1
|
Zhang L, Jing M, Song Q, Ouyang Y, Pang Y, Ye X, Fu Y, Yan W. Role of the m 6A demethylase ALKBH5 in gastrointestinal tract cancer (Review). Int J Mol Med 2025; 55:22. [PMID: 39611478 PMCID: PMC11637504 DOI: 10.3892/ijmm.2024.5463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/08/2024] [Indexed: 11/30/2024] Open
Abstract
N6‑methyladenosine (m6A) is one of the most universal, abundant and conserved types of internal post‑transcriptional modifications in eukaryotic RNA, and is involved in nuclear RNA export, RNA splicing, mRNA stability, gene expression, microRNA biogenesis and long non‑coding RNA metabolism. AlkB homologue 5 (ALKBH5) acts as a m6A demethylase to regulate a wide variety of biological processes closely associated with tumour progression, tumour metastasis, tumour immunity and tumour drug resistance. ALKBH5 serves a crucial role in human digestive system tumours, mainly through post‑transcriptional regulation of m6A modification. The present review discusses progress in the study of the m6A demethylase ALKBH5 in gastrointestinal tract cancer, summarizes the potential molecular mechanisms of ALKBH5 dysregulation in gastrointestinal tract cancer, and discusses the significance of ALKBH5‑targeted therapy, which may provide novel ideas for future clinical prognosis prediction, biomarker identification and precise treatment.
Collapse
Affiliation(s)
- Lumiao Zhang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Mengjia Jing
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Qianben Song
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yiming Ouyang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yingzhi Pang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Xilin Ye
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yu Fu
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Wei Yan
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
2
|
Fang M, Ye L, Zhu Y, Huang L, Xu S. M6A Demethylase ALKBH5 in Human Diseases: From Structure to Mechanisms. Biomolecules 2025; 15:157. [PMID: 40001461 PMCID: PMC11853652 DOI: 10.3390/biom15020157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/05/2025] [Accepted: 01/17/2025] [Indexed: 02/27/2025] Open
Abstract
N6-methyladenosine (m6A) is the most abundant, dynamically reversible, and evolutionarily conserved internal chemical modification in eukaryotic RNA. It is emerging as critical for regulating gene expression at the post-transcriptional level by affecting RNA metabolism through, for example, pre-mRNA processing, mRNA decay, and translation. ALKBH5 has recently been identified as an endogenous m6A demethylase implicated in a multitude of biological processes. This review provides an overview of the structural and functional characteristics of ALKBH5 and the involvement of ALKBH5 in diverse human diseases, including metabolic, immune, reproductive, and nervous system disorders, as well as the development of inhibitors. In summation, this review highlights the current understanding of the structure, functions, and detailed mechanisms of ALKBH5 in various physiological and pathological processes and provides valuable insights for clinical applications and foundational research within related fields.
Collapse
Affiliation(s)
| | | | | | | | - Shun Xu
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, Institute of Aging Research, School of Medical Technology, Guangdong Medical University, Songshan Lake, Dongguan 523808, China; (M.F.); (L.Y.); (Y.Z.); (L.H.)
| |
Collapse
|
3
|
Udompatanakorn C, Sriphongphankul W, Taebunpakul P. Expression of ALKBH5 in Odontogenic Lesions. Appl Immunohistochem Mol Morphol 2025; 33:49-57. [PMID: 39523879 DOI: 10.1097/pai.0000000000001233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024]
Abstract
N6-methyladenosine (m6A) is the most abundant epigenetic RNA modification in eukaryotes and plays a role in various cancers in humans. This m6A modification is regulated by m6A writers, erasers, and readers. One of the m6A erasers is α-ketoglutarate-dependent dioxygenase homolog 5 (ALKBH5). Previous studies have suggested that ALKBH5 is involved in the pathogenesis of head and neck squamous cell carcinoma. However, the role of ALKBH5 in odontogenic lesions has never been investigated. This study aimed to examine ALKBH5 expression in dental follicles (DFs), dentigerous cysts (DCs), odontogenic keratocyst (OKC), and ameloblastoma (AM) using immunohistochemistry. Six cases of DF, 20 cases of DC and OKC, respectively, and 30 cases of AM were included. The expression patterns, percentage of ALKBH5-positive cells, staining intensities, and immunoreactive scores were examined. ALKBH5 was mainly expressed in the nuclei of the epithelial cells in odontogenic lesions. The percentage of ALKBH5-positive cells was significantly higher in OKC and AM samples compared with DF samples ( P < 0.01). The percentage of ALKBH5-positive cells was also higher in OKC and AM samples than in DC samples; however, these results did not show statistical significance ( P > 0.05). ALKBH5 cell staining intensities and immunoreactive scores were significantly greater in OKC and AM samples than in DF and DC samples ( P < 0.01). Our results suggested that ALKBH5 might play a role in the pathogenesis of odontogenic lesions. Further investigation is needed to elucidate the precise molecular mechanism of the role of ALKBH5 in these diseases.
Collapse
Affiliation(s)
- Chatchaphan Udompatanakorn
- Department of Oral Surgery and Oral Medicine, Faculty of Dentistry, Srinakharinwirot University, Wattana, Bangkok, Thailand
| | | | | |
Collapse
|
4
|
Davletgildeeva AT, Kuznetsov NA. Dealkylation of Macromolecules by Eukaryotic α-Ketoglutarate-Dependent Dioxygenases from the AlkB-like Family. Curr Issues Mol Biol 2024; 46:10462-10491. [PMID: 39329974 PMCID: PMC11431407 DOI: 10.3390/cimb46090622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024] Open
Abstract
Alkylating modifications induced by either exogenous chemical agents or endogenous metabolites are some of the main types of damage to DNA, RNA, and proteins in the cell. Although research in recent decades has been almost entirely devoted to the repair of alkyl and in particular methyl DNA damage, more and more data lately suggest that the methylation of RNA bases plays an equally important role in normal functioning and in the development of diseases. Among the most prominent participants in the repair of methylation-induced DNA and RNA damage are human homologs of Escherichia coli AlkB, nonheme Fe(II)/α-ketoglutarate-dependent dioxygenases ABH1-8, and FTO. Moreover, some of these enzymes have been found to act on several protein targets. In this review, we present up-to-date data on specific features of protein structure, substrate specificity, known roles in the organism, and consequences of disfunction of each of the nine human homologs of AlkB. Special attention is given to reports about the effects of natural single-nucleotide polymorphisms on the activity of these enzymes and to potential consequences for carriers of such natural variants.
Collapse
Affiliation(s)
- Anastasiia T. Davletgildeeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia;
| | - Nikita A. Kuznetsov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia;
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| |
Collapse
|
5
|
Mehmood R. Ramifications of m6A Modification on ncRNAs in Cancer. Curr Genomics 2024; 25:158-170. [PMID: 39087001 PMCID: PMC11288162 DOI: 10.2174/0113892029296712240405053201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/12/2024] [Accepted: 03/26/2024] [Indexed: 08/02/2024] Open
Abstract
N6-methyladenosine (m6A) is an RNA modification wherein the N6-position of adenosine is methylated. It is one of the most prevalent internal modifications of RNA and regulates various aspects of RNA metabolism. M6A is deposited by m6A methyltransferases, removed by m6A demethylases, and recognized by reader proteins, which modulate splicing, export, translation, and stability of the modified mRNA. Recent evidence suggests that various classes of non- coding RNAs (ncRNAs), including microRNAs (miRNAs), circular RNAs (circRNAs), and long con-coding RNAs (lncRNAs), are also targeted by this modification. Depending on the ncRNA species, m6A may affect the processing, stability, or localization of these molecules. The m6A- modified ncRNAs are implicated in a number of diseases, including cancer. In this review, the author summarizes the role of m6A modification in the regulation and functions of ncRNAs in tumor development. Moreover, the potential applications in cancer prognosis and therapeutics are discussed.
Collapse
Affiliation(s)
- Rashid Mehmood
- Department of Life Sciences, College of Science and General Studies, Alfaisal University, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
6
|
Li Y, Xiao Z, Wang Y, Zhang D, Chen Z. The m6A reader IGF2BP2 promotes esophageal cell carcinoma progression by enhancing EIF4A1 translation. Cancer Cell Int 2024; 24:162. [PMID: 38724996 PMCID: PMC11084108 DOI: 10.1186/s12935-024-03349-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/28/2024] [Indexed: 05/12/2024] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of most prevalent cancers worldwide, especially in China. Lacking in depth mechanism study, effective targets and therapeutics are desperately needed in the clinic. RNA-binding proteins (RBPs) mediate the localization, stability, and translation of the target transcripts and fine-tune the physiological functions of the proteins encoded. Bioinformatics analysis revealed that IGF2BPs were highly expressed in ESCC tissues and at least participated in the regulation of cell proliferation of ESCC cells. Biological researches demonstrated that IGF2BP2 promoted the cell proliferation, migration and invasion of ESCC KYSE30 and KYSE450 cells. IGF2BP2 could bind to EIF4A1 mRNA by recognition of m6A sites and enhanced translation of EIF4A1. IGF2BPs, as m6A reader, IGF2BPs were oncogenic genes in ESCC by regulating the expression of EIF4A1 through m6A sites. IGF2BP2, EIF4A1 and their targets could serve as potential biomarkers and therapeutic targets for ESCC, offering promising novel approaches for the diagnosis and treatment of ESCC.
Collapse
Affiliation(s)
- Yuan Li
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan University, No. 99 Zhangzhidong Road, Wuhan, Hubei, 430060, China.
| | - Zhuya Xiao
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan University, No. 99 Zhangzhidong Road, Wuhan, Hubei, 430060, China
| | - Yingying Wang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Daoming Zhang
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan University, No. 99 Zhangzhidong Road, Wuhan, Hubei, 430060, China
| | - Zuhua Chen
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China.
| |
Collapse
|
7
|
Guo J, Zhao L, Duan M, Yang Z, Zhao H, Liu B, Wang Y, Deng L, Wang C, Jiang X, Jiang X. Demethylases in tumors and the tumor microenvironment: Key modifiers of N 6-methyladenosine methylation. Biomed Pharmacother 2024; 174:116479. [PMID: 38537580 DOI: 10.1016/j.biopha.2024.116479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/09/2024] [Accepted: 03/19/2024] [Indexed: 05/01/2024] Open
Abstract
RNA methylation modifications are widespread in eukaryotes and prokaryotes, with N6-methyladenosine (m6A) the most common among them. Demethylases, including Fat mass and obesity associated gene (FTO) and AlkB homolog 5 (ALKBH5), are important in maintaining the balance between RNA methylation and demethylation. Recent studies have clearly shown that demethylases affect the biological functions of tumors by regulating their m6A levels. However, their effects are complicated, and even opposite results have appeared in different articles. Here, we summarize the complex regulatory networks of demethylases, including the most important and common pathways, to clarify the role of demethylases in tumors. In addition, we describe the relationships between demethylases and the tumor microenvironment, and introduce their regulatory mechanisms. Finally, we discuss evaluation of demethylases for tumor diagnosis and prognosis, as well as the clinical application of demethylase inhibitors, providing a strong basis for their large-scale clinical application in the future.
Collapse
Affiliation(s)
- Junchen Guo
- Departmentof Radiology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China
| | - Liang Zhao
- Department of Anorectal Surgery, Shenyang Anorectal Hospital, Shenyang, Liaoning 110002, China
| | - Meiqi Duan
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China
| | - Zhi Yang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China
| | - He Zhao
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China
| | - Baiming Liu
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China
| | - Yihan Wang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China
| | - Liping Deng
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China
| | - Chen Wang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China
| | - Xiaodi Jiang
- Department of Infectious Diseases, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110002, China.
| | - Xiaofeng Jiang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China.
| |
Collapse
|
8
|
Wang H. The RNA m6A writer RBM15 contributes to the progression of esophageal squamous cell carcinoma by regulating miR-3605-5p/KRT4 pathway. Heliyon 2024; 10:e24459. [PMID: 38312624 PMCID: PMC10835169 DOI: 10.1016/j.heliyon.2024.e24459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 02/06/2024] Open
Abstract
Cancer progression can be modulated by N6-methyladenosine (m6A) modification. RNA binding motif protein 15 (RBM15) is an essential RNA m6A writer that influences carcinogenesis, however its significance in esophageal squamous cell carcinoma (ESCC) is uncertain. This research is intended to examine how RBM15 regulates the development of ESCC. We performed qRT-PCR analysis to evaluate the expression of RBM15, microRNA (miR-3605-5p) as well as keratin 4 (KRT4) in ESCC. Target relationship between miR-3605-5p and KRT4 was validated by dual luciferase reporter assay. Western blotting analyzed the protein levels of KRT4, p53, and p21. To demonstrate that RBM15 is responsible for the m6A alteration of miR-3605-5p, RIP and Me-RIP experiments were carried out concurrently. m6A content was measured by m6A quantification assay. Cell growth and migration were assessed using the CCK-8 and transwell assays. In addition, the role of RBM15 in vivo was examined using a mouse tumor xenograft model. RBM15 and miR-3605-5p were both substantially expressed in ESCC, however KRT4 was not expressed highly. Overexpressed RBM15 triggered cell proliferation and migration in ESCC. Besides, RBM15/m6A could mediate pri-3605-5p to form the mature miR-3605-5p, and miR-3605-5p further targeted KRT4. Further investigations showed that upregulation of KRT4 overturned the promoting impact of RBM15 overexpression on cell proliferation as well as on cell migration in ESCC by activating p53 signaling pathway. This work implied the carcinogenic activity of RBM15/m6A in ESCC via miR-3605-5p/KRT4 pathway, providing a novel m6A modification pattern in the tumorigenesis of ESCC.
Collapse
Affiliation(s)
- Huan Wang
- General practice section, Wuhan University of Science and Technology Hospital, Wuhan, 430070, Hubei, China
| |
Collapse
|
9
|
Wei H, Xu Y, Lin L, Li Y, Zhu X. A review on the role of RNA methylation in aging-related diseases. Int J Biol Macromol 2024; 254:127769. [PMID: 38287578 DOI: 10.1016/j.ijbiomac.2023.127769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 01/31/2024]
Abstract
Senescence is the underlying mechanism of organism aging and is robustly regulated at the post-transcriptional level. This regulation involves the chemical modifications, of which the RNA methylation is the most common. Recently, a rapidly growing number of studies have demonstrated that methylation is relevant to aging and aging-associated diseases. Owing to the rapid development of detection methods, the understanding on RNA methylation has gone deeper. In this review, we summarize the current understanding on the influence of RNA modification on cellular senescence, with a focus on mRNA methylation in aging-related diseases, and discuss the emerging potential of RNA modification in diagnosis and therapy.
Collapse
Affiliation(s)
- Hong Wei
- Reproductive Center, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China; Department of Neurology, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China; Central Laboratory of the Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China
| | - Yuhao Xu
- Medical School, Jiangsu University, Zhenjiang, Jiangsu 212001, China
| | - Li Lin
- Reproductive Center, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China; Central Laboratory of the Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China
| | - Yuefeng Li
- Medical School, Jiangsu University, Zhenjiang, Jiangsu 212001, China.
| | - Xiaolan Zhu
- Reproductive Center, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China; Central Laboratory of the Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China.
| |
Collapse
|
10
|
Teng Y, Zhao X, Xi Y, Fu N. N6-methyladenosine-regulated ADIRF impairs lung adenocarcinoma metastasis and serves as a potential prognostic biomarker. Cancer Biol Ther 2023; 24:2249173. [PMID: 37700507 PMCID: PMC10501161 DOI: 10.1080/15384047.2023.2249173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 09/14/2023] Open
Abstract
Aberrant expression of adipogenic regulatory factors (ADIRF) in tumor cells is critical for tumor growth and metastasis. N6-methyladenosine (m6A) modifications have an important role in a variety of biological activities. Our study aimed to investigate the role of ADIRF in adenocarcinoma and to elucidate the regulatory role of m6A signaling on ADIRF. Differential expression of genes in tumor and normal tissues was analyzed using the LUAD dataset (GSE1987). The Kaplan-Meier method and receiver operating characteristic (ROC) curve analysis were performed to evaluate the prognostic and diagnostic value of ADIRF in LUAD. Loss-of-function or gain-of-function experiments were performed to study the effect of ADIRF on LUAD growth in vitro. The molecular mechanism of action of ADIRF in LUAD was confirmed using a dual-luciferase reporter system and MeRIP-qPCR. We identified a loss of ADIRF expression in LUAD tissues and cells. Furthermore, the restoration of ADIRF levels attenuated LUAD cell growth and metastasis in vitro. Mechanistically, an m6A "eraser," α-ketoglutarate-dependent dioxygenase alkB homolog 5 (ALKBH5), eliminated the ADIRF m6A modification motif and further blocked the binding of the YTH domain-containing 2 (YTHDC2)-binding protein to ADIRF. At the molecular level, ALKBH5 enrichment increased ADIRF mRNA levels and prevented the attenuation of ADIRF mRNA by YTHDC2. The effects of ALKBH5 overexpression could also extend to the inhibition of LUAD cell proliferation and metastasis. This study linked ADIRF with the m6A modifying regulators ALKBH5 and YTHDC2, providing a promising molecular intervention for LUAD and deepening the understanding of LUAD mechanisms.
Collapse
Affiliation(s)
- Yin Teng
- Thoracic Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Xiaohan Zhao
- School of Basic Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yang Xi
- Thoracic Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Ninghua Fu
- Thoracic Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| |
Collapse
|
11
|
Sheng G, Wang T, Gao Y, Wu H, Wu J. m6A regulator-mediated methylation modification patterns and tumor microenvironment immune infiltration with prognostic analysis in esophageal cancer. Sci Rep 2023; 13:19670. [PMID: 37952076 PMCID: PMC10640615 DOI: 10.1038/s41598-023-46729-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/04/2023] [Indexed: 11/14/2023] Open
Abstract
Esophageal cancer is a highly malignant disease with poor prognosis. Despite recent advances in the study of esophageal cancer, there has been only limited improvement in the treatment and prognosis. N6-methyladenosine (m6A), a type of RNA modification, has been extensively investigated and is involved in many biological behaviors, including tumorigenesis and progression. Thus, more research on m6A modification may increase our understanding of esophageal cancer pathogenesis and provide potential targets. In our study, we integrated the public data of esophageal cancer from The Cancer Genome Atlas (TCGA) and Gene-Expression Omnibus (GEO) databases. Unsupervised clustering analysis was used to classify patients into different groups. Gene set variation analysis (GSVA) was performed in a nonparametric and unsupervised mode. We evaluated immune cell infiltration by single sample gene set enrichment analysis (ssGSEA). Differentially expressed genes (DEGs) among m6A clusters were identified using Empirical Bayesian approach. Both multivariate and univariate Cox regression models were used for prognostic analysis. We provided an overview of gene variation and expression of 23 m6A regulators in esophageal cancer, as well as their effects on survival. Based on the overall expression level of m6A regulators, patients were classified into three m6A clusters (A-C) with different immune cell infiltration abundance, gene expression signatures and prognosis. Among m6A clusters, we identified 206 DEGs, according to which patients were classified into 4 gene clusters (A-D). Quantitative m6A score was calculated for each patient based on those DEGs with significant impact on survival. The infiltration of all types of immune cells except type 2 T helper (Th2) cells were negatively correlated with m6A score. M6Acluster C exhibited the lowest m6A score, the most abundant immune cell infiltration, and the worst prognosis, suggesting an immune excluded phenotype. Consistently, gene cluster D with the lowest m6A score showed the worst prognosis. In short, patients with esophageal cancer showed different m6A modification patterns. Quantitative scoring indicated that patients with the lowest m6A score exhibited the most abundant immune cell infiltration and the poorest prognosis. This m6A scoring system is promising to assess m6A modification pattern, characterize immune infiltration and guide personalized treatment and prognostic prediction.
Collapse
Affiliation(s)
- Gaohong Sheng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, China
| | - Tianqi Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, China
| | - Yuan Gao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, China
| | - Hua Wu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, China.
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China.
| | - Jianhong Wu
- Gastrointestinal Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, China.
| |
Collapse
|
12
|
He C, Teng X, Wang L, Ni M, Zhu L, Liu J, Lv W, Hu J. The implications of N6-methyladenosine (m6A) modification in esophageal carcinoma. Mol Biol Rep 2023; 50:8691-8703. [PMID: 37598390 PMCID: PMC10520198 DOI: 10.1007/s11033-023-08575-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 06/01/2023] [Indexed: 08/22/2023]
Abstract
Esophageal carcinoma (EC) is always diagnosed at advanced stage and its the mortality rate remains high. The patients usually miss the best opportunity for treatment because of non-specific symptoms and the survival rates are low. N6-methyladenosine (m6A) the predominant modification in eukaryotic messenger RNA(mRNA), serves vital roles in numerous bioprocess. This chemical modification is dynamic, reversible and consists of three regulators: m6A methyltransferases (writers), demethylases (erasers) and m6A-binding proteins (readers). Recently, a growing number of evidences have indicated relationships between m6A and EC. Whereas, lacking of cognition about the molecular mechanism of m6A modification in esophageal carcinoma. We will focus on the biological function roles of m6A modification in the tumorigenesis and development of EC. Recent studies showed that immunotherapy had a positive impact on EC. The relationship between m6A and immunotherapy in EC deserves further research and discussion. We will also discuss the potential clinical applications regarding diagnosis, treatment and prognosis of m6A modification for EC and provide perspectives for further studies.
Collapse
Affiliation(s)
- Cheng He
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Teng
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Luming Wang
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Miaoqi Ni
- Echocardiography and Vascular Ultrasound Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Linhai Zhu
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiacong Liu
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wang Lv
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian Hu
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Clinical Evaluation Technology for Medical Device of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
13
|
Yang Y, Feng Y, Liu Q, Yin J, Cheng C, Fan C, Xuan C, Yang J. Building an Immune-Related Genes Model to Predict Treatment, Extracellular Matrix, and Prognosis of Head and Neck Squamous Cell Carcinoma. Mediators Inflamm 2023; 2023:6680731. [PMID: 37469759 PMCID: PMC10353907 DOI: 10.1155/2023/6680731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 06/02/2023] [Accepted: 06/20/2023] [Indexed: 07/21/2023] Open
Abstract
Due to the considerable heterogeneity of head and neck squamous cell carcinoma (HNSCC), individuals with comparable TNM stages who receive the same treatment strategy have varying prognostic outcomes. In HNSCC, immunotherapy is developing quickly and has shown effective. We want to develop an immune-related gene (IRG) prognostic model to forecast the prognosis and response to immunotherapy of patients. In order to analyze differential expression in normal and malignant tissues, we first identified IRGs that were differently expressed. Weighted gene coexpression network analysis (WGCNA) was used to identify modules that were highly related, and univariate and multivariate Cox regression analyses were also used to create a predictive model for IRGs that included nine IRGs. WGCNA identified the four most noteworthy related modules. Patients in the model's low-risk category had a better chance of survival. The IRGs prognostic model was also proved to be an independent prognostic predictor, and the model was also substantially linked with a number of clinical characteristics. The low-risk group was associated with immune-related pathways, a low incidence of gene mutation, a high level of M1 macrophage infiltration, regulatory T cells, CD8 T cells, and B cells, active immunity, and larger benefits from immune checkpoint inhibitors (ICIs) therapy. The high-risk group, on the other hand, had suppressive immunity, high levels of NK and CD4 T-cell infiltration, high gene mutation rates, and decreased benefits from ICI therapy. As a result of our research, a predictive model for IRGs that can reliably predict a patient's prognosis and their response to both conventional and immunotherapy has been created.
Collapse
Affiliation(s)
- Yushi Yang
- Department of Otolaryngology and Ophthalmology, Anji County People' s Hospital, Zhejiang, China
| | - Yang Feng
- Department of Radiation Oncology, Shanghai Ninth People' s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qin Liu
- Department of Neurosurgery, Anyue County People' s Hospital, Sichuan, China
| | - Ji Yin
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Sichuan, China
| | - Chenglong Cheng
- Department of Otolaryngology and Ophthalmology, Anji County People' s Hospital, Zhejiang, China
| | - Cheng Fan
- Department of Neurosurgery, Anyue County People' s Hospital, Sichuan, China
| | - Chenhui Xuan
- Department of Endocrinology, The Affiliated Third Hospital of Chengdu Traditional Chinese Medicine University, Sichuan, China
- Department of Endocrinology, Chengdu Pidu District Hospital of Traditional Chinese Medicine, Sichuan, China
| | - Jun Yang
- Department of Cardiology, Anyue County People's Hospital, Sichuan, China
| |
Collapse
|
14
|
Li C, Zhu M, Wang J, Wu H, Liu Y, Huang D. Role of m6A modification in immune microenvironment of digestive system tumors. Biomed Pharmacother 2023; 164:114953. [PMID: 37269812 DOI: 10.1016/j.biopha.2023.114953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/21/2023] [Accepted: 05/27/2023] [Indexed: 06/05/2023] Open
Abstract
Digestive system tumors are huge health problem worldwide, largely attributable to poor dietary choices. The role of RNA modifications in cancer development is an emerging field of research. RNA modifications are associated with the growth and development of various immune cells, which, in turn, regulate the immune response. The majority of RNA modifications are methylation modifications, and the most common type is the N6-methyladenosine (m6A) modification. Here, we reviewed the molecular mechanism of m6A in the immune cells and the role of m6A in the digestive system tumors. However, further studies are required to better understand the role of RNA methylation in human cancers for designing diagnostic and treatment strategies and predicting the prognosis of patients.
Collapse
Affiliation(s)
- Chao Li
- Department of Child Health Care, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Mengqi Zhu
- Department of Child Health Care, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Jiajia Wang
- Department of Health Management, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Hengshuang Wu
- Department of Gynecological Pelvis Floor Reconstruction Ward, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Yameng Liu
- Department of Child Health Care, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Di Huang
- Department of Child Health Care, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, Henan, China.
| |
Collapse
|
15
|
Li Q, Zhu Q. The role of demethylase AlkB homologs in cancer. Front Oncol 2023; 13:1153463. [PMID: 37007161 PMCID: PMC10060643 DOI: 10.3389/fonc.2023.1153463] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/03/2023] [Indexed: 03/18/2023] Open
Abstract
The AlkB family (ALKBH1-8 and FTO), a member of the Fe (II)- and α-ketoglutarate-dependent dioxygenase superfamily, has shown the ability to catalyze the demethylation of a variety of substrates, including DNA, RNA, and histones. Methylation is one of the natural organisms’ most prevalent forms of epigenetic modifications. Methylation and demethylation processes on genetic material regulate gene transcription and expression. A wide variety of enzymes are involved in these processes. The methylation levels of DNA, RNA, and histones are highly conserved. Stable methylation levels at different stages can coordinate the regulation of gene expression, DNA repair, and DNA replication. Dynamic methylation changes are essential for the abilities of cell growth, differentiation, and division. In some malignancies, the methylation of DNA, RNA, and histones is frequently altered. To date, nine AlkB homologs as demethylases have been identified in numerous cancers’ biological processes. In this review, we summarize the latest advances in the research of the structures, enzymatic activities, and substrates of the AlkB homologs and the role of these nine homologs as demethylases in cancer genesis, progression, metastasis, and invasion. We provide some new directions for the AlkB homologs in cancer research. In addition, the AlkB family is expected to be a new target for tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Qiao Li
- Department of Orthopedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Qingsan Zhu
- Department of Orthopedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
- *Correspondence: Qingsan Zhu,
| |
Collapse
|
16
|
Ramedani F, Jafari SM, Saghaeian Jazi M, Mohammadi Z, Asadi J. Anti-cancer effect of entacaponeon esophageal cancer cells via apoptosis induction and cell cycle modulation. Cancer Rep (Hoboken) 2023; 6:e1759. [PMID: 36534072 PMCID: PMC10026269 DOI: 10.1002/cnr2.1759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/11/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Esophageal cancer (EC) is the sixth leading cause of cancer-related death, despite many advances in treatment, the survival of patients still remains poor. In recent years, the N6-methyladenosine (m6A) has been introduced as one of the most important modifications at the epitranscriptome level, with an important role in the mRNA regulation in various diseases, such as cancers. The m6A is regulated by different factors, including FTO as a demethylase. The m6A modification, especially through FTO overexpression has an oncogenic role in different cancer types such as EC. Recent studies showed that entacapone, a catechol-o-methyl transferase (COMT) inhibitor currently applied for Parkinson's disease, can inhibit FTO enzyme. AIMS In this study, we aimed to investigate the effect of entacapone as an FTO inhibitor on the m6A level and also apoptosis and cell cycle response in KYSE-30 and YM-1 of esophageal squamous cancer cell (ESCC) lines. METHODS Cell toxicity and IC50 of entacapone were evaluated using The MTT assay in YM-1 and KYSE-30 cells. Cells were treated into two groups: DMSO (control) and entacapone (mean IC50 ). Total RNA was extracted, and m6A levels were measured via the ELISA method. Subsequently, the apoptosis and cell cycle dys-regulation were detected by annexin-V-FITC/PI staining and PI staining via flow cytometry. RESULTS Entacapone has the cytotoxicity effect on both esophageal cancer cell lines compared to normal PBMC cells. As well, entacapone treatment (140 μM) can induce apoptosis (KYSE-30: 50%. YM-1:22.6%) and has a modulatory effect on cell cycle progression in both YM-1 and KYSE-30 cells (p-value<.05). However, no significant difference in the m6A concentration was observed. CONCLUSION Our findings suggested that entacapone has the inhibitory effect on ESCC cell lines through induction of the apoptosis and modulation of the cell cycle without toxicity on the normal PBMC.
Collapse
Affiliation(s)
- Fahimeh Ramedani
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Seyyed Mehdi Jafari
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Marie Saghaeian Jazi
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
- Stem Cell Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Zeinab Mohammadi
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Jahanbakhsh Asadi
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
17
|
Shang QX, Kong WL, Huang WH, Xiao X, Hu WP, Yang YS, Zhang H, Yang L, Yuan Y, Chen LQ. Identification of m6a-related signature genes in esophageal squamous cell carcinoma by machine learning method. Front Genet 2023; 14:1079795. [PMID: 36733344 PMCID: PMC9886874 DOI: 10.3389/fgene.2023.1079795] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/03/2023] [Indexed: 01/19/2023] Open
Abstract
Background: We aimed to construct and validate the esophageal squamous cell carcinoma (ESCC)-related m6A regulators by means of machine leaning. Methods: We used ESCC RNA-seq data of 66 pairs of ESCC from West China Hospital of Sichuan University and the transcriptome data extracted from The Cancer Genome Atlas (TCGA)-ESCA database to find out the ESCC-related m6A regulators, during which, two machine learning approaches: RF (Random Forest) and SVM (Support Vector Machine) were employed to construct the model of ESCC-related m6A regulators. Calibration curves, clinical decision curves, and clinical impact curves (CIC) were used to evaluate the predictive ability and best-effort ability of the model. Finally, western blot and immunohistochemistry staining were used to assess the expression of prognostic ESCC-related m6A regulators. Results: 2 m6A regulators (YTHDF1 and HNRNPC) were found to be significantly increased in ESCC tissues after screening out through RF machine learning methods from our RNA-seq data and TCGA-ESCA database, respectively, and overlapping the results of the two clusters. A prognostic signature, consisting of YTHDF1 and HNRNPC, was constructed based on our RNA-seq data and validated on TCGA-ESCA database, which can serve as an independent prognostic predictor. Experimental validation including the western and immunohistochemistry staining were further successfully confirmed the results of bioinformatics analysis. Conclusion: We constructed prognostic ESCC-related m6A regulators and validated the model in clinical ESCC cohort as well as in ESCC tissues, which provides reasonable evidence and valuable resources for prognostic stratification and the study of potential targets for ESCC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Long-Qi Chen
- West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
18
|
Udompatanakorn C, Sriviriyakul P, Taebunpakul P. A study of RNA m6A demethylases in oral epithelial dysplasia and oral squamous cell carcinoma. J Oral Biol Craniofac Res 2023; 13:111-116. [PMID: 36582218 PMCID: PMC9792536 DOI: 10.1016/j.jobcr.2022.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/26/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Purpose N6-Methyladenosine (m6A) modification is involved in the tumorigenesis of various cancers. However, the roles of RNA m6A demethylases, fat mass and obesity-associated protein (FTO), and AlkB homolog 5 (ALKBH5) in oral epithelial dysplasia (OED) and oral squamous cell carcinoma (OSCC) remain unclear. This study focuses on FTO and ALKBH5 expression by using immunohistochemistry. Material and methods Twenty specimens each of OED, OSCC, and normal oral mucosa (NOM) were included. The expression pattern, the number of positive cells, the cell-staining intensity, and the histochemical scoring (H-score) were examined and analyzed. Results In all the OED and OSCC specimens, FTO and ALKBH5 were mainly expressed with moderate to strong staining intensity in the nuclei of the abnormal epithelial cells, respectively. Regarding the NOM, both RNA demethylases showed mild cell staining intensity and was present in 50-60% of the specimens. Interestingly, the percentage of cell positivity, the cell-staining intensity, and the H-score of the FTO and ALKBH5 in NOM, OED, and OSCC were increased, respectively (p < 0.001). There was also a positive correlation between the FTO and ALKBH5 expressions in OSCC (r = 0.62, p = 0.003), but not in the NOM and OED. Conclusion These results suggest a possible prognostic role of FTO and ALKBH5 expression in the malignant transformation of OED and tumor progression. Further studies are needed to elucidate the mechanisms underlying the roles of FTO and ALKBH5 in carcinogenesis.
Collapse
Affiliation(s)
- Chatchaphan Udompatanakorn
- Department of Oral Surgery and Oral Medicine, Faculty of Dentistry, Srinakharinwirot University, Bangkok, Thailand
| | - Pichamon Sriviriyakul
- Department of Oral Surgery and Oral Medicine, Faculty of Dentistry, Srinakharinwirot University, Bangkok, Thailand
| | - Patrayu Taebunpakul
- Department of Oral Surgery and Oral Medicine, Faculty of Dentistry, Srinakharinwirot University, Bangkok, Thailand,Corresponding author. Department of Oral Surgery and Oral Medicine, Faculty of Dentistry, Srinakharinwirot University, 114, Sukhumvit 23, Wattana, Bangkok, 10110, Thailand.
| |
Collapse
|
19
|
Su Z, Xu L, Dai X, Zhu M, Chen X, Li Y, Li J, Ge R, Cheng B, Wang Y. Prognostic and clinicopathological value of m6A regulators in human cancers: a meta-analysis. Aging (Albany NY) 2022; 14:8818-8838. [DOI: 10.18632/aging.204371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/24/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Zhangci Su
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, P.R. China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, P.R. China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, P.R. China
| | - Leyao Xu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, P.R. China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, P.R. China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, P.R. China
| | - Xinning Dai
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, P.R. China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, P.R. China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, P.R. China
| | - Mengyao Zhu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, P.R. China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, P.R. China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, P.R. China
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, P.R. China
| | - Xiaodan Chen
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, P.R. China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, P.R. China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, P.R. China
| | - Yuanyuan Li
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, P.R. China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, P.R. China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, P.R. China
| | - Jie Li
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, P.R. China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, P.R. China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, P.R. China
| | - Ruihan Ge
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, P.R. China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, P.R. China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, P.R. China
| | - Bin Cheng
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, P.R. China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, P.R. China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, P.R. China
| | - Yun Wang
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, P.R. China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, P.R. China
| |
Collapse
|
20
|
Teng C, Kong F, Mo J, Lin W, Jin C, Wang K, Wang Y. The roles of RNA N6-methyladenosine in esophageal cancer. Heliyon 2022; 8:e11430. [DOI: 10.1016/j.heliyon.2022.e11430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 07/15/2022] [Accepted: 10/31/2022] [Indexed: 11/08/2022] Open
|
21
|
Li Y, Niu C, Wang N, Huang X, Cao S, Cui S, Chen T, Huo X, Zhou R. The Role of m 6A Modification and m 6A Regulators in Esophageal Cancer. Cancers (Basel) 2022; 14:5139. [PMID: 36291923 PMCID: PMC9600289 DOI: 10.3390/cancers14205139] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/15/2022] [Accepted: 10/18/2022] [Indexed: 03/19/2025] Open
Abstract
N6-methyladenosine (m6A) modification, the most prevalent RNA modification, is involved in all aspects of RNA metabolism, including RNA processing, nuclear export, stability, translation and degradation. Therefore, m6A modification can participate in various physiological functions, such as tissue development, heat shock response, DNA damage response, circadian clock control and even in carcinogenesis through regulating the expression or structure of the gene. The deposition, removal and recognition of m6A are carried out by methyltransferases, demethylases and m6A RNA binding proteins, respectively. Aberrant m6A modification and the dysregulation of m6A regulators play critical roles in the occurrence and development of various cancers. The pathogenesis of esophageal cancer (ESCA) remains unclear and the five-year survival rate of advanced ESCA patients is still dismal. Here, we systematically reviewed the recent studies of m6A modification and m6A regulators in ESCA and comprehensively analyzed the role and possible mechanism of m6A modification and m6A regulators in the occurrence, progression, remedy and prognosis of ESCA. Defining the effect of m6A modification and m6A regulators in ESCA might be helpful for determining the pathogenesis of ESCA and providing some ideas for an early diagnosis, individualized treatment and improved prognosis of ESCA patients.
Collapse
Affiliation(s)
- Yuekao Li
- Department of Computed Tomography, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China
| | - Chaoxu Niu
- Department of Surgery, Shijiazhuang Ping’an Hospital, Shijiazhuang 050021, China
| | - Na Wang
- Hebei Provincial Cancer Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China
| | - Xi Huang
- Hebei Provincial Cancer Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China
| | - Shiru Cao
- Hebei Provincial Cancer Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China
| | - Saijin Cui
- Hebei Provincial Cancer Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China
| | - Tianyu Chen
- Hebei Provincial Cancer Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China
| | - Xiangran Huo
- Hebei Provincial Cancer Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China
| | - Rongmiao Zhou
- Hebei Provincial Cancer Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China
| |
Collapse
|
22
|
Tsuchiya K, Yoshimura K, Iwashita Y, Inoue Y, Ohta T, Watanabe H, Yamada H, Kawase A, Tanahashi M, Ogawa H, Funai K, Shinmura K, Suda T, Sugimura H. m 6A demethylase ALKBH5 promotes tumor cell proliferation by destabilizing IGF2BPs target genes and worsens the prognosis of patients with non-small-cell lung cancer. Cancer Gene Ther 2022; 29:1355-1372. [PMID: 35318440 PMCID: PMC9576599 DOI: 10.1038/s41417-022-00451-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 01/03/2022] [Accepted: 02/24/2022] [Indexed: 12/14/2022]
Abstract
The modification of N6-methyladenosine (m6A) in RNA and its eraser ALKBH5, an m6A demethylase, play an important role across various steps of human carcinogenesis. However, the involvement of ALKBH5 in non-small-cell lung cancer (NSCLC) development remains to be completely elucidated. The current study revealed that the expression of ALKBH5 was increased in NSCLC and increased expression of ALKBH5 worsened the prognosis of patients with NSCLC. In vitro study revealed that ALKBH5 knockdown suppressed cell proliferation ability of PC9 and A549 cells and promoted G1 arrest and increased the number of apoptotic cells. Furthermore, ALKBH5 overexpression increased the cell proliferation ability of the immortalized cell lines. Microarray analysis and western blotting revealed that the expression of CDKN1A (p21) or TIMP3 was increased by ALKBH5 knockdown. These alterations were offset by a double knockdown of both ALKBH5 and one of the IGF2BPs. The decline of mRNAs was, at least partly, owing to the destabilization of these mRNAs by one of the IGF2BPs. In conclusions, the ALKBH5-IGF2BPs axis promotes cell proliferation and tumorigenicity, which in turn causes the unfavorable prognosis of NSCLC.
Collapse
Affiliation(s)
- Kazuo Tsuchiya
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Katsuhiro Yoshimura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yuji Iwashita
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yusuke Inoue
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tsutomu Ohta
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
- Department of Physical Therapy, Faculty of Health and Medical Sciences, Tokoha University, Hamamatsu, Japan
| | - Hirofumi Watanabe
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hidetaka Yamada
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Akikazu Kawase
- First Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Masayuki Tanahashi
- Division of Thoracic Surgery, Respiratory Disease Center, Seirei Mikatahara General Hospital, Hamamatsu, Japan
| | - Hiroshi Ogawa
- Department of Pathology, Seirei Mikatahara General Hospital, Hamamatsu, Japan
| | - Kazuhito Funai
- First Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kazuya Shinmura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Takafumi Suda
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Haruhiko Sugimura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan.
| |
Collapse
|
23
|
Liu XS, Liu C, Zeng J, Zeng DB, Chen YJ, Tan F, Gao Y, Liu XY, Zhang Y, Zhang YH, Pei ZJ. Nucleophosmin 1 is a prognostic marker of gastrointestinal cancer and is associated with m6A and cuproptosis. Front Pharmacol 2022; 13:1010879. [PMID: 36188614 PMCID: PMC9515486 DOI: 10.3389/fphar.2022.1010879] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 08/29/2022] [Indexed: 11/30/2022] Open
Abstract
Background: NPM1 is highly expressed in a variety of solid tumors and promotes tumor development. However, there are few comprehensive studies on NPM1 analysis in gastrointestinal cancer. Methods: We used bioinformatics tools to study the expression difference of NPM1 between gastrointestinal cancer and control group, and analyzed the relationship between its expression level and the diagnosis, prognosis, functional signaling pathway, immune infiltration, m6A and cuproptosis related genes of gastrointestinal cancer. At the same time, the expression difference of NPM1 between esophageal carcinoma (ESCA) samples and control samples was verified by in vitro experiments. Results: NPM1 was overexpressed in gastrointestinal cancer. In vitro experiments confirmed that the expression of NPM1 in ESCA samples was higher than that in normal samples. The expression of NPM1 has high accuracy in predicting the outcome of gastrointestinal cancer. The expression of NPM1 is closely related to the prognosis of multiple gastrointestinal cancers. Go and KEGG enrichment analysis showed that NPM1 co-expressed genes involved in a variety of biological functions. NPM1 expression is potentially associated with a variety of immune cell infiltration, m6A and cuproptosis related genes in gastrointestinal cancers. Conclusion: NPM1 can be used as a diagnostic and prognostic marker of gastrointestinal cancer, which is related to the immune cell infiltration and the regulation of m6A and cuproptosis.
Collapse
Affiliation(s)
- Xu-Sheng Liu
- Department of Nuclear Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- *Correspondence: Xu-Sheng Liu, ; Zhi-Jun Pei,
| | - Chao Liu
- Medical Imaging Center, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Jing Zeng
- Department of Infection Control, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Dao-Bing Zeng
- Department of Nuclear Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Yi-Jia Chen
- Department of Nuclear Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Fan Tan
- Department of Nuclear Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Yan Gao
- Department of Nuclear Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Xiao-Yu Liu
- Department of Nuclear Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Yu Zhang
- Department of Nuclear Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Yao-Hua Zhang
- Department of Nuclear Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Zhi-Jun Pei
- Department of Nuclear Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- Hubei Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- *Correspondence: Xu-Sheng Liu, ; Zhi-Jun Pei,
| |
Collapse
|
24
|
Wang H, Zhang Y, Chen L, Liu Y, Xu C, Jiang D, Song Q, Wang H, Wang L, Lin Y, Chen Y, Chen J, Xu Y, Hou Y. Identification of clinical prognostic features of esophageal cancer based on m6A regulators. Front Immunol 2022; 13:950365. [PMID: 36159855 PMCID: PMC9493207 DOI: 10.3389/fimmu.2022.950365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Background Esophageal cancer (ESCA) is a common malignancy with high morbidity and mortality. n6-methyladenosine (m6A) regulators have been widely recognized as one of the major causes of cancer development and progression. However, for ESCA, the role of regulators is unclear. The aim of this study was to investigate the role of m6A RNA methylation regulators in the immune regulation and prognosis of ESCA. Methods RNA-seq data were downloaded using the Cancer Genome Atlas (TCGA) database, and the expression differences of m6A RNA methylation regulators in ESCA were analyzed. Further m6A methylation regulator markers were constructed, and prognostic and predictive values were assessed using survival analysis and nomograms. Patients were divided into low-risk and high-risk groups. The signature was evaluated in terms of survival, single nucleotide polymorphism (SNP), copy number variation (CNV), tumor mutation burden (TMB), and functional enrichment analysis (TMB). The m6A expression of key genes in clinical specimens was validated using quantitative reverse transcription polymerase chain reaction (qRT-PCR). Results In ESCA tissues, most of the 23 regulators were significantly differentially expressed. LASSO regression analysis included 7 m6A-related factors (FMR1, RBMX, IGFBP1, IGFBP2, ALKBH5, RBM15B, METTL14). In addition, this study also identified that the risk model is associated with biological functions, including base metabolism, DNA repair, and mismatch repair. In this study, a nomogram was created to predict the prognosis of ESCA patients. Bioinformatics analysis of human ESCA and normal tissues was performed using qRT-PCR. Finally. Seven genetic features were found to be associated with m6A in ESCA patients. The results of this study suggest that three different clusters of m6A modifications are involved in the immune microenvironment of ESCA, providing important clues for clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Huimei Wang
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yiping Zhang
- Clinical Oncology School of Fujian Medical University, Fuzhou, China
| | - Lin Chen
- Clinical Oncology School of Fujian Medical University, Fuzhou, China
| | - Yufeng Liu
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chen Xu
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Dongxian Jiang
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qi Song
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Haixing Wang
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Liyan Wang
- Clinical Oncology School of Fujian Medical University, Fuzhou, China
| | - Yu Lin
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Yuanmei Chen
- Department of Thoracic Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Junqiang Chen
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Yuanji Xu
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
- *Correspondence: Yuanji Xu, ; Yingyong Hou,
| | - Yingyong Hou
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
- *Correspondence: Yuanji Xu, ; Yingyong Hou,
| |
Collapse
|
25
|
Akinlalu AO, Njoku PC, Nzekwe CV, Oni RO, Fojude T, Faniyi AJ, Olagunju AS. Recent developments in the significant effect of mRNA modification (M6A) in glioblastoma and esophageal cancer. SCIENTIFIC AFRICAN 2022. [DOI: 10.1016/j.sciaf.2022.e01347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
26
|
Fang Z, Mei W, Qu C, Lu J, Shang L, Cao F, Li F. Role of m6A writers, erasers and readers in cancer. Exp Hematol Oncol 2022; 11:45. [PMID: 35945641 PMCID: PMC9361621 DOI: 10.1186/s40164-022-00298-7] [Citation(s) in RCA: 129] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/04/2022] [Indexed: 02/06/2023] Open
Abstract
The N(6)-methyladenosine (m6A) modification is the most pervasive modification of human RNAs. In recent years, an increasing number of studies have suggested that m6A likely plays important roles in cancers. Many studies have demonstrated that m6A is involved in the biological functions of cancer cells, such as proliferation, invasion, metastasis, and drug resistance. In addition, m6A is closely related to the prognosis of cancer patients. In this review, we highlight recent advances in understanding the function of m6A in various cancers. We emphasize the importance of m6A to cancer progression and look forward to describe future research directions.
Collapse
Affiliation(s)
- Zhen Fang
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wentong Mei
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Chang Qu
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jiongdi Lu
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Liang Shang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| | - Feng Cao
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Fei Li
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
27
|
Zhang Z, Wang L, Zhao L, Wang Q, Yang C, Zhang M, Wang B, Jiang K, Ye Y, Wang S, Shen Z. N6-methyladenosine demethylase ALKBH5 suppresses colorectal cancer progression potentially by decreasing PHF20 mRNA methylation. Clin Transl Med 2022; 12:e940. [PMID: 35979628 PMCID: PMC9386323 DOI: 10.1002/ctm2.940] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 05/30/2022] [Accepted: 06/06/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND As the most widespread mRNAs modification, N6-methyladenosine (m6 A) is dynamically and reversibly modulated by methyltransferases and demethylases. ALKBH5 is a major demethylase, and plays vital roles in the progression of cancers. However, the role and mechanisms of ALKBH5 in colorectal cancer (CRC) is unclear. RESULTS Herein, we discovered that in CRC, downregulated ALKBH5 was closely related to poor prognosis of CRC patients. Functionally, our results demonstrated that knockdown of ALKBH5 enhanced the proliferation, migration and invasion of LOVO and RKO in vitro, while overexpression of ALKBH5 inhibited the functions of these cells. The results also demonstrated that knockdown of ALKBH5 promoted subcutaneous tumorigenesis of LOVO in vivo, while overexpression of ALKBH5 suppressed this ability. Mechanistically, results from joint analyses of MeRIP-seq and RNA-seq indicated that PHF20 mRNA was a key molecule that was regulated by ALKBH5-mediated m6 A modification. Further experiments indicated that ALKBH5 may inhibit stability of PHF20 mRNA by removing the m6 A modification of PHF20 mRNA 3'UTR. CONCLUSIONS ALKBH5 suppresses CRC progression by decreasing PHF20 mRNA methylation. ALKBH5-mediated m6 A modification of PHF20 mRNA can serve as a hopeful strategy for the intervention and treatment of CRC.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Gastroenterological SurgeryPeking University People's HospitalBeijingChina
- Laboratory of Surgical OncologyBeijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment ResearchPeking University People's HospitalBeijingChina
| | - Ling Wang
- Department of Medical OncologyAffiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhouChina
| | - Long Zhao
- Department of Gastroenterological SurgeryPeking University People's HospitalBeijingChina
- Laboratory of Surgical OncologyBeijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment ResearchPeking University People's HospitalBeijingChina
| | - Quan Wang
- Department of Gastroenterological SurgeryPeking University People's HospitalBeijingChina
- Laboratory of Surgical OncologyBeijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment ResearchPeking University People's HospitalBeijingChina
| | - Changjiang Yang
- Department of Gastroenterological SurgeryPeking University People's HospitalBeijingChina
- Laboratory of Surgical OncologyBeijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment ResearchPeking University People's HospitalBeijingChina
| | - Mengmeng Zhang
- Department of Gastroenterological SurgeryPeking University People's HospitalBeijingChina
- Laboratory of Surgical OncologyBeijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment ResearchPeking University People's HospitalBeijingChina
| | - Bo Wang
- Department of Gastroenterological SurgeryPeking University People's HospitalBeijingChina
- Laboratory of Surgical OncologyBeijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment ResearchPeking University People's HospitalBeijingChina
| | - Kewei Jiang
- Department of Gastroenterological SurgeryPeking University People's HospitalBeijingChina
- Laboratory of Surgical OncologyBeijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment ResearchPeking University People's HospitalBeijingChina
| | - Yingjiang Ye
- Department of Gastroenterological SurgeryPeking University People's HospitalBeijingChina
- Laboratory of Surgical OncologyBeijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment ResearchPeking University People's HospitalBeijingChina
| | - Shan Wang
- Department of Gastroenterological SurgeryPeking University People's HospitalBeijingChina
- Laboratory of Surgical OncologyBeijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment ResearchPeking University People's HospitalBeijingChina
| | - Zhanlong Shen
- Department of Gastroenterological SurgeryPeking University People's HospitalBeijingChina
- Laboratory of Surgical OncologyBeijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment ResearchPeking University People's HospitalBeijingChina
| |
Collapse
|
28
|
Establishment and Analysis of a Prognostic Model of Autophagy-Related lncRNAs in ESCA. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9265088. [PMID: 35928921 PMCID: PMC9345713 DOI: 10.1155/2022/9265088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 07/07/2022] [Indexed: 12/05/2022]
Abstract
Esophageal cancer (ESCA) is a malignant tumor of the upper gastrointestinal tract, with a high mortality rate and poor prognosis. Long noncoding RNAs (lncRNAs) play a role in the malignant progression of tumors by regulating autophagy. This study is aimed at establishing a prognostic model of autophagy-related lncRNAs in ESCA and provide a theoretical basis to determine potential therapeutic targets for ESCA. The transcriptome expression profiles were downloaded from The Cancer Genome Atlas (TCGA). We identified autophagy-related mRNAs and lncRNAs in ESCA using differential expression analysis and the Human Autophagy Database (HADb). Four differentially expressed autophagy-related lncRNAs with a prognostic value were identified using Cox regression and survival analyses. Furthermore, the combination of the selected lncRNAs was able to predict the prognosis of patients with ESCA more accurately than any of the four lncRNAs individually. Finally, we constructed a coexpression network of autophagy-related mRNAs and lncRNAs. This study showed that autophagy-related lncRNAs play an important role in the occurrence and development of ESCA and could become a new target for the diagnosis and treatment of this disease.
Collapse
|
29
|
Chen F, Gong E, Ma J, Lin J, Wu C, Chen S, Hu S. Prognostic score model based on six m6A-related autophagy genes for predicting survival in esophageal squamous cell carcinoma. J Clin Lab Anal 2022; 36:e24507. [PMID: 35611939 PMCID: PMC9279981 DOI: 10.1002/jcla.24507] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Prognostic signatures based on autophagy genes have been proposed for esophageal squamous cell carcinoma (ESCC). Autophagy genes are closely associated with m6A genes. Our purpose is to identify m6A-related autophagy genes in ESCC and develop a survival prediction model. METHODS Differential expression analyses for m6A genes and autophagy genes were performed based on TCGA and HADd databases followed by constructing a co-expression network. Uni-variable Cox regression analysis was performed for m6A-related autophagy genes. Using the optimal combination of feature genes by LASSO Cox regression model, a prognostic score (PS) model was developed and subsequently validated in an independent dataset. RESULTS The differential expression of 13 m6A genes and 107 autophagy genes was observed between ESCC and normal samples. The co-expression network contained 13 m6A genes and 96 autophagy genes. Of the 12 m6A-related autophagy genes that were significantly related to survival, DAPK2, DIRAS3, EIF2AK3, ITPR1, MAP1LC3C, and TP53 were used to construct a PS model, which split the training set into two risk groups with significant different survival ratios (p = 0.015, 1-year, 3-year, and 5-year AUC = 0.873, 0.840, and 0.829). Consistent results of GSE53625 dataset confirmed predictive ability of the model (p = 0.024, 1-year, 3-year, and 5-year AUC = 0.793, 0.751, and 0.744). The six-gene PS score was an independent prognostic factor from clinical factors (HR, 2.362; 95% CI, 1.390-7.064; p-value = 0.012). CONCLUSION Our study recommends 6 m6A-related autophagy genes as promising prognostic biomarkers and develops a PS model to predict survival in ESCC.
Collapse
Affiliation(s)
- Funan Chen
- Department of Cardiothoracic Surgery, Longyan First Hospital, Longyan City, China
| | - Erxiu Gong
- Department of Cardiothoracic Surgery, Longyan First Hospital, Longyan City, China
| | - Jun Ma
- Department of Cardiothoracic Surgery, Longyan First Hospital, Longyan City, China
| | - Jiehuan Lin
- Department of Cardiothoracic Surgery, Longyan First Hospital, Longyan City, China
| | - Canxing Wu
- Department of Cardiothoracic Surgery, Longyan First Hospital, Longyan City, China
| | - Shanshan Chen
- Priority Ward, Longyan First Hospital, Longyan City, China
| | - Shuqiao Hu
- Department of Cardiothoracic Surgery, Longyan First Hospital, Longyan City, China
| |
Collapse
|
30
|
Liu XS, Kui XY, Gao Y, Chen XQ, Zeng J, Liu XY, Zhang Y, Zhang YH, Pei ZJ. Comprehensive Analysis of YTHDF1 Immune Infiltrates and ceRNA in Human Esophageal Carcinoma. Front Genet 2022; 13:835265. [PMID: 35401696 PMCID: PMC8983832 DOI: 10.3389/fgene.2022.835265] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/21/2022] [Indexed: 12/13/2022] Open
Abstract
Background: YTHDF1 is highly expressed in multiple tumors and affects tumor progression. However, there are only a few comprehensive studies on the analysis of YTHDF1 in esophageal cancer.Methods: We analyzed YTHDF1 expression in pan-cancer by comparing both the GEPIA and TCGA cohorts, and further verified the differences in YTHDF1 expression between the ESCA and normal groups by the GEO ESCA cohort and in vitro experiments. The correlation of YTHDF1 expression and the clinical characteristics of ESCA patients was analyzed using the TCGA ESCA clinical data. The GO and KEGG enrichment analyses of the YTHDF1 coexpressed genes were completed by bioinformatics analysis, and the GGI and PPI were constructed for the YTHDF1, respectively. The relationship between YTHDF1 expression and the infiltration of ESCA immune cells was analyzed by using the TIMER database and the TCGA ESCA cohort. The relationships between YTHDF1 expression levels and glycolysis and ferroptosis-related genes were analyzed using the TCGA and GEPIA ESCA cohorts. Finally, the ceRNA network that may be involved in YTHDF1 in ESCA was predicted and constructed through a variety of databases.Results: YTHDF1 was overexpressed in various cancers, and in vitro experiments confirmed that YTHDF1 expression was higher in ESCA samples than in normal samples. The expression of YTHDF1 has some accuracy in predicting the tumor outcome. Expression of YTHDF1 was significantly associated with multiple clinical features in ESCA patients. GO and KEGG enrichment analyses indicated that YTHDF1 coexpressed genes involved multiple biological functions. There is a potential association between YTHDF1 expression and multiple immune cell infiltration, glycolysis, and ferroptosis-related genes in ESCA. YTHDF1 may be involved in multiple ceRNA regulatory networks in ESCA, including PAXIP1-AS1/hsa-miR-376c-3p/YTHDF1 axis, THUMPD3-AS1/hsa-miR-655-3p/YTHDF1 axis, and SNHG20/hsa-miR-655-3p/YTHDF1 axis, respectively.Conclusion: YTHDF1 can serve as a biomarker of ESCA, related to the immune cell infiltration of ESCA, regulation of glycolysis and ferroptosis, and the ceRNA regulatory network.
Collapse
Affiliation(s)
- Xu-Sheng Liu
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- *Correspondence: Xu-Sheng Liu, ; Zhi-Jun Pei,
| | - Xue-Yan Kui
- Postgraduate Training Basement of Jinzhou Medical University, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Yan Gao
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | | | - Jing Zeng
- Department of Infection Control, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Xiao-Yu Liu
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Yu Zhang
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Yao-Hua Zhang
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Zhi-Jun Pei
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- Hubei Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- *Correspondence: Xu-Sheng Liu, ; Zhi-Jun Pei,
| |
Collapse
|
31
|
Qu J, Yan H, Hou Y, Cao W, Liu Y, Zhang E, He J, Cai Z. RNA demethylase ALKBH5 in cancer: from mechanisms to therapeutic potential. J Hematol Oncol 2022; 15:8. [PMID: 35063010 PMCID: PMC8780705 DOI: 10.1186/s13045-022-01224-4] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/03/2022] [Indexed: 12/16/2022] Open
Abstract
RNA demethylase ALKBH5 takes part in the modulation of N6-methyladenosine (m6A) modification and controls various cell processes. ALKBH5-mediated m6A demethylation regulates gene expression by affecting multiple events in RNA metabolism, e.g., pre-mRNA processing, mRNA decay and translation. Mounting evidence shows that ALKBH5 plays critical roles in a variety of human malignancies, mostly via post-transcriptional regulation of oncogenes or tumor suppressors in an m6A-dependent manner. Meanwhile, increasing non-coding RNAs are recognized as functional targets of ALKBH5 in cancers. Here we reviewed up-to-date findings about the pathological roles of ALKBH5 in cancer, the molecular mechanisms by which it exerts its functions, as well as the underlying mechanism of its dysregulation. We also discussed the therapeutic implications of targeting ALKBH5 in cancer and potential ALKBH5-targeting strategies.
Collapse
Affiliation(s)
- Jianwei Qu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Haimeng Yan
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yifan Hou
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wen Cao
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yang Liu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Enfan Zhang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jingsong He
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhen Cai
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
32
|
Identification of Molecular Subtypes and Potential Small-Molecule Drugs for Esophagus Cancer Treatment Based on m 6A Regulators. JOURNAL OF ONCOLOGY 2022; 2022:5490461. [PMID: 35069736 PMCID: PMC8776445 DOI: 10.1155/2022/5490461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/07/2021] [Accepted: 12/13/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Esophagus cancer (ESCA) is the sixth most frequent cancer in males, with 5-year overall survival of 15%-25%. RNA modifications function critically in cancer progression, and m6A regulators are associated with ESCA prognosis. This study further revealed correlations between m6A and ESCA development. METHODS Univariate Cox regression analysis and consensus clustering were applied to determine molecular subtypes. Functional pathways and gene ontology terms were enriched by gene set enrichment analysis. Protein-protein interaction (PPI) analysis on differentially expressed genes (DEGs) was conducted for hub gene screening. Public drug databases were employed to study the interactions between hub genes and small molecules. RESULTS Three molecular subtypes related to ESCA prognosis were determined. Based on multiple analyses among molecular subtypes, 146 DEGs were screened, and a PPT network of 15 hub genes was visualized. Finally, 8 potential small-molecule drugs (BMS-754807, gefitinib, neratinib, zuclopenthixol, puromycin, sulfasalazine, and imatinib) were identified for treating ESCA. CONCLUSIONS This study applied a new approach to analyzing the relation between m6A and ESCA prognosis, providing a reference for exploring potential targets and drugs for ESCA treatment.
Collapse
|
33
|
Zou J, Zhong X, Zhou X, Xie Q, Zhao Z, Guo X, Duan Y. The M6A methyltransferase METTL3 regulates proliferation in esophageal squamous cell carcinoma. Biochem Biophys Res Commun 2021; 580:48-55. [PMID: 34624569 DOI: 10.1016/j.bbrc.2021.05.048] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 05/14/2021] [Indexed: 12/18/2022]
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most lethal human cancers with a lower 5-year survival rate. N6-methyladenosine (m6A) methylation, an important epigenetic modification, has been reported to associate with physiological and pathological processes of cancers. However, its role in ESCC remains unclear. In this work, we found that the m6A levels were elevated in ESCC cancer tissues and ESCC cells. The PPI network demonstrated that METTL3, METTL14, WTAP, RBM15, and KIAA1429 were all significantly associated with each other. Moreover, we found a significant upregulation of METTL3 mRNA and protein amounts in ESCC tissues. The METTL3 mRNA expression level of tissues had associations with ESCC differentiation extent and sex (p < 0.05). The METTL3 mRNA expression level of tissues, sensitivity for diagnosing ESCC was 75.00%, specificity was 72.06% and area under the ROC curve was 0.8030. Depletion of METTL3 markedly diminished m6A levels in human ESCC cell lines and METTL3 overexpression restored the reduction in m6A levels. These results suggested that METTL3 is the primary enzyme that modulates m6A methylation and a critical regulatory factor in ESCC. Additionally, METTL3 knockdown significantly suppressed the ESCC cell proliferation, while METTL3 overexpression markedly promoted ESCC cell proliferation both in cell and animal models. These results demonstrated that METTL3 promotes ESCC development. Furthermore, METTL3 may modulate the cell cycle of ESCC cells through a p21-dependent pattern. METTL3-guided m6A modification may contribute to the progression of ESCC via the p21-axis. Our study is the first investigation to report that METTL3-mediated m6A methylation plays a crucial role in ESCC oncogenesis and highlights that METTL3 might be a potential biomarker and therapeutic target for ESCC patients.
Collapse
Affiliation(s)
- Jiang Zou
- Research Center of Analytical Instrumentation, Key Laboratory of Bio-resource and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Xiaowu Zhong
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
| | - Xi Zhou
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
| | - Qiyue Xie
- Research Center of Analytical Instrumentation, Key Laboratory of Bio-resource and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Zhao Zhao
- Research Center of Analytical Instrumentation, Key Laboratory of Bio-resource and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Xiaolan Guo
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China.
| | - Yixiang Duan
- Research Center of Analytical Instrumentation, Key Laboratory of Bio-resource and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610065, Sichuan, China.
| |
Collapse
|
34
|
Liu C, Yang S, Zhang Y, Wang C, Du D, Wang X, Liu T, Liang G. Emerging Roles of N6-Methyladenosine Demethylases and Its Interaction with Environmental Toxicants in Digestive System Cancers. Cancer Manag Res 2021; 13:7101-7114. [PMID: 34526822 PMCID: PMC8437382 DOI: 10.2147/cmar.s328188] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/19/2021] [Indexed: 01/02/2023] Open
Abstract
Digestive system cancers are common cancers with high cancer deaths worldwide. They have become a major threat to public health and economic burden. As one of the most universal RNA modifications in eukaryotes, the N6-methyladenosine (m6A) modification is involved in the occurrence, development, prognosis, and treatment response of various cancers, including digestive system cancers. M6A demethylases shape the m6A landscape dynamically, playing important roles in cancers. In addition, accumulating evidence reveal that many environmental toxicants are the established risk factors for digestive system cancers and associated with m6A modification. In this review, we summarize the multiple functions of M6A demethylases (fat mass and obesity-associated protein (FTO), AlkB homolog 5 (ALKBH5) and AlkB homolog 3 (ALKBH3)) in digestive system cancers, which are aberrantly expressed and affect cancer progression. We also discuss the potential roles of m6A demethylases in the assessment of environmental exposure, the signature for prevention and diagnosis of digestive system cancers.
Collapse
Affiliation(s)
- Caiping Liu
- School of Public Health, Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Sheng Yang
- School of Public Health, Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Yanqiu Zhang
- Department of Environmental Occupational Health, Taizhou Center for Disease Control and Prevention, Taizhou, 225300, Jiangsu, People's Republic of China
| | - Chuntao Wang
- Jiangsu Vocational College of Medicine, Yancheng, 224000, Jiangsu, People's Republic of China
| | - Dandan Du
- School of Public Health, Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Xian Wang
- School of Public Health, Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Tong Liu
- School of Public Health, Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Geyu Liang
- School of Public Health, Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, 210009, Jiangsu, People's Republic of China
| |
Collapse
|
35
|
Recent advances of m 6A methylation modification in esophageal squamous cell carcinoma. Cancer Cell Int 2021; 21:421. [PMID: 34376206 PMCID: PMC8353866 DOI: 10.1186/s12935-021-02132-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/03/2021] [Indexed: 12/17/2022] Open
Abstract
In recent years, with the development of RNA sequencing technology and bioinformatics methods, the epigenetic modification of RNA based on N6-methyladenosine (m6A) has gradually become a research hotspot in the field of bioscience. m6A is the most abundant internal modification in eukaryotic messenger RNAs (mRNAs). m6A methylation modification can dynamically and reversibly regulate RNA transport, localization, translation and degradation through the interaction of methyltransferase, demethylase and reading protein. m6A methylation can regulate the expression of proto-oncogenes and tumor suppressor genes at the epigenetic modification level to affect tumor occurrence and metastasis. The morbidity and mortality of esophageal cancer (EC) are still high worldwide. Esophageal squamous cell carcinoma (ESCC) is the most common tissue subtype of EC. This article reviews the related concepts, biological functions and recent advances of m6A methylation in ESCC, and looks forward to the prospect of m6A methylation as a new diagnostic biomarker and potential therapeutic target for ESCC.
Collapse
|
36
|
Selberg S, Seli N, Kankuri E, Karelson M. Rational Design of Novel Anticancer Small-Molecule RNA m6A Demethylase ALKBH5 Inhibitors. ACS OMEGA 2021; 6:13310-13320. [PMID: 34056479 PMCID: PMC8158789 DOI: 10.1021/acsomega.1c01289] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/05/2021] [Indexed: 05/05/2023]
Abstract
The RNA 6-N-methyladenosine (m6A) demethylase ALKBH5 has been shown to be oncogenic in several cancer types, including leukemia and glioblastoma. We present here the target-tailored development and first evaluation of the antiproliferative effects of new ALKBH5 inhibitors. Two compounds, 2-[(1-hydroxy-2-oxo-2-phenylethyl)sulfanyl]acetic acid (3) and 4-{[(furan-2-yl)methyl]amino}-1,2-diazinane-3,6-dione (6), with IC50 values of 0.84 μM and 1.79 μM, respectively, were identified in high-throughput virtual screening of the library of 144 000 preselected compounds and subsequent verification of hits in an m6A antibody-based enzyme-linked immunosorbent assay (ELISA) enzyme inhibition assay. The effect of these compounds on the proliferation of selected target cancer cell lines was then measured. In the case of three leukemia cell lines (HL-60, CCRF-CEM, and K562) the cell proliferation was suppressed at low micromolar concentrations of inhibitors, with IC50 ranging from 1.38 to 16.5 μM. However, the effect was low or negligible in the case of another leukemia cell line, Jurkat, and the glioblastoma cell line A-172. These results demonstrate the potential of ALKBH5 inhibition as a cancer-cell-type-selective antiproliferative strategy.
Collapse
Affiliation(s)
- Simona Selberg
- Institute of Chemistry, University of Tartu, Ravila 14a, Tartu 50411, Estonia
| | - Neinar Seli
- Chemestmed, Ltd., Riia tn 130b/2, Tartu 50411, Estonia
| | - Esko Kankuri
- Faculty of Medicine, Department of Pharmacology, University of Helsinki, Helsinki 00014, Finland
| | - Mati Karelson
- Institute of Chemistry, University of Tartu, Ravila 14a, Tartu 50411, Estonia
| |
Collapse
|
37
|
Mo P, Xie S, Cai W, Ruan J, Du Q, Ye J, Mao J. N6-methyladenosine (m 6A) RNA methylation signature as a predictor of stomach adenocarcinoma outcomes and its association with immune checkpoint molecules. J Int Med Res 2021; 48:300060520951405. [PMID: 32972288 PMCID: PMC7522833 DOI: 10.1177/0300060520951405] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE Although N6-methyladenosine (m6A) RNA methylation is the most common mRNA modification process, few studies have examined the role of m6A in stomach adenocarcinomas (STADs). METHODS In this retrospective study, we analyzed 293 STAD samples from The Cancer Genome Atlas with complete clinicopathological feature profiles. The m6A methylation risk signature was derived from LASSO-Cox regression analyses with 15 m6A regulators. Statistical analysis was performed and figures were prepared using R software (https://www.R-project.org/). RESULTS The m6A signature was established as follows: risk score = FTO × 0.127 + YTHDF1 × 0.004 + KIAA1429 × 0.044 + YTHDC2 × 0.112 - RBM15 × 0.135 - ALKBH5 × 0.019 - YTHDF2 × 0.028, which was confirmed as an independent prognostic indicator to predict overall survival of patients with STAD. Risk scores and tumor grades were closely associated. Cell cycle, p53 signaling pathways, DNA mismatch repair, and RNA degradation were enriched in the low-risk subgroup. This subgroup showed significantly higher expression of immune checkpoint molecules including PD-1 (programmed death 1), PD-L1 (programmed death-ligand 1), and CTLA-4 (cytotoxic T-lymphocyte-associated antigen 4), suggesting that the signature may be a useful immunotherapy predictor. CONCLUSIONS We established an m6A methylation signature as an independent prognostic tool to predict overall survival, which may also be useful as an immunotherapy predictor.
Collapse
Affiliation(s)
- Pingfan Mo
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Siyuan Xie
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Wen Cai
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Jingjing Ruan
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Qin Du
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Jun Ye
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Jianshan Mao
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| |
Collapse
|
38
|
Xue J, Xiao P, Yu X, Zhang X. A positive feedback loop between AlkB homolog 5 and miR-193a-3p promotes growth and metastasis in esophageal squamous cell carcinoma. Hum Cell 2021; 34:502-514. [PMID: 33231844 DOI: 10.1007/s13577-020-00458-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 11/06/2020] [Indexed: 12/15/2022]
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most frequent malignancies worldwide. miR-193a-3p acts as an oncogene or tumor suppressor in different cancers. However, the functional role and regulatory mechanism of miR-193a-3p in ESCC remain to be elucidated. Our results demonstrated that miR-193a-3p expression was significantly upregulated and associated with advanced TNM stage, recurrence, and poor prognosis in ESCC patients. miR-193-3p targeted ALKBH5 and suppressed its expression. ALKBH5 inhibited miR-193a-3p expression in turn. ALKBH5 affected the primary miR-193a-3p processing by negatively regulating its m6A modification. These findings suggested a positive feedback regulation between miR-193a-3p and ALKBH5 in ESCC cells. Moreover, the functional assays indicated that the miR-193-3p-ALKBH5 feedback loop promoted the proliferation, migration and invasion ability of ESCC cells in vitro, and facilitated tumor growth and metastasis in vivo. Collectively, our current study identified a novel positive feedback regulation between miR-193a-3p and ALKBH5 in ESCC, which may be helpful to gain insight into ESCC pathogenesis and provide novel therapeutic target for ESCC.
Collapse
Affiliation(s)
- Jinliang Xue
- Department of Thoracic Surgery, Luoyang Central Hospital Affiliated To Zhengzhou University, No.288, Zhongzhou Middle Road, Luoyang City, 471009, Henan Province, China
| | - Peng Xiao
- Department of Thoracic Surgery, Luoyang Central Hospital Affiliated To Zhengzhou University, No.288, Zhongzhou Middle Road, Luoyang City, 471009, Henan Province, China
| | - Xiangdong Yu
- Department of Thoracic Surgery, Luoyang Central Hospital Affiliated To Zhengzhou University, No.288, Zhongzhou Middle Road, Luoyang City, 471009, Henan Province, China
| | - Xiao Zhang
- Department of Thoracic Surgery, Luoyang Central Hospital Affiliated To Zhengzhou University, No.288, Zhongzhou Middle Road, Luoyang City, 471009, Henan Province, China.
| |
Collapse
|
39
|
Qin B, Dong M, Wang Z, Wan J, Xie Y, Jiao Y, Yan D. Long non‑coding RNA CASC15 facilitates esophageal squamous cell carcinoma tumorigenesis via decreasing SIM2 stability via FTO‑mediated demethylation. Oncol Rep 2020; 45:1059-1071. [PMID: 33650646 PMCID: PMC7860005 DOI: 10.3892/or.2020.7917] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/27/2020] [Indexed: 01/18/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are involved in the regulation of esophageal squamous cell carcinoma (ESCC) progression. However, the function and mechanism of lncRNA cancer susceptibility candidate 15 (CASC15) are poorly defined. In the present study, tumor and normal adjacent tissues were collected from 45 patients with ESCC. Expression levels of CASC15, fat mass and obesity-associated (FTO) protein and single-minded 2 (SIM2) were examined via reverse transcription-quantitative PCR and western blot assays. Cell proliferation and apoptosis were evaluated via MTT, flow cytometry and caspase-3 activity assays, respectively. Additionally, an ESCC mouse xenograft model was used to assess the function of CASC15 in vivo. The interaction between FTO and CASC15/SIM2 was analyzed via RNA immunoprecipitation and RNA pull-down assays. The results revealed that CASC15 expression was elevated in ESCC tissues, and patients with ESCC exhibiting high CASC15 expression had a poor prognosis. CASC15-knockdown inhibited ESCC cell proliferation and facilitated apoptosis. Additionally, CASC15-knockdown decreased the growth of ESCC xenograft tumors. CASC15 decreased SIM2 stability via FTO-mediated demethylation. Additionally, FTO loss markedly weakened CASC15-mediated pro-proliferative and anti-apoptotic effects in ESCC cells. SIM2 downregulation weakened the effect of CASC15-knockdown on cell proliferation and inhibited the increase of the apoptotic rate and caspase-3 activity induced by CASC15 depletion in ESCC cells. In conclusion, CASC15 promoted ESCC tumorigenesis by decreasing SIM2 stability via FTO-mediated demethylation.
Collapse
Affiliation(s)
- Bo Qin
- Translational Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Meng Dong
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Zhengyang Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Jiajia Wan
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Yingying Xie
- Translational Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Yi Jiao
- Yongcheng Coal & Electricity Holding Group Co., Ltd., Shangqiu, Henan 476000, P.R. China
| | - Dan Yan
- Translational Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|