1
|
Basnet A, Thomas DD, Landreth KM, Damron FH, Liu TW. Immune Response to Bioluminescence Imaging Reporters in Murine Tumor Models. Mol Imaging Biol 2025:10.1007/s11307-025-02010-7. [PMID: 40234300 DOI: 10.1007/s11307-025-02010-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/04/2025] [Accepted: 04/07/2025] [Indexed: 04/17/2025]
Abstract
PURPOSE Imaging reporters have been widely employed in cancer research to monitor real-time tumor burden and metastatic spread. These tools offer a valuable approach for non-invasive imaging of tumor dynamics over time. With the established understanding that tumor immunology plays a critical role in cancer progression, it is essential to ensure that the chosen imaging reporters used to study tumor-immune interactions do not inadvertently elicit an immune response. This study aimed to investigate the immune response to bioluminescence reporters used for in vivo tracking of tumor cells in immunocompetent murine models. PROCEDURES The in vitro and in vivo growth effects of two stably expressed bioluminescence reporter genes, a red-shifted firefly luciferase and a click beetle green luciferase, were evaluated in four different cancer cell lines. Differences in parental and reporter-expressing cancer cell immune cell composition, activation, and secreted cytokine levels were evaluated using flow cytometry, cytokine arrays and ELISAs. RESULTS The data revealed no significant differences in in vitro cell proliferation between parental and reporter cancer cell lines. In vivo subcutaneous tumor growth was not observed in tumor cells stably expressing the red-shifted firefly luciferase. Cells labeled with click beetle green luciferase demonstrated no significant differences in in vivo subcutaneous tumor growth compared to parental cells. Tumor cells expressing red-shifted firefly luciferase induced an increase in activated and cytotoxic T cells compared to parental and click beetle green luciferase, suggesting enhanced immunogenicity. Furthermore, the tumor-immune composition and cytokine production were similar between parental and click beetle green luciferase-labeled tumor cells. CONCLUSIONS These findings demonstrate that the stable expression of click beetle green luciferase in cancer cells, in contrast to red-shifted firefly luciferase, has minimal immunogenicity and does not alter tumor development in immunocompetent mice. We report detailed characterization studies of bioluminescence reporter cells, providing essential considerations for their use in investigating tumor-immune interactions in syngeneic murine tumor models.
Collapse
Affiliation(s)
- Angisha Basnet
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, 26506, USA
| | - Dylan D Thomas
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, 26506, USA
| | - Kaitlyn M Landreth
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, 26506, USA
| | - F Heath Damron
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, 26506, USA
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, 26506, USA
| | - Tracy W Liu
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, 26506, USA.
- WVU Cancer Institute, West Virginia University, Morgantown, WV, 26506, USA.
| |
Collapse
|
2
|
Ferrari DP, Ramos-Gomes F, Alves F, Markus MA. KPC-luciferase-expressing cells elicit an anti-tumor immune response in a mouse model of pancreatic cancer. Sci Rep 2024; 14:13602. [PMID: 38866899 PMCID: PMC11169258 DOI: 10.1038/s41598-024-64053-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/04/2024] [Indexed: 06/14/2024] Open
Abstract
Mouse models for the study of pancreatic ductal adenocarcinoma (PDAC) are well-established and representative of many key features observed in human PDAC. To monitor tumor growth, cancer cells that are implanted in mice are often transfected with reporter genes, such as firefly luciferase (Luc), enabling in vivo optical imaging over time. Since Luc can induce an immune response, we aimed to evaluate whether the expression of Luc could affect the growth of KPC tumors in mice by inducing immunogenicity. Although both cell lines, KPC and Luc transduced KPC (KPC-Luc), had the same proliferation rate, KPC-Luc tumors had significantly smaller sizes or were absent 13 days after orthotopic cell implantation, compared to KPC tumors. This coincided with the loss of bioluminescence signal over the tumor region. Immunophenotyping of blood and spleen from KPC-Luc tumor-bearing mice showed a decreased number of macrophages and CD4+ T cells, and an increased accumulation of natural killer (NK) cells in comparison to KPC tumor mice. Higher infiltration of CD8+ T cells was found in KPC-Luc tumors than in their controls. Moreover, the immune response against Luc peptide was stronger in splenocytes from mice implanted with KPC-Luc cells compared to those isolated from KPC wild-type mice, indicating increased immunogenicity elicited by the presence of Luc in the PDAC tumor cells. These results must be considered when evaluating the efficacy of anti-cancer therapies including immunotherapies in immunocompetent PDAC or other cancer mouse models that use Luc as a reporter for bioluminescence imaging.
Collapse
Affiliation(s)
- Daniele Pereira Ferrari
- Translational Molecular Imaging, Max-Planck-Institute for Multidisciplinary Sciences, Hermann Rein‑Straße 3, 37075, Göttingen, Germany
| | - Fernanda Ramos-Gomes
- Translational Molecular Imaging, Max-Planck-Institute for Multidisciplinary Sciences, Hermann Rein‑Straße 3, 37075, Göttingen, Germany
| | - Frauke Alves
- Translational Molecular Imaging, Max-Planck-Institute for Multidisciplinary Sciences, Hermann Rein‑Straße 3, 37075, Göttingen, Germany
- Institute of Diagnostic and Interventional Radiology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
- Department of Haematology and Medical Oncology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - M Andrea Markus
- Translational Molecular Imaging, Max-Planck-Institute for Multidisciplinary Sciences, Hermann Rein‑Straße 3, 37075, Göttingen, Germany.
| |
Collapse
|
3
|
Ely ZA, Mathey-Andrews N, Naranjo S, Gould SI, Mercer KL, Newby GA, Cabana CM, Rideout WM, Jaramillo GC, Khirallah JM, Holland K, Randolph PB, Freed-Pastor WA, Davis JR, Kulstad Z, Westcott PMK, Lin L, Anzalone AV, Horton BL, Pattada NB, Shanahan SL, Ye Z, Spranger S, Xu Q, Sánchez-Rivera FJ, Liu DR, Jacks T. A prime editor mouse to model a broad spectrum of somatic mutations in vivo. Nat Biotechnol 2024; 42:424-436. [PMID: 37169967 PMCID: PMC11120832 DOI: 10.1038/s41587-023-01783-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 04/05/2023] [Indexed: 05/13/2023]
Abstract
Genetically engineered mouse models only capture a small fraction of the genetic lesions that drive human cancer. Current CRISPR-Cas9 models can expand this fraction but are limited by their reliance on error-prone DNA repair. Here we develop a system for in vivo prime editing by encoding a Cre-inducible prime editor in the mouse germline. This model allows rapid, precise engineering of a wide range of mutations in cell lines and organoids derived from primary tissues, including a clinically relevant Kras mutation associated with drug resistance and Trp53 hotspot mutations commonly observed in pancreatic cancer. With this system, we demonstrate somatic prime editing in vivo using lipid nanoparticles, and we model lung and pancreatic cancer through viral delivery of prime editing guide RNAs or orthotopic transplantation of prime-edited organoids. We believe that this approach will accelerate functional studies of cancer-associated mutations and complex genetic combinations that are challenging to construct with traditional models.
Collapse
Affiliation(s)
- Zackery A Ely
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nicolas Mathey-Andrews
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Santiago Naranjo
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Samuel I Gould
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kim L Mercer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Gregory A Newby
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Christina M Cabana
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - William M Rideout
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Grissel Cervantes Jaramillo
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard-MIT Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Katie Holland
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Angelo State University, San Angelo, TX, USA
| | - Peyton B Randolph
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - William A Freed-Pastor
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jessie R Davis
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Zachary Kulstad
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Peter M K Westcott
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Cold Spring Harbor Laboratory, Huntington, NY, USA
| | - Lin Lin
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Andrew V Anzalone
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Brendan L Horton
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nimisha B Pattada
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sean-Luc Shanahan
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Zhongfeng Ye
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Stefani Spranger
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Qiaobing Xu
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Francisco J Sánchez-Rivera
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Tyler Jacks
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
4
|
Skourti E, Volpe A, Lang C, Johnson P, Panagaki F, Fruhwirth GO. Spatiotemporal quantitative microRNA-155 imaging reports immune-mediated changes in a triple-negative breast cancer model. Front Immunol 2023; 14:1180233. [PMID: 37359535 PMCID: PMC10285160 DOI: 10.3389/fimmu.2023.1180233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 05/08/2023] [Indexed: 06/28/2023] Open
Abstract
Introduction MicroRNAs are small non-coding RNAs and represent key players in physiology and disease. Aberrant microRNA expression is central to the development and progression of cancer, with various microRNAs proposed as potential cancer biomarkers and drug targets. There is a need to better understand dynamic microRNA expression changes as cancers progress and their tumor microenvironments evolve. Therefore, spatiotemporal and non-invasive in vivo microRNA quantification in tumor models would be highly beneficial. Methods We developed an in vivo microRNA detector platform in which the obtained signals are positively correlated to microRNA presence, and which permitted stable expression in cancer cells as needed for long-term experimentation in tumor biology. It exploits a radionuclide-fluorescence dual-reporter for quantitative in vivo imaging of a microRNA of choice by radionuclide tomography and fluorescence-based downstream ex vivo tissue analyses. We generated and characterized breast cancer cells stably expressing various microRNA detectors and validated them in vitro. Results We found the microRNA detector platform to report on microRNA presence in cells specifically and accurately, which was independently confirmed by real-time PCR and through microRNA modulation. Moreover, we established various breast tumor models in animals with different levels of residual immune systems and observed microRNA detector read-outs by imaging. Applying the detector platform to the progression of a triple-negative breast cancer model, we found that miR-155 upregulation in corresponding tumors was dependent on macrophage presence in tumors, revealing immune-mediated phenotypic changes in these tumors as they progressed. Conclusion While applied to immunooncology in this work, this multimodal in vivo microRNA detector platform will be useful whenever non-invasive quantification of spatiotemporal microRNA changes in living animals is of interest.
Collapse
Affiliation(s)
- Elena Skourti
- Imaging Therapies and Cancer Group, Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, King’s College London, London, United Kingdom
| | - Alessia Volpe
- Imaging Therapies and Cancer Group, Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, King’s College London, London, United Kingdom
| | - Cameron Lang
- Imaging Therapies and Cancer Group, Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, King’s College London, London, United Kingdom
| | - Preeth Johnson
- Imaging Therapies and Cancer Group, Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, King’s College London, London, United Kingdom
| | - Fani Panagaki
- Imaging Therapies and Cancer Group, Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, King’s College London, London, United Kingdom
- Department of Physics, King’s College London, London, United Kingdom
| | - Gilbert O. Fruhwirth
- Imaging Therapies and Cancer Group, Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, King’s College London, London, United Kingdom
| |
Collapse
|
5
|
Han SJ, Jain P, Gilad Y, Xia Y, Sung N, Park MJ, Dean AM, Lanz RB, Xu J, Dacso CC, Lonard DM, O'Malley BW. Steroid Receptor Coactivator-3 is a Key Modulator of Regulatory T Cell-Mediated Tumor Evasion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.28.534575. [PMID: 37034717 PMCID: PMC10081245 DOI: 10.1101/2023.03.28.534575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Steroid receptor coactivator 3 (SRC-3) is most strongly expressed in regulatory T cells (Tregs) and B cells, suggesting that it plays an important role in the regulation of Treg function. Using an aggressive E0771 mouse breast cell line syngeneic immune-intact murine model, we observed that breast tumors were 'permanently eradicated' in a genetically engineered tamoxifen-inducible Treg-cell specific SRC-3 knockout (KO) female mouse that does not possess a systemic autoimmune pathological phenotype. A similar eradication of tumor was noted in a syngeneic model of prostate cancer. A subsequent injection of additional E0771 cancer cells into these mice showed continued resistance to tumor development without the need for tamoxifen induction to produce additional SRC-3 KO Tregs. SRC-3 KO Tregs were highly proliferative and preferentially infiltrated into breast tumors by activating the Chemokine (C-C motif) ligand (Ccl) 19/Ccl21/ Chemokine (C-C motif) Receptor (Ccr)7 signaling axis, generating antitumor immunity by enhancing the interferon-γ/C-X-C Motif Chemokine Ligand (Cxcl) 9 signaling axis to facilitate the entrance and function of effector T cells and Natural Killer cells. SRC-3 KO Tregs also show a dominant effect by blocking the immune suppressive function of WT Tregs. Importantly, a single adoptive transfer of SRC-3 KO Tregs into wild-type E0771 tumor-bearing mice can completely abolish pre-established breast tumors by generating potent antitumor immunity with a durable effect that prevents tumor reoccurrence. Therefore, treatment with SRC-3 deleted Tregs represents a novel approach to completely block tumor growth and recurrence without the autoimmune side-effects that typically accompany immune checkpoint modulators. Significance statement Tregs are essential in restraining immune responses for immune homeostasis. SRC-3 is a pleiotropic coactivator, the second-most highly expressed transcriptional coactivator in Tregs, and a suspect in Treg function. The disruption of SRC-3 expression in Tregs leads to a 'complete lifetime eradication' of tumors in aggressive syngeneic breast cancer mouse models because deletion of SRC-3 alters the expression of a wide range of key genes involved in efferent and afferent Treg signaling. SRC-3KO Tregs confer this long-lasting protection against cancer recurrence in mice without an apparent systemic autoimmune pathological phenotype. Therefore, treatment with SRC-3 deleted Tregs could represent a novel and efficient future target for eliminating tumor growth and recurrence without the autoimmune side-effects that typically accompany immune checkpoint modulators.
Collapse
|
6
|
Duncan BB, Dunbar CE, Ishii K. Applying a Clinical Lens to Animal Models of CAR-T Cell Therapies. Mol Ther Methods Clin Dev 2022; 27:17-31. [PMID: 36156878 PMCID: PMC9478925 DOI: 10.1016/j.omtm.2022.08.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Chimeric antigen receptor (CAR)-T cells have emerged as a promising treatment modality for various hematologic and solid malignancies over the past decade. Animal models remain the cornerstone of pre-clinical evaluation of human CAR-T cell products and are generally required by regulatory agencies prior to clinical translation. However, pharmacokinetics and pharmacodynamics of adoptively transferred T cells are dependent on various recipient factors, posing challenges for accurately predicting human engineered T cell behavior in non-human animal models. For example, murine xenograft models did not forecast now well-established cytokine-driven systemic toxicities of CAR-T cells seen in humans, highlighting the limitations of animal models that do not perfectly recapitulate complex human immune systems. Understanding the concordance as well as discrepancies between existing pre-clinical animal data and human clinical experiences, along with established advantages and limitations of each model, will facilitate investigators’ ability to appropriately select and design animal models for optimal evaluation of future CAR-T cell products. We summarize the current state of animal models in this field, and the advantages and disadvantages of each approach depending on the pre-clinical questions being asked.
Collapse
|
7
|
Day CP, Pérez-Guijarro E, Lopès A, Goldszmid RS, Murgai M, Wakefield L, Merlino G. Recognition of observer effect is required for rigor and reproducibility of preclinical animal studies. Cancer Cell 2022; 40:231-232. [PMID: 35180384 DOI: 10.1016/j.ccell.2022.01.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Chi-Ping Day
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Eva Pérez-Guijarro
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Amélie Lopès
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Romina S Goldszmid
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Meera Murgai
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lalage Wakefield
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Glenn Merlino
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
8
|
Grzelak CA, Goddard ET, Lederer EE, Rajaram K, Dai J, Shor RE, Lim AR, Kim J, Beronja S, Funnell APW, Ghajar CM. Elimination of fluorescent protein immunogenicity permits modeling of metastasis in immune-competent settings. Cancer Cell 2022; 40:1-2. [PMID: 34861158 PMCID: PMC9668376 DOI: 10.1016/j.ccell.2021.11.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Candice A Grzelak
- Public Health Sciences Division and Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| | - Erica T Goddard
- Public Health Sciences Division and Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Emma E Lederer
- Public Health Sciences Division and Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Kamya Rajaram
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Jinxiang Dai
- Public Health Sciences Division and Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Ryann E Shor
- Public Health Sciences Division and Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Andrea R Lim
- Public Health Sciences Division and Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Graduate Program in Molecular and Cellular Biology, University of Washington, Seattle, WA, USA
| | - Jeanna Kim
- Public Health Sciences Division and Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Slobodan Beronja
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | - Cyrus M Ghajar
- Public Health Sciences Division and Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| |
Collapse
|
9
|
Teng K, Ford MJ, Harwalkar K, Li Y, Pacis AS, Farnell D, Yamanaka N, Wang YC, Badescu D, Ton Nu TN, Ragoussis J, Huntsman DG, Arseneau J, Yamanaka Y. Modeling High-Grade Serous Ovarian Carcinoma Using a Combination of In Vivo Fallopian Tube Electroporation and CRISPR-Cas9-Mediated Genome Editing. Cancer Res 2021; 81:5147-5160. [PMID: 34301761 PMCID: PMC9397628 DOI: 10.1158/0008-5472.can-20-1518] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 09/16/2020] [Accepted: 07/21/2021] [Indexed: 01/07/2023]
Abstract
Ovarian cancer is the most lethal gynecologic cancer to date. High-grade serous ovarian carcinoma (HGSOC) accounts for most ovarian cancer cases, and it is most frequently diagnosed at advanced stages. Here, we developed a novel strategy to generate somatic ovarian cancer mouse models using a combination of in vivo electroporation and CRISPR-Cas9-mediated genome editing. Mutation of tumor suppressor genes associated with HGSOC in two different combinations (Brca1, Tp53, Pten with and without Lkb1) resulted in successfully generation of HGSOC, albeit with different latencies and pathophysiology. Implementing Cre lineage tracing in this system enabled visualization of peritoneal micrometastases in an immune-competent environment. In addition, these models displayed copy number alterations and phenotypes similar to human HGSOC. Because this strategy is flexible in selecting mutation combinations and targeting areas, it could prove highly useful for generating mouse models to advance the understanding and treatment of ovarian cancer. SIGNIFICANCE: This study unveils a new strategy to generate genetic mouse models of ovarian cancer with high flexibility in selecting mutation combinations and targeting areas.
Collapse
Affiliation(s)
- Katie Teng
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Canada
- Department of Human Genetics, McGill University, Montreal, Canada
| | - Matthew J Ford
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Canada
- Department of Human Genetics, McGill University, Montreal, Canada
| | - Keerthana Harwalkar
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Canada
- Department of Human Genetics, McGill University, Montreal, Canada
| | - YuQi Li
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Canada
- Department of Human Genetics, McGill University, Montreal, Canada
| | - Alain S Pacis
- Canadian Centre for Computational Genomics, McGill University, Montreal, Canada
| | - David Farnell
- Department of Pathology, Laboratory Medicine, University of British Columbia, Vancouver, British Columbia
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, British Columbia
| | - Nobuko Yamanaka
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Canada
| | - Yu-Chang Wang
- Department of Human Genetics, McGill University, Montreal, Canada
- McGill University and Genome Centre, Montreal, Canada
| | - Dunarel Badescu
- Department of Human Genetics, McGill University, Montreal, Canada
- McGill University and Genome Centre, Montreal, Canada
| | - Tuyet Nhung Ton Nu
- Department of Pathology, McGill University Hospital Research Institute, Montreal, Canada
| | - Jiannis Ragoussis
- Department of Human Genetics, McGill University, Montreal, Canada
- McGill University and Genome Centre, Montreal, Canada
- Department of Bioengineering, McGill University, Montreal, Canada
| | - David G Huntsman
- Department of Pathology, Laboratory Medicine, University of British Columbia, Vancouver, British Columbia
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, British Columbia
| | - Jocelyne Arseneau
- Department of Pathology, McGill University Hospital Research Institute, Montreal, Canada
| | - Yojiro Yamanaka
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Canada.
- Department of Human Genetics, McGill University, Montreal, Canada
| |
Collapse
|
10
|
Liu C, Hirakawa H, Katsube T, Fang Y, Tanaka K, Nenoi M, Fujimori A, Wang B. Altered Induction of Reactive Oxygen Species by X-rays in Hematopoietic Cells of C57BL/6-Tg (CAG-EGFP) Mice. Int J Mol Sci 2021; 22:6929. [PMID: 34203224 PMCID: PMC8268547 DOI: 10.3390/ijms22136929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 12/20/2022] Open
Abstract
Previous work pointed to a critical role of excessive production of reactive oxygen species (ROS) in increased radiation hematopoietic death in GFP mice. Meanwhile, enhanced antioxidant capability was not demonstrated in the mouse model of radio-induced adaptive response (RAR) using rescue of radiation hematopoietic death as the endpoint. ROS induction by ex vivo X-irradiation at a dose ranging from 0.1 to 7.5 Gy in the nucleated bone marrow cells was comparatively studied using GFP and wild type (WT) mice. ROS induction was also investigated in the cells collected from mice receiving a priming dose (0.5 Gy) efficient for RAR induction in WT mice. Significantly elevated background and increased induction of ROS in the cells from GFP mice were observed compared to those from WT mice. Markedly lower background and decreased induction of ROS were observed in the cells collected from WT mice but not GFP mice, both receiving the priming dose. GFP overexpression could alter background and induction of ROS by X-irradiation in hematopoietic cells. The results provide a reasonable explanation to the previous study on the fate of cells and mice after X-irradiation and confirm enhanced antioxidant capability in RAR. Investigations involving GFP overexpression should be carefully interpreted.
Collapse
Affiliation(s)
- Cuihua Liu
- Molecular and Cellular Radiation Biology Group, Department of Charged Particle Therapy Research, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan; (C.L.); (H.H.); (Y.F.)
| | - Hirokazu Hirakawa
- Molecular and Cellular Radiation Biology Group, Department of Charged Particle Therapy Research, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan; (C.L.); (H.H.); (Y.F.)
| | - Takanori Katsube
- Dietary Effects Research Group, Department of Radiation Effects Research, National Institute of Radiological Sciences, Quantum Life and Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan; (T.K.); (K.T.)
| | - Yaqun Fang
- Molecular and Cellular Radiation Biology Group, Department of Charged Particle Therapy Research, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan; (C.L.); (H.H.); (Y.F.)
| | - Kaoru Tanaka
- Dietary Effects Research Group, Department of Radiation Effects Research, National Institute of Radiological Sciences, Quantum Life and Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan; (T.K.); (K.T.)
| | - Mitsuru Nenoi
- Human Resources Development Center, Quantum Life and Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan;
| | - Akira Fujimori
- Molecular and Cellular Radiation Biology Group, Department of Charged Particle Therapy Research, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan; (C.L.); (H.H.); (Y.F.)
| | - Bing Wang
- Dietary Effects Research Group, Department of Radiation Effects Research, National Institute of Radiological Sciences, Quantum Life and Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan; (T.K.); (K.T.)
| |
Collapse
|
11
|
Efremova MV, Bodea SV, Sigmund F, Semkina A, Westmeyer GG, Abakumov MA. Genetically Encoded Self-Assembling Iron Oxide Nanoparticles as a Possible Platform for Cancer-Cell Tracking. Pharmaceutics 2021; 13:pharmaceutics13030397. [PMID: 33809789 PMCID: PMC8002387 DOI: 10.3390/pharmaceutics13030397] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 01/15/2023] Open
Abstract
The study of growth and possible metastasis in animal models of tumors would benefit from reliable cell labels for noninvasive whole-organism imaging techniques such as magnetic resonance imaging. Genetically encoded cell-tracking reporters have the advantage that they are contrast-selective for viable cells with intact protein expression machinery. Besides, these reporters do not suffer from dilution during cell division. Encapsulins, which are bacterial protein nanocompartments, can serve as genetically controlled labels for multimodal detection of cells. Such nanocompartments can host various guest molecules inside their lumen. These include, for example, fluorescent proteins or enzymes with ferroxidase activity leading to biomineralization of iron oxide inside the encapsulin nanoshell. The aim of this work was to implement heterologous expression of encapsulin systems from Quasibacillus thermotolerans using the fluorescent reporter protein mScarlet-I and ferroxidase IMEF in the human hepatocellular carcinoma cell line HepG2. The successful expression of self-assembled encapsulin nanocompartments with functional cargo proteins was confirmed by fluorescence microscopy and transmission electron microscopy. Also, coexpression of encapsulin nanoshells, ferroxidase cargo, and iron transporter led to an increase in T2-weighted contrast in magnetic resonance imaging of HepG2 cells. The results demonstrate that the encapsulin cargo system from Q. thermotolerans may be suitable for multimodal imaging of cancer cells and could contribute to further in vitro and in vivo studies.
Collapse
Affiliation(s)
- Maria V. Efremova
- Department of Chemistry & TUM School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany; (S.-V.B.); (F.S.); (G.G.W.)
- Institute for Synthetic Biomedicine, Helmholtz Center Munich, 85764 Neuherberg, Germany
- Correspondence: (M.V.E.); (M.A.A.); Tel.: +74-95-638-4465 (M.A.A.)
| | - Silviu-Vasile Bodea
- Department of Chemistry & TUM School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany; (S.-V.B.); (F.S.); (G.G.W.)
- Institute for Synthetic Biomedicine, Helmholtz Center Munich, 85764 Neuherberg, Germany
| | - Felix Sigmund
- Department of Chemistry & TUM School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany; (S.-V.B.); (F.S.); (G.G.W.)
- Institute for Synthetic Biomedicine, Helmholtz Center Munich, 85764 Neuherberg, Germany
| | - Alevtina Semkina
- Department of Medical Nanobiotechnology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia;
- V.P. Serbskiy National Medical Research Center of Psychiatry and Narcology, 119034 Moscow, Russia
| | - Gil G. Westmeyer
- Department of Chemistry & TUM School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany; (S.-V.B.); (F.S.); (G.G.W.)
- Institute for Synthetic Biomedicine, Helmholtz Center Munich, 85764 Neuherberg, Germany
| | - Maxim A. Abakumov
- Department of Medical Nanobiotechnology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia;
- Laboratory “Biomedical Nanomaterials”, National University of Science and Technology “MISiS”, 119049 Moscow, Russia
- Correspondence: (M.V.E.); (M.A.A.); Tel.: +74-95-638-4465 (M.A.A.)
| |
Collapse
|
12
|
Valiente M, Van Swearingen AED, Anders CK, Bairoch A, Boire A, Bos PD, Cittelly DM, Erez N, Ferraro GB, Fukumura D, Gril B, Herlyn M, Holmen SL, Jain RK, Joyce JA, Lorger M, Massague J, Neman J, Sibson NR, Steeg PS, Thorsen F, Young LS, Varešlija D, Vultur A, Weis-Garcia F, Winkler F. Brain Metastasis Cell Lines Panel: A Public Resource of Organotropic Cell Lines. Cancer Res 2020; 80:4314-4323. [PMID: 32641416 PMCID: PMC7572582 DOI: 10.1158/0008-5472.can-20-0291] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 04/27/2020] [Accepted: 06/30/2020] [Indexed: 12/12/2022]
Abstract
Spread of cancer to the brain remains an unmet clinical need in spite of the increasing number of cases among patients with lung, breast cancer, and melanoma most notably. Although research on brain metastasis was considered a minor aspect in the past due to its untreatable nature and invariable lethality, nowadays, limited but encouraging examples have questioned this statement, making it more attractive for basic and clinical researchers. Evidences of its own biological identity (i.e., specific microenvironment) and particular therapeutic requirements (i.e., presence of blood-brain barrier, blood-tumor barrier, molecular differences with the primary tumor) are thought to be critical aspects that must be functionally exploited using preclinical models. We present the coordinated effort of 19 laboratories to compile comprehensive information related to brain metastasis experimental models. Each laboratory has provided details on the cancer cell lines they have generated or characterized as being capable of forming metastatic colonies in the brain, as well as principle methodologies of brain metastasis research. The Brain Metastasis Cell Lines Panel (BrMPanel) represents the first of its class and includes information about the cell line, how tropism to the brain was established, and the behavior of each model in vivo. These and other aspects described are intended to assist investigators in choosing the most suitable cell line for research on brain metastasis. The main goal of this effort is to facilitate research on this unmet clinical need, to improve models through a collaborative environment, and to promote the exchange of information on these valuable resources.
Collapse
Affiliation(s)
- Manuel Valiente
- Brain Metastasis Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.
| | | | - Carey K Anders
- Duke Center for Brain and Spine Metastasis, Duke Cancer Institute, Durham, North Carolina
| | - Amos Bairoch
- CALIPHO group, Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Adrienne Boire
- Human Oncology and Pathogenesis Program, Department of Neurology, Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Paula D Bos
- Department of Pathology, and Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Diana M Cittelly
- Department of Pathology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Neta Erez
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Gino B Ferraro
- E.L. Steele Laboratories, Department of Radiation Oncology, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts
| | - Dai Fukumura
- E.L. Steele Laboratories, Department of Radiation Oncology, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts
| | | | - Meenhard Herlyn
- Molecular & Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - Sheri L Holmen
- Huntsman Cancer Institute and Department of Surgery, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Rakesh K Jain
- E.L. Steele Laboratories, Department of Radiation Oncology, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts
| | - Johanna A Joyce
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Mihaela Lorger
- Brain Metastasis Research Group, School of Medicine, University of Leeds, Leeds, United Kingdom
| | - Joan Massague
- Cancer Cell Biology Program, Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Josh Neman
- Departments of Neurological Surgery, Physiology & Neuroscience, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Nicola R Sibson
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | | | - Frits Thorsen
- The Molecular Imaging Center, Department of Biomedicine, University of Bergen, Bergen, Norway
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Key Laboratory of Brain Functional Remodeling, Shandong, Jinan, P.R. China
| | - Leonie S Young
- Endocrine Oncology Research Group, Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Damir Varešlija
- Endocrine Oncology Research Group, Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Adina Vultur
- Molecular & Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, Pennsylvania
- Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Center, Georg-August-University, Göttingen, Germany
| | - Frances Weis-Garcia
- Antibody & Bioresource Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Frank Winkler
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, and Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
13
|
Friend NL, Hewett DR, Panagopoulos V, Noll JE, Vandyke K, Mrozik KM, Fitter S, Zannettino AC. Characterization of the role of Samsn1 loss in multiple myeloma development. FASEB Bioadv 2020; 2:554-572. [PMID: 32923989 PMCID: PMC7475304 DOI: 10.1096/fba.2020-00027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 04/26/2020] [Accepted: 06/29/2020] [Indexed: 12/23/2022] Open
Abstract
The protein SAMSN1 was recently identified as a putative tumor suppressor in multiple myeloma, with re-expression of Samsn1 in the 5TGM1/KaLwRij murine model of myeloma leading to a near complete abrogation of intramedullary tumor growth. Here, we sought to clarify the mechanism underlying this finding. Intratibial administration of 5TGM1 myeloma cells into KaLwRij mice revealed that Samsn1 had no effect on primary tumor growth, but that its expression significantly inhibited the metastasis of these primary tumors. Notably, neither in vitro nor in vivo migration was affected by Samsn1 expression. Both knocking-out SAMSN1 in the RPMI-8226 and JJN3 human myeloma cell lines, and retrovirally expressing SAMSN1 in the LP-1 and OPM2 human myeloma cell lines had no effect on either cell proliferation or migration in vitro. Altering SAMSN1 expression in these human myeloma cells did not affect the capacity of the cells to establish either primary or metastatic intramedullary tumors when administered intratibially into immune deficient NSG mice. Unexpectedly, the tumor suppressive and anti-metastatic activity of Samsn1 in 5TGM1 cells were not evidenced following cell administration either intratibially or intravenously to NSG mice. Crucially, the growth of Samsn1-expressing 5TGM1 cells was limited in C57BL/6/Samsn1-/- mice but not in C57BL/6 Samsn1+/+ mice. We conclude that the reported potent in vivo tumor suppressor activity of Samsn1 can be attributed, in large part, to graft-rejection from Samsn1-/- recipient mice. This has broad implications for the design and interpretation of experiments that utilize cancer cells and knockout mice that are mismatched for expression of specific proteins.
Collapse
Affiliation(s)
- Natasha L. Friend
- Myeloma Research LaboratoryAdelaide Medical SchoolFaculty of Health and Medical SciencesUniversity of AdelaideAdelaideAustralia
- Precision Medicine ThemeSouth Australian Health and Medical Research InstituteAdelaideAustralia
| | - Duncan R. Hewett
- Myeloma Research LaboratoryAdelaide Medical SchoolFaculty of Health and Medical SciencesUniversity of AdelaideAdelaideAustralia
- Precision Medicine ThemeSouth Australian Health and Medical Research InstituteAdelaideAustralia
| | - Vasilios Panagopoulos
- Myeloma Research LaboratoryAdelaide Medical SchoolFaculty of Health and Medical SciencesUniversity of AdelaideAdelaideAustralia
- Precision Medicine ThemeSouth Australian Health and Medical Research InstituteAdelaideAustralia
| | - Jacqueline E. Noll
- Myeloma Research LaboratoryAdelaide Medical SchoolFaculty of Health and Medical SciencesUniversity of AdelaideAdelaideAustralia
- Precision Medicine ThemeSouth Australian Health and Medical Research InstituteAdelaideAustralia
| | - Kate Vandyke
- Myeloma Research LaboratoryAdelaide Medical SchoolFaculty of Health and Medical SciencesUniversity of AdelaideAdelaideAustralia
- Precision Medicine ThemeSouth Australian Health and Medical Research InstituteAdelaideAustralia
| | - Krzysztof M. Mrozik
- Myeloma Research LaboratoryAdelaide Medical SchoolFaculty of Health and Medical SciencesUniversity of AdelaideAdelaideAustralia
- Precision Medicine ThemeSouth Australian Health and Medical Research InstituteAdelaideAustralia
| | - Stephen Fitter
- Myeloma Research LaboratoryAdelaide Medical SchoolFaculty of Health and Medical SciencesUniversity of AdelaideAdelaideAustralia
- Precision Medicine ThemeSouth Australian Health and Medical Research InstituteAdelaideAustralia
| | - Andrew C.W. Zannettino
- Myeloma Research LaboratoryAdelaide Medical SchoolFaculty of Health and Medical SciencesUniversity of AdelaideAdelaideAustralia
- Precision Medicine ThemeSouth Australian Health and Medical Research InstituteAdelaideAustralia
- Central Adelaide Local Health NetworkAdelaideAustralia
| |
Collapse
|
14
|
A mouse model that is immunologically tolerant to reporter and modifier proteins. Commun Biol 2020; 3:273. [PMID: 32472011 PMCID: PMC7260180 DOI: 10.1038/s42003-020-0979-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 04/23/2020] [Indexed: 11/17/2022] Open
Abstract
Reporter proteins have become an indispensable tool in biomedical research. However, exogenous introduction of these reporters into mice poses a risk of rejection by the immune system. Here, we describe the generation, validation and application of a multiple reporter protein tolerant ‘Tol' mouse model that constitutively expresses an assembly of shuffled reporter proteins from a single open reading frame. We demonstrate that expression of the Tol transgene results in the deletion of CD8+ T cells specific for a model epitope, and substantially improves engraftment of reporter-gene transduced T cells. The Tol strain provides a valuable mouse model for cell transfer and viral-mediated gene transfer studies, and serves as a methodological example for the generation of poly-tolerant mouse strains. Bresser and Dijkgraaf et al. develop the ‘Tol’ strain, a genetically modified mouse model that expresses a range of shuffled reporter and modifier proteins from a single open reading frame. This strain is immunologically tolerant to these reporter and modifier proteins, providing a valuable model system for cell transfer studies and virus-mediated gene transfer studies.
Collapse
|