1
|
Shastry S, Samal D, Pethe P. Histone H2A deubiquitinase BAP1 is essential for endothelial cell differentiation from human pluripotent stem cells. In Vitro Cell Dev Biol Anim 2024:10.1007/s11626-024-00935-x. [PMID: 38976206 DOI: 10.1007/s11626-024-00935-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/25/2024] [Indexed: 07/09/2024]
Abstract
Polycomb group proteins (PcGs) add repressive post translational histone modifications such as H2AK119ub1, and histone H2A deubiquitinases remove it. Mice lacking histone H2A deubiquitinases such as Usp16 and Bap1 die in embryonic stage, while mice lacking Usp3, Mysm1, Usp12, and Usp21 have been shown to be deficient in hematopoietic lineage differentiation, cell cycle regulation, and DNA repair. Thus, it is likely that histone deubiquitinases may also be required for human endothelial cell differentiation; however, there are no reports about the role of histone H2A deubiquitinase BAP1 in human endothelial cell development. We differentiated human pluripotent stem cells into the endothelial lineage which expressed stable inducible shRNA against BAP1. Our results show that BAP1 is required for human endothelial cell differentiation.
Collapse
Affiliation(s)
- Shruti Shastry
- Symbiosis Centre for Stem Cell Research (SCSCR), Symbiosis International (Deemed University), Pune, India
- Worcester Polytechnic Institute (WPI), Boston, USA
| | - Dharitree Samal
- Symbiosis Centre for Stem Cell Research (SCSCR), Symbiosis International (Deemed University), Pune, India
| | - Prasad Pethe
- Symbiosis Centre for Stem Cell Research (SCSCR), Symbiosis International (Deemed University), Pune, India.
| |
Collapse
|
2
|
Virdi JK, Pethe P. Assessment of human embryonic stem cells differentiation into definitive endoderm lineage on the soft substrates. Cell Biol Int 2024; 48:835-847. [PMID: 38419492 DOI: 10.1002/cbin.12151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 03/02/2024]
Abstract
Pluripotent stem cells (PSCs) hold enormous potential for treating multiple diseases owing to their ability to self-renew and differentiate into any cell type. Albeit possessing such promising potential, controlling their differentiation into a desired cell type continues to be a challenge. Recent studies suggest that PSCs respond to different substrate stiffness and, therefore, can differentiate towards some lineages via Hippo pathway. Human PSCs can also differentiate and self-organize into functional cells, such as organoids. Traditionally, human PSCs are differentiated on stiff plastic or glass plates towards definitive endoderm and then into functional pancreatic progenitor cells in the presence of soluble growth factors. Thus, whether stiffness plays any role in differentiation towards definitive endoderm from human pluripotent stem cells (hPSCs) remains unclear. Our study found that the directed differentiation of human embryonic stem cells towards endodermal lineage on the varying stiffness did not differ from the differentiation on stiff plastic dishes. We also observed no statistical difference between the expression of yes-associated protein (YAP) and phosphorylated YAP. Furthermore, we demonstrate that lysophosphatidic acid, a YAP activator, enhanced definitive endoderm formation, whereas verteporfin, a YAP inhibitor, did not have the significant effect on the differentiation. In summary, our results suggest that human embryonic stem cells may not differentiate in response to changes in stiffness, and that such cues may not have as significant impact on the level of YAP. Our findings indicate that more research is needed to understand the direct relationship between biophysical forces and hPSCs differentiation.
Collapse
Affiliation(s)
- Jasmeet Kaur Virdi
- Department of Biological Sciences, Sunandan Divatia School of Science, SVKM's NMIMS (Deemed-to-be) University, Mumbai, Maharashtra, India
| | - Prasad Pethe
- Symbiosis Centre for Stem Cell Research, Symbiosis School of Biological Sciences, Symbiosis International (Deemed) University, Pune, Maharashtra, India
| |
Collapse
|
3
|
Wang F, Li R, Zhang L, Nie X, Wang L, Chen L. Cell Transdifferentiation: A Challenging Strategy with Great Potential. Cell Reprogram 2023; 25:154-161. [PMID: 37471050 DOI: 10.1089/cell.2023.0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023] Open
Abstract
With the discovery and development of somatic cell nuclear transfer, cell fusion, and induced pluripotent stem cells, cell transdifferentiation research has presented unique advantages and stimulated a heated discussion worldwide. Cell transdifferentiation is a phenomenon by which a cell changes its lineage and acquires the phenotype of other cell types when exposed to certain conditions. Indeed, many adult stem cells and differentiated cells were reported to change their phenotype and transform into other lineages. This article reviews the differentiation of stem cells and classification of transdifferentiation, as well as the advantages, challenges, and prospects of cell transdifferentiation. This review discusses new research directions and the main challenges in the use of transdifferentiation in human cells and molecular replacement therapy. Overall, such knowledge is expected to provide a deep understanding of cell fate and regulation, which can change through differentiation, dedifferentiation, and transdifferentiation, with multiple applications.
Collapse
Affiliation(s)
- Fuping Wang
- Molecular Biology Laboratory, Zhengzhou Normal University, Zhengzhou China
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Runting Li
- Molecular Biology Laboratory, Zhengzhou Normal University, Zhengzhou China
| | - Limeng Zhang
- Molecular Biology Laboratory, Zhengzhou Normal University, Zhengzhou China
| | - Xiaoning Nie
- Molecular Biology Laboratory, Zhengzhou Normal University, Zhengzhou China
| | - Linqing Wang
- Molecular Biology Laboratory, Zhengzhou Normal University, Zhengzhou China
| | - Longxin Chen
- Molecular Biology Laboratory, Zhengzhou Normal University, Zhengzhou China
| |
Collapse
|
4
|
Jackson JT, Nutt SL, McCormack MP. The Haematopoietically-expressed homeobox transcription factor: roles in development, physiology and disease. Front Immunol 2023; 14:1197490. [PMID: 37398663 PMCID: PMC10313424 DOI: 10.3389/fimmu.2023.1197490] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/01/2023] [Indexed: 07/04/2023] Open
Abstract
The Haematopoietically expressed homeobox transcription factor (Hhex) is a transcriptional repressor that is of fundamental importance across species, as evident by its evolutionary conservation spanning fish, amphibians, birds, mice and humans. Indeed, Hhex maintains its vital functions throughout the lifespan of the organism, beginning in the oocyte, through fundamental stages of embryogenesis in the foregut endoderm. The endodermal development driven by Hhex gives rise to endocrine organs such as the pancreas in a process which is likely linked to its role as a risk factor in diabetes and pancreatic disorders. Hhex is also required for the normal development of the bile duct and liver, the latter also importantly being the initial site of haematopoiesis. These haematopoietic origins are governed by Hhex, leading to its crucial later roles in definitive haematopoietic stem cell (HSC) self-renewal, lymphopoiesis and haematological malignancy. Hhex is also necessary for the developing forebrain and thyroid gland, with this reliance on Hhex evident in its role in endocrine disorders later in life including a potential role in Alzheimer's disease. Thus, the roles of Hhex in embryological development throughout evolution appear to be linked to its later roles in a variety of disease processes.
Collapse
Affiliation(s)
- Jacob T. Jackson
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Stephen L. Nutt
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Matthew P. McCormack
- The Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia
- iCamuno Biotherapeutics, Melbourne, VIC, Australia
| |
Collapse
|
5
|
Dumasia NP, Khanna AP, Pethe PS. Retinoic acid signaling is critical for generation of pancreatic progenitors from human embryonic stem cells. Growth Factors 2023; 41:8-19. [PMID: 36373834 DOI: 10.1080/08977194.2022.2144284] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022]
Abstract
Retinoic acid (RA) is essential for gut endoderm development and has been extensively used for in vitro pancreatic differentiation from human pluripotent stem cells. However, the gene regulatory network triggered by RA signaling remains poorly addressed. Also, whether RA signals control histone modifiers such as the Polycomb group proteins during pancreatic specification remains to be explored. Here, we assess the role of RA on pancreas-specific genes during the differentiation of human embryonic stem cells (hESCs). We demonstrate that RA helps cells exit the definitive endoderm stage and proceed toward a pancreatic fate. Inhibition of the RA pathway using the pharmacological inhibitor LE135 impairs the induction of pancreatic endoderm (PE) markers FOXA2, HNF4α, HNF1β, HHEX, and PDX1. We further determine that RA signals alter the expression of epigenetic-associated genes BMI1 and RING1B in the hESC-derived pancreatic progenitors. These findings broaden our understanding of the mechanisms that drive early PE specification.
Collapse
Affiliation(s)
- Niloufer P Dumasia
- Department of Biological Sciences, Sunandan Divatia School of Science, SVKM's NMIMS (Deemed to-be) University, Mumbai, India
| | - Aparna P Khanna
- Department of Biological Sciences, Sunandan Divatia School of Science, SVKM's NMIMS (Deemed to-be) University, Mumbai, India
- Centre for Computational Biology & Translational Research, Amity Institute of Biotechnology (AIB), Amity University, Mumbai, India
| | - Prasad S Pethe
- Symbiosis Centre for Stem Cell Research (SCSCR), Symbiosis International University, Lavale, Pune, India
| |
Collapse
|
6
|
Virdi JK, Pethe P. Soft substrate maintains stemness and pluripotent stem cell-like phenotype of human embryonic stem cells under defined culture conditions. Cytotechnology 2022; 74:479-489. [PMID: 36110151 PMCID: PMC9374852 DOI: 10.1007/s10616-022-00537-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/24/2022] [Indexed: 11/26/2022] Open
Abstract
UNLABELLED Human embryonic stem cells (hESCs) are derived from the inner cell mass (ICM) of the pre-implantation blastocyst. Prior to embryo implantation, the ICM cells are surrounded by trophoblasts which have mechanical stiffness ranging from Pascal (Pa) to kilopascal (kPa). However, under in vitro conditions these cells are cultured on stiff tissue culture treated plastic plates (TCP) which have stiffness of approximately 1 gigapascal (GPa). This obvious dichotomy motivated us to investigate the fate of hESCs cultured on softer substrate, and to probe if the hESCs undergo differentiation or they retain pluripotency on soft substrates. We investigated the expression of pluripotency markers, and lineage-specific markers; we particularly looked at the expression of transcriptional coactivator YAP (Yes-associated protein), an important mediator of extracellular matrix (ECM) mechanical cues and a known downstream transducer of Hippo pathway. Downregulation of YAP has been correlated to the loss of multipotency of human mesenchymal stem cells (hMSCs) and pluripotency in mouse ESCs (mESCs); but we report that hESCs maintain their stemness on soft substrate of varying stiffness. Our findings revealed that on soft substrate hESCs express pluripotency markers and does not undergo substrate-mediated differentiation. Interestingly we show that hESCs maintained basal level of YAP expression for cell survival and proliferation, but YAP expression does not correlate directly with pluripotency in hESCs. To summarize, our results show that hESCs retain their stemness on soft substrate despite downregulation of YAP. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10616-022-00537-z.
Collapse
Affiliation(s)
- Jasmeet Kaur Virdi
- Department of Biological Sciences, Sunandan Divatia School of Science, SVKM’s NMIMS (deemed-to-be) University, Mumbai, Maharashtra 400056 India
| | - Prasad Pethe
- Symbiosis Centre for Stem Cell Research (SCSCR), Symbiosis School of Biological Sciences (SSBS), Symbiosis International University, Pune, Maharashtra 412115 India
| |
Collapse
|
7
|
Suppressive GLI2 fragment enhances liver metastasis in colorectal cancer. Oncotarget 2022; 13:122-135. [PMID: 35047127 PMCID: PMC8763325 DOI: 10.18632/oncotarget.28170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 12/20/2021] [Indexed: 01/05/2023] Open
Abstract
Linoleic acid (LA) has been shown to cause inflammation and promote development of colorectal cancer (CRC). Moreover, many literatures show that LA is associated with cancer metastasis. Metastatic cancer cells have high stemness, suggesting that LA might affect the stemness of cancer cells. In this study, we examined the effect of LA on the hedgehog system, which affects cancer stemness. In CT26 cells, LA treatment induced the expression of sonic hedgehog (Shh); the signal transduction factor, and glioma-associated oncogene homolog (Gli)2, whereas the expression of SRY-box transcription factor (Sox)17 was suppressed. Furthermore, LA reduced GLI2 ubiquitination, resulting in an increase in the N-terminal fragment of GLI2, known as suppressive GLI2, produced by cleavage of GLI2. LA-induced cleaved GLI2 was also detected in Colo320 and HT29 human CRC cells. Knocking down Gli2 abrogated the LA-mediated suppression of Sox17 expression. These results suggest that LA promotes tumor cell stemness by increasing of suppressive GLI2 fragments via GLI2 modification. In mouse liver metastasis models, LA enhanced metastasis with production of the suppressive GLI2 fragments in CT26 and HT29 cells, whereas knockdown of GLI2 abrogated LA-induced metastatic activity. In human CRCs, the cases with liver metastasis showed the suppressive GLI2 fragments. This study provides mechanistic insights into LA-induced stemness in colon cancer cells. This finding suggests that dietary intake of LA might increase the stemness of cancer cells and enhance metastatic activity of the cancer.
Collapse
|
8
|
Pethe P, Noel VS, Kale V. Deterministic role of sonic hedgehog signalling pathway in specification of hemogenic versus endocardiogenic endothelium from differentiated human embryonic stem cells. Cells Dev 2021; 166:203685. [PMID: 33994358 DOI: 10.1016/j.cdev.2021.203685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 04/14/2021] [Accepted: 04/28/2021] [Indexed: 02/07/2023]
Abstract
Embryonic stem cells (ESCs) have been shown to have an ability to form a large number of functional endothelial cells in vitro, but generating organ-specific endothelial cells remains a challenge. Sonic hedgehog (SHH) pathway is one of the crucial developmental pathways that control differentiation of many embryonic cell types such as neuroectodermal, primitive gut tube and developing limb buds; SHH pathway is important for functioning of adult cell of skin, bone, liver as well as it regulates haematopoiesis. Misregulation of SHH pathway leads to cancers such as hepatic, pancreatic, basal cell carcinoma, medulloblastoma, etc. However, its role in differentiation of human ESCs into endothelial cells has not been completely elucidated. Here, we examined the role of SHH signalling pathway in endothelial differentiation of hESCs by growing them in the presence of an SHH agonist (purmorphamine) and an SHH antagonist (SANT-1) for a period of 6 days. Interestingly, we found that activation of SHH pathway led to a higher expression of set of transcription factors such as BRACHYURY, GATA2 and RUNX1, thus favouring hemogenic endothelium; whereas inhibition of SHH pathway led to a reduced expression of set of markers such as RUNX1 and BRACHURY, and an increased expression of set of markers - NFATC1, c-KIT, GATA4, CD31 & CD34, thus favouring endocardiogenic endothelium. The results of this study have revealed the previously unreported deterministic role of SHH pathway in specification of endothelial cells differentiated from human ESCs into hemogenic vs. endocardiogenic lineage; this finding could have major implications for clinical applications.
Collapse
Affiliation(s)
- Prasad Pethe
- Symbiosis Centre for Stem Cell Research (SCSCR), Symbiosis International University (SIU), Pune, India.
| | - Vinnie Sharon Noel
- Symbiosis Centre for Stem Cell Research (SCSCR), Symbiosis International University (SIU), Pune, India.
| | - Vaijayanti Kale
- Symbiosis Centre for Stem Cell Research (SCSCR), Symbiosis International University (SIU), Pune, India.
| |
Collapse
|