing Li
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Yuquan Road, Beijing, 100049, China
| | - Bin Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Yuquan Road, Beijing, 100049, China
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Yanjun Su
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Yuquan Road, Beijing, 100049, China
| | - Lingli Liu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Yuquan Road, Beijing, 100049, China
| |
Collapse
|
5
|
He Y, Zhang R, Li P, Men L, Xu M, Wang J, Niu S, Tian D. Nitrogen enrichment delays the drought threshold responses of leaf photosynthesis in alpine grassland plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169560. [PMID: 38154633 DOI: 10.1016/j.scitotenv.2023.169560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/05/2023] [Accepted: 12/19/2023] [Indexed: 12/30/2023]
Abstract
Extreme drought is found to cause a threshold response in photosynthesis in ecosystem level. However, the mechanisms behind this phenomenon are not well understood, highlighting the importance of revealing the drought thresholds for multiple leaf-level photosynthetic processes. Thus, we conducted a long-term experiment involving precipitation reduction and nitrogen (N) addition. Moreover, an extreme drought event occurred within the experimental period. We found the presence of drought thresholds for multiple leaf-level photosynthetic processes, with the leaf light-saturated carbon assimilation rate (Asat) displaying the highest threshold (10.76 v/v%) and the maximum rate of carboxylation by Rubisco (Vcmax) showing the lowest threshold (5.38 v/v%). Beyond the drought thresholds, the sensitivities of leaf-level photosynthetic processes to soil water content could be greater. Moreover, N addition lowered the drought thresholds of Asat and stomatal conductance (gs), but had no effect on that of Vcmax. Among species, plants with higher leaf K concentration traits had a lower drought threshold of Asat. Overall, this study highlights that leaf photosynthesis may be suppressed abruptly as soil water content surpasses the drought threshold. However, N enrichment helps to improve the resistance via delaying drought threshold response. These new findings have important implications for understanding the nonlinearity of ecosystem productivity response and early warning management in the scenario of combined extreme drought events and continuous N deposition.
Collapse
Affiliation(s)
- Yicheng He
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China; College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Ruiyang Zhang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China
| | - Pengyu Li
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China; School of Grassland Science, Beijing Forestry University, Beijing 100083, China
| | - Lu Men
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China; Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu 610041, China
| | - Meng Xu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China
| | - Jinsong Wang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China
| | - Shuli Niu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dashuan Tian
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
6
|
Smith DD, Adams MA, Salvi AM, Krieg CP, Ané C, McCulloh KA, Givnish TJ. Ecophysiological adaptations shape distributions of closely related trees along a climatic moisture gradient. Nat Commun 2023; 14:7173. [PMID: 37935674 PMCID: PMC10630429 DOI: 10.1038/s41467-023-42352-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 10/09/2023] [Indexed: 11/09/2023] Open
Abstract
Tradeoffs between the energetic benefits and costs of traits can shape species and trait distributions along environmental gradients. Here we test predictions based on such tradeoffs using survival, growth, and 50 photosynthetic, hydraulic, and allocational traits of ten Eucalyptus species grown in four common gardens along an 8-fold gradient in precipitation/pan evaporation (P/Ep) in Victoria, Australia. Phylogenetically structured tests show that most trait-environment relationships accord qualitatively with theory. Most traits appear adaptive across species within gardens (indicating fixed genetic differences) and within species across gardens (indicating plasticity). However, species from moister climates have lower stomatal conductance than others grown under the same conditions. Responses in stomatal conductance and five related traits appear to reflect greater mesophyll photosynthetic sensitivity of mesic species to lower leaf water potential. Our data support adaptive cross-over, with realized height growth of most species exceeding that of others in climates they dominate. Our findings show that pervasive physiological, hydraulic, and allocational adaptations shape the distributions of dominant Eucalyptus species along a subcontinental climatic moisture gradient, driven by rapid divergence in species P/Ep and associated adaptations.
Collapse
Affiliation(s)
- Duncan D Smith
- Department of Botany, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- Faculty of Science, Engineering, & Technology, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia.
- School of Ecosystem and Forest Sciences, University of Melbourne, Creswick, VIC, 3363, Australia.
| | - Mark A Adams
- Faculty of Science, Engineering, & Technology, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Amanda M Salvi
- Department of Botany, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Christopher P Krieg
- Department of Botany, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Cécile Ané
- Department of Botany, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Statistics, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | | | - Thomas J Givnish
- Department of Botany, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
7
|
Waring EF, Perkowski EA, Smith NG. Soil nitrogen fertilization reduces relative leaf nitrogen allocation to photosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5166-5180. [PMID: 37235800 DOI: 10.1093/jxb/erad195] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 05/25/2023] [Indexed: 05/28/2023]
Abstract
The connection between soil nitrogen availability, leaf nitrogen, and photosynthetic capacity is not perfectly understood. Because these three components tend to be positively related over large spatial scales, some posit that soil nitrogen positively drives leaf nitrogen, which positively drives photosynthetic capacity. Alternatively, others posit that photosynthetic capacity is primarily driven by above-ground conditions. Here, we examined the physiological responses of a non-nitrogen-fixing plant (Gossypium hirsutum) and a nitrogen-fixing plant (Glycine max) in a fully factorial combination of light by soil nitrogen availability to help reconcile these competing hypotheses. Soil nitrogen stimulated leaf nitrogen in both species, but the relative proportion of leaf nitrogen used for photosynthetic processes was reduced under elevated soil nitrogen in all light availability treatments due to greater increases in leaf nitrogen content than chlorophyll and leaf biochemical process rates. Leaf nitrogen content and biochemical process rates in G. hirsutum were more responsive to changes in soil nitrogen than those in G. max, probably due to strong G. max investments in root nodulation under low soil nitrogen. Nonetheless, whole-plant growth was significantly enhanced by increased soil nitrogen in both species. Light availability consistently increased relative leaf nitrogen allocation to leaf photosynthesis and whole-plant growth, a pattern that was similar between species. These results suggest that the leaf nitrogen-photosynthesis relationship varies under different soil nitrogen levels and that these species preferentially allocated more nitrogen to plant growth and non-photosynthetic leaf processes, rather than photosynthesis, as soil nitrogen increased.
Collapse
Affiliation(s)
- Elizabeth F Waring
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
- Department of Natural Sciences, Northeastern State University, Tahlequah, OK, USA
| | - Evan A Perkowski
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Nicholas G Smith
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
8
|
Sun K, Sun R, Li Y, Ji H, Jia B, Xu Z. Plant economic strategies in two contrasting forests. BMC PLANT BIOLOGY 2023; 23:366. [PMID: 37479980 PMCID: PMC10362557 DOI: 10.1186/s12870-023-04375-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/12/2023] [Indexed: 07/23/2023]
Abstract
BACKGROUND Predicting relationships between plant functional traits and environmental effects in their habitats is a central issue in terms of classic ecological theories. Yet, only weak correlation with functional trait composition of local plant communities may occur, implying that some essential information might be ignored. In this study, to address this uncertainty, the objective of the study is to test whether and how the consistency of trait relationships occurs by analyzing broad variation in eight traits related to leaf morphological structure, nutrition status and physiological activity, within a large number of plant species in two distinctive but comparable harsh habitats (high-cold alpine fir forest vs. north-cold boreal coniferous forest). RESULTS The contrasting and/or consistent relationships between leaf functional traits in the two distinctive climate regions were observed. Higher specific leaf area, photosynthetic rate, and photosynthetic nitrogen use efficiency (PNUE) with lower N concentration occurred in north-cold boreal forest rather than in high-cold alpine forest, indicating the acquisitive vs. conservative resource utilizing strategies in both habitats. The principal component analysis illuminated the divergent distributions of herb and xylophyta groups at both sites. Herbs tend to have a resource acquisition strategy, particularly in boreal forest. The structural equation modeling revealed that leaf density had an indirect effect on PNUE, primarily mediated by leaf structure and photosynthesis. Most of the traits were strongly correlated with each other, highlighting the coordination and/or trade-offs. CONCLUSIONS We can conclude that the variations in leaf functional traits in north-cold boreal forest were largely distributed in the resource-acquisitive strategy spectrum, a quick investment-return behavior; while those in the high-cold alpine forest tended to be mainly placed at the resource-conservative strategy end. The habitat specificity for the relationships between key functional traits could be a critical determinant of local plant communities. Therefore, elucidating plant economic spectrum derived from variation in major functional traits can provide a fundamental insight into how plants cope with ecological adaptation and evolutionary strategies under environmental changes, particularly in these specific habitats.
Collapse
Affiliation(s)
- Kuo Sun
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ruojun Sun
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yibo Li
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hongchao Ji
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bingrui Jia
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhenzhu Xu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
9
|
Lobo-do-Vale R, Rafael T, Haberstroh S, Werner C, Caldeira MC. Shrub Invasion Overrides the Effect of Imposed Drought on the Photosynthetic Capacity and Physiological Responses of Mediterranean Cork Oak Trees. PLANTS (BASEL, SWITZERLAND) 2023; 12:1636. [PMID: 37111859 PMCID: PMC10142059 DOI: 10.3390/plants12081636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 06/19/2023]
Abstract
Mediterranean ecosystems face threats from both climate change and shrub invasion. As shrub cover increases, competition for water intensifies, exacerbating the negative effects of drought on ecosystem functioning. However, research into the combined effects of drought and shrub invasion on tree carbon assimilation has been limited. We used a Mediterranean cork oak (Quercus suber) woodland to investigate the effects of drought and shrub invasion by gum rockrose (Cistus ladanifer) on cork oak carbon assimilation and photosynthetic capacity. We established a factorial experiment of imposed drought (ambient and rain exclusion) and shrub invasion (invaded and non-invaded) and measured leaf water potential, stomatal conductance and photosynthesis as well as photosynthetic capacity in cork oak and gum rockrose over one year. We observed distinct detrimental effects of gum rockrose shrub invasion on the physiological responses of cork oak trees throughout the study period. Despite the imposed drought, the impact of shrub invasion was more pronounced, resulting in significant photosynthetic capacity reduction of 57% during summer. Stomatal and non-stomatal limitations were observed under moderate drought in both species. Our findings provide significant knowledge on the impact of gum rockrose invasion on the functioning of cork oak and can be used to improve the representation of photosynthesis in terrestrial biosphere models.
Collapse
Affiliation(s)
- Raquel Lobo-do-Vale
- Forest Research Centre, Associate Laboratory TERRA, School of Agriculture, University of Lisbon, 1349-017 Lisbon, Portugal
| | - Teresa Rafael
- Forest Research Centre, Associate Laboratory TERRA, School of Agriculture, University of Lisbon, 1349-017 Lisbon, Portugal
| | - Simon Haberstroh
- Ecosystem Physiology, Faculty of Environment and Natural Resources, University of Freiburg, 79110 Freiburg, Germany
| | - Christiane Werner
- Ecosystem Physiology, Faculty of Environment and Natural Resources, University of Freiburg, 79110 Freiburg, Germany
| | - Maria Conceição Caldeira
- Forest Research Centre, Associate Laboratory TERRA, School of Agriculture, University of Lisbon, 1349-017 Lisbon, Portugal
| |
Collapse
|