1
|
Salka BR, Oerline MK, Yan P, Hsi RS, Crivelli JJ, Asplin JR, Shahinian VB, Hollingsworth JM. Associations of Topiramate and Zonisamide Use With Kidney Stones: A Retrospective Cohort Study. Am J Kidney Dis 2025:S0272-6386(25)00705-X. [PMID: 40023213 DOI: 10.1053/j.ajkd.2024.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 11/25/2024] [Accepted: 12/11/2024] [Indexed: 03/04/2025]
Abstract
RATIONALE & OBJECTIVE Driven by expanding indications, topiramate and zonisamide utilization has increased over time, a trend that may be associated with greater occurrence of kidney stones given the effects of these medications on urine chemistries. We examined the relationship between topiramate and zonisamide use and kidney stone risk. STUDY DESIGN Retrospective cohort study. SETTING & PARTICIPANTS Individuals in Optum's deidentified Clinformatics Data Mart Database (CDM) and Medicare enrollees with at least 1 prescription filled for topiramate or zonisamide between January 1, 2011, and September 30, 2019, and age- and sex-matched controls. EXPOSURE New topiramate or zonisamide use. OUTCOME Symptomatic stone event defined as an emergency department visit, hospitalization, or surgery for kidney stones. ANALYTICAL APPROACH Cox proportional hazards regression. RESULTS Among 1,122,301 study participants, 187,032 filled a prescription for topiramate or zonisamide at some point during the study period. The unadjusted cumulative incidence of symptomatic stone events between 3 months and 3 years after the first filled prescription were 2.9% and 2.0% among users of topiramate or zonisamide versus 1.2% and 1.3% among nonusers in the CDM and Medicare cohorts, respectively (P<0.001 for each comparison). After controlling for covariates, users had a significantly higher hazard than nonusers of experiencing a symptomatic stone event (CDM cohort: HR, 1.58 [95% CI, 1.49-1.68]; Medicare cohort: HR, 1.22 [95% CI, 1.11-1.34]). There was a stronger association with stone risk among younger adults receiving either topiramate or zonisamide and the hazard of a symptomatic stone event increased with higher topiramate doses. LIMITATIONS Potential bias in unmeasured differences between users of topiramate or zonisamide and nonusers. Participants may have been diagnosed with kidney stone disease before the study period. CONCLUSIONS Use of topiramate or zonisamide was associated with an increased hazard of symptomatic stone events. These findings inform the consideration of risks and benefits of these medications. PLAIN-LANGUAGE SUMMARY Topiramate and zonisamide are increasingly prescribed for uses other than seizure prophylaxis. These agents may cause kidney stones. In this retrospective cohort study of adults with either Medicare or commercial health insurance, we assessed the relationship between use of topiramate or zonisamide and kidney stone events requiring clinical intervention. Between 3 months and 3 years after first use of these drugs, stone events occurred more often among users of topiramate or zonisamide than nonusers. Our analysis also demonstrated a stronger association with stone risk among younger adults receiving either topiramate or zonisamide. These findings are consistent with the magnitude of association reported previously in the literature and the association was independent of treatment indication in younger adults.
Collapse
Affiliation(s)
- Bassel R Salka
- School of Medicine, University of Michigan, Ann Arbor, Michigan
| | - Mary K Oerline
- Dow Division of Health Services Research, Department of Urology, Medical School, University of Michigan, Ann Arbor, Michigan
| | - Phyllis Yan
- Dow Division of Health Services Research, Department of Urology, Medical School, University of Michigan, Ann Arbor, Michigan
| | - Ryan S Hsi
- Department of Urology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Joseph J Crivelli
- Department of Urology, Heersink School of Medicine, University of Alabama, Birmingham, Alabama
| | - John R Asplin
- Litholink Corporation, Laboratory Corporation of America Holdings, Itasca, Illinois
| | - Vahakn B Shahinian
- Dow Division of Health Services Research, Department of Urology, Medical School, University of Michigan, Ann Arbor, Michigan; Division of Nephrology, Department of Internal Medicine, Medical School, University of Michigan, Ann Arbor, Michigan
| | - John M Hollingsworth
- Department of Urology, University of Florida College of Medicine, Gainesville, Florida.
| |
Collapse
|
2
|
Chen G, Xu M, Chen Z, Yang F. Clinical applications of small-molecule GABA AR modulators for neurological disorders. Bioorg Chem 2024; 153:107983. [PMID: 39581171 DOI: 10.1016/j.bioorg.2024.107983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/31/2024] [Accepted: 11/17/2024] [Indexed: 11/26/2024]
Abstract
Gamma-aminobutyric acid type A receptor (GABAAR) modulators are crucial in treating neurological and psychiatric disorders, including epilepsy, anxiety, insomnia, and depression. This review examines the synthetic approaches and clinical applications of representative small-molecule GABAAR modulators. Benzodiazepines, such as Diazepam, are well-known positive allosteric modulators (PAMs) that enhance GABAAR function, providing therapeutic effects but also associated with side effects like sedation and dependence. Non-benzodiazepine modulators, including Z-drugs like Zolpidem and Zaleplon, offer improved selectivity for the α1 subunit of GABAAR, reducing some of these side effects. Neurosteroids such as allopregnanolone and its synthetic analogs, including Brexanolone, have emerged as potent GABAAR modulators with applications in conditions like postpartum depression and refractory epilepsy. Advances in molecular biology and pharmacology have facilitated the development of isoform-specific modulators, potentially reducing off-target effects and enhancing therapeutic profiles. Additionally, combining GABAAR modulators with other therapeutic agents has shown promise in enhancing efficacy and minimizing side effects. This review highlights the design strategies, pharmacodynamics, clinical efficacy, and safety profiles of these compounds, emphasizing the opportunities for developing novel GABAAR modulators with improved therapeutic outcomes.
Collapse
Affiliation(s)
- Guangyong Chen
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Meiling Xu
- Department of Rheumatology and Immunology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Zhuo Chen
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China.
| | - Fuwei Yang
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China.
| |
Collapse
|
3
|
Wang Y, Yen S, Ian Shih YY, Lai CW, Chen YL, Chen LT, Chen H, Liao LD. Topiramate suppresses peri-infarct spreading depolarization and improves outcomes in a rat model of photothrombotic stroke. iScience 2024; 27:110033. [PMID: 38947531 PMCID: PMC11214377 DOI: 10.1016/j.isci.2024.110033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/18/2024] [Accepted: 05/16/2024] [Indexed: 07/02/2024] Open
Abstract
Ischemic stroke can cause depolarized brain waves, termed peri-infarct depolarization (PID). Here, we evaluated whether topiramate, a neuroprotective drug used to treat epilepsy and alleviate migraine, has the potential to reduce PID. We employed a rat model of photothrombotic ischemia that can reliably and reproducibly induce PID and developed a combined electrocorticography-laser speckle contrast imaging (ECoG-LSCI) platform to monitor neuronal activity and cerebral blood flow (CBF) simultaneously. Topiramate administration after photothrombotic ischemia did not rescue CBF but significantly restored somatosensory evoked potentials in the forelimb area of the primary somatosensory cortex. Moreover, infarct volume was investigated by 2,3,5-triphenyltetrazolium chloride (TTC) staining, and neuronal survival was evaluated by Nissl staining. Mechanistically, the levels of inflammatory markers, such as ED1 (CD68), Iba-1, and GFAP, decreased significantly after topiramate administration, as did BDNF expression, while the expression of NeuN and Bcl-2/Bax increased, which is indicative of reduced inflammation and improved neuroprotection.
Collapse
Affiliation(s)
- Yuhling Wang
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan
- Department of Electrical Engineering, National United University, NO.2, Lien Da, Nan Shih Li, Miao-Li 36063, Taiwan
| | - Shaoyu Yen
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan
| | - Yen-Yu Ian Shih
- Center for Animal MRI, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Chien-Wen Lai
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan
| | - Yu-Lin Chen
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan
| | - Li-Tzong Chen
- Kaohsiung Medical University Hospital, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Road, Sanmin District, Kaohsiung City 80708, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, No. 35, Keyan Road, Zhunan Township, Miaoli County 350, Taiwan
| | - Hsi Chen
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan
| | - Lun-De Liao
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan
| |
Collapse
|
4
|
Paungarttner J, Quartana M, Patti L, Sklenárová B, Farham F, Jiménez IH, Soylu MG, Vlad IM, Tasdelen S, Mateu T, Marsico O, Reina F, Tischler V, Lampl C. Migraine - a borderland disease to epilepsy: near it but not of it. J Headache Pain 2024; 25:11. [PMID: 38273253 PMCID: PMC10811828 DOI: 10.1186/s10194-024-01719-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND Migraine and epilepsy are two paroxysmal chronic neurological disorders affecting a high number of individuals and being responsible for a high individual and socioeconomic burden. The link between these disorders has been of interest for decades and innovations concerning diagnosing and treatment enable new insights into their relationship. FINDINGS Although appearing to be distinct at first glance, both diseases exhibit a noteworthy comorbidity, shared pathophysiological pathways, and significant overlaps in characteristics like clinical manifestation or prophylactic treatment. This review aims to explore the intricate relationship between these two conditions, shedding light on shared pathophysiological foundations, genetic interdependencies, common and distinct clinical features, clinically overlapping syndromes, and therapeutic similarities. There are several shared pathophysiological mechanisms, like CSD, the likely underlying cause of migraine aura, or neurotransmitters, mainly Glutamate and GABA, which represent important roles in triggering migraine attacks and seizures. The genetic interrelations between the two disorders can be observed by taking a closer look at the group of familial hemiplegic migraines, which are caused by mutations in genes like CACNA1A, ATP1A2, or SCN1A. The intricate relationship is further underlined by the high number of shared clinical features, which can be observed over the entire course of migraine attacks and epileptic seizures. While the variety of the clinical manifestation of an epileptic seizure is naturally higher than that of a migraine attack, a distinction can indeed be difficult in some cases, e.g. in occipital lobe epilepsy. Moreover, triggering factors like sleep deprivation or alcohol consumption play an important role in both diseases. In the period after the seizure or migraine attack, symptoms like speech difficulties, tiredness, and yawning occur. While the actual attack of the disease usually lasts for a limited time, research indicates that individuals suffering from migraine and/or epilepsy are highly affected in their daily life, especially regarding cognitive and social aspects, a burden that is even worsened using antiseizure medication. This medication allows us to reveal further connections, as certain antiepileptics are proven to have beneficial effects on the frequency and severity of migraine and have been used as a preventive drug for both diseases over many years. CONCLUSION Migraine and epilepsy show a high number of similarities in their mechanisms and clinical presentation. A deeper understanding of the intricate relationship will positively advance patient-oriented research and clinical work.
Collapse
Affiliation(s)
| | - Martina Quartana
- Department of Sciences for Health Promotion and Mother-and Childcare "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Lucrezia Patti
- Department of Sciences for Health Promotion and Mother-and Childcare "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Barbora Sklenárová
- St. Anne's University Hospital and Masaryk University, Brno, Czech Republic
| | - Fatemeh Farham
- Headache Department, Iranian Center of Neurological Researchers, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - M Gokcen Soylu
- Department of Neurology, Bakırköy Prof. Dr. Mazhar Osman Mental Health and Neurological Diseases Education and Research Hospital, Istanbul, Turkey
| | - Irina Maria Vlad
- Department of Neurosciences, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- RoNeuro Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Semih Tasdelen
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Teresa Mateu
- Department of Neurology, Vall d'Hebron University Hospital, Barcelona, Spain
- Department of Neurology, Fundació Sanitària Mollet, Mollet del Vallès, Barcelona, Spain
| | - Oreste Marsico
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy
- Regional Epilepsy Centre, Great Metropolitan "Bianchi-Melacrino-Morelli Hospitall", Reggio Calabria, Italy
| | - Federica Reina
- NeuroTeam Life&Science, Spin-off University of Palermo, Palermo, Italy
| | - Viktoria Tischler
- Headache Medical Center Linz, Linz, Austria
- Department of Neurology and Stroke Unit, Konventhospital Barmherzige Brüder Linz, Linz, Austria
| | - Christian Lampl
- Headache Medical Center Linz, Linz, Austria.
- Department of Neurology and Stroke Unit, Konventhospital Barmherzige Brüder Linz, Linz, Austria.
| |
Collapse
|
5
|
Shamabadi A. Topiramate and other kainate receptor antagonists for depression: A systematic review of randomized controlled trials. Neuropsychopharmacol Rep 2022; 42:421-429. [PMID: 35912516 PMCID: PMC9773746 DOI: 10.1002/npr2.12284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/24/2022] [Accepted: 07/04/2022] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Depression is a common disorder that affects patients' quality of life and incurs health system costs. Due to the resistance to treat depression, better understanding of neurophysiology was considered; one of the implications is the glutamatergic system. This study aims to systematically review clinical trials investigating the antidepressant effects of kainate receptor antagonists. METHODS The study protocol was registered in PROSPERO (CRD42021213912). Scopus, ISI, Embase, PubMed, Cochrane Library, Google Scholar, and two trial registries were searched for randomized controlled trials on the effectiveness of topiramate, phenobarbital, and other ten barbiturates in depression. The difference with control groups in terms of changing depressive symptoms was the primary outcome. RESULTS Nine trials were identified, in which 784 patients were studied. The efficacy of thiopental was comparable to that of imipramine, with fewer side effects. When administered with electroconvulsive therapy, it had fewer to similar effects and fewer side effects than ketamine. Both monotherapy and adjunctive therapy with topiramate were effective and tolerable in treating depressed patients. Phenobarbital had therapeutic effects compared to imipramine and amitriptyline with fewer side effects. CONCLUSION Regarding the glutamatergic hypothesis of depression and obtained promising results, further studies of kainate receptor antagonists in high-quality trials are recommended. Given the high prevalence of depression in epileptic patients, more problems with its treatment, and the fact that the studied agents were anticonvulsants, it is recommended that future studies prioritize depressed-epileptic patients.
Collapse
Affiliation(s)
- Ahmad Shamabadi
- School of MedicineTehran University of Medical SciencesTehranIran
- Psychiatric Research Center, Roozbeh Psychiatric HospitalTehran University of Medical SciencesTehranIran
| |
Collapse
|
6
|
Bai YF, Zeng C, Jia M, Xiao B. Molecular mechanisms of topiramate and its clinical value in epilepsy. Seizure 2022; 98:51-56. [DOI: 10.1016/j.seizure.2022.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 10/18/2022] Open
|
7
|
Kabel AM, Ashour AM, Ali DA, Arab HH. The immunomodulatory effects of topiramate on azoxymethane-induced colon carcinogenesis in rats: The role of the inflammatory cascade, vascular endothelial growth factor, AKT/mTOR/MAP kinase signaling and the apoptotic markers. Int Immunopharmacol 2021; 98:107830. [PMID: 34118646 DOI: 10.1016/j.intimp.2021.107830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/08/2021] [Accepted: 05/25/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Colon cancer is a malignant condition that affects the lower gastrointestinal tract and has unfavorable prognosis. Its mechanisms range from enhanced production of reactive oxygen species, inflammatory changes in the colon microenvironment and affection of the apoptotic pathways. Due to the high incidence of resistance of colon cancer to the traditional chemotherapeutic agents, a need for finding safe/effective agents that can attenuate the malignant changes had emerged. OBJECTIVE To investigate the possible immunomodulatory and antitumor effects of topiramate on azoxymethane-induced colon cancer in rats. METHODOLOGY Fifty male Wistar rats were randomized into five equal groups as follows: Control; azoxymethane-induced colon cancer; azoxymethane + methyl cellulose; azoxymethane + topiramate small dose; and azoxymethane + topiramate large dose. The body weight gain, serum carcinoembryonic antigen (CEA), tissue antioxidant status, proinflammatory cytokines, vascular endothelial growth factor (VEGF), Nrf2/HO-1 content, p-AKT, mTOR, p38 MAP kinase, caspase 9, nerve growth factor beta and beclin-1 were measured. Also, parts of the colon had undergone histopathological and immunohistochemical evaluation. KEY FINDINGS Topiramate improved the body weight gain, decreased serum CEA, augmented the antioxidant defenses in the colonic tissues with significant amelioration of the inflammatory changes, decline in tissue VEGF and p-AKT/mTOR/MAP kinase signaling and increased Nrf2/HO-1 content in a dose-dependent manner when compared to rats treated with azoxymethane alone. In addition, topiramate, in a dose-dependent manner, significantly enhanced apoptosis and improved the histopathological picture in comparison to animals treated with azoxymethane alone. CONCLUSION Taking these findings together, topiramate might serve as a new effective adjuvant line of treatment of colon cancer.
Collapse
Affiliation(s)
- Ahmed M Kabel
- Pharmacology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt.
| | - Ahmed M Ashour
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al Qura University, P.O. Box 13578, Makkah 21955, Saudi Arabia
| | - Dina A Ali
- Clinical Pathology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | - Hany H Arab
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| |
Collapse
|
8
|
Linden T, De Jong J, Lu C, Kiri V, Haeffs K, Fröhlich H. An Explainable Multimodal Neural Network Architecture for Predicting Epilepsy Comorbidities Based on Administrative Claims Data. Front Artif Intell 2021; 4:610197. [PMID: 34095818 PMCID: PMC8176093 DOI: 10.3389/frai.2021.610197] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 04/21/2021] [Indexed: 01/16/2023] Open
Abstract
Epilepsy is a complex brain disorder characterized by repetitive seizure events. Epilepsy patients often suffer from various and severe physical and psychological comorbidities (e.g., anxiety, migraine, and stroke). While general comorbidity prevalences and incidences can be estimated from epidemiological data, such an approach does not take into account that actual patient-specific risks can depend on various individual factors, including medication. This motivates to develop a machine learning approach for predicting risks of future comorbidities for individual epilepsy patients. In this work, we use inpatient and outpatient administrative health claims data of around 19,500 U.S. epilepsy patients. We suggest a dedicated multimodal neural network architecture (Deep personalized LOngitudinal convolutional RIsk model-DeepLORI) to predict the time-dependent risk of six common comorbidities of epilepsy patients. We demonstrate superior performance of DeepLORI in a comparison with several existing methods. Moreover, we show that DeepLORI-based predictions can be interpreted on the level of individual patients. Using a game theoretic approach, we identify relevant features in DeepLORI models and demonstrate that model predictions are explainable in light of existing knowledge about the disease. Finally, we validate the model on independent data from around 97,000 patients, showing good generalization and stable prediction performance over time.
Collapse
Affiliation(s)
- Thomas Linden
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Schloss Birlinghoven, Sankt Augustin, Germany
- Bonn-Aachen International Center for Information Technology (B-IT), University of Bonn, Bonn, Germany
- UCB Biosciences GmbH, Monheim, Germany
| | | | - Chao Lu
- UCB Ltd., Raleigh, NC, United States
| | | | | | - Holger Fröhlich
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Schloss Birlinghoven, Sankt Augustin, Germany
- Bonn-Aachen International Center for Information Technology (B-IT), University of Bonn, Bonn, Germany
- UCB Biosciences GmbH, Monheim, Germany
| |
Collapse
|
9
|
Eales JM, Jiang X, Xu X, Saluja S, Akbarov A, Cano-Gamez E, McNulty MT, Finan C, Guo H, Wystrychowski W, Szulinska M, Thomas HB, Pramanik S, Chopade S, Prestes PR, Wise I, Evangelou E, Salehi M, Shakanti Y, Ekholm M, Denniff M, Nazgiewicz A, Eichinger F, Godfrey B, Antczak A, Glyda M, Król R, Eyre S, Brown J, Berzuini C, Bowes J, Caulfield M, Zukowska-Szczechowska E, Zywiec J, Bogdanski P, Kretzler M, Woolf AS, Talavera D, Keavney B, Maffia P, Guzik TJ, O'Keefe RT, Trynka G, Samani NJ, Hingorani A, Sampson MG, Morris AP, Charchar FJ, Tomaszewski M. Uncovering genetic mechanisms of hypertension through multi-omic analysis of the kidney. Nat Genet 2021; 53:630-637. [PMID: 33958779 DOI: 10.1038/s41588-021-00835-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/04/2021] [Indexed: 02/02/2023]
Abstract
The kidney is an organ of key relevance to blood pressure (BP) regulation, hypertension and antihypertensive treatment. However, genetically mediated renal mechanisms underlying susceptibility to hypertension remain poorly understood. We integrated genotype, gene expression, alternative splicing and DNA methylation profiles of up to 430 human kidneys to characterize the effects of BP index variants from genome-wide association studies (GWASs) on renal transcriptome and epigenome. We uncovered kidney targets for 479 (58.3%) BP-GWAS variants and paired 49 BP-GWAS kidney genes with 210 licensed drugs. Our colocalization and Mendelian randomization analyses identified 179 unique kidney genes with evidence of putatively causal effects on BP. Through Mendelian randomization, we also uncovered effects of BP on renal outcomes commonly affecting patients with hypertension. Collectively, our studies identified genetic variants, kidney genes, molecular mechanisms and biological pathways of key relevance to the genetic regulation of BP and inherited susceptibility to hypertension.
Collapse
Affiliation(s)
- James M Eales
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Xiao Jiang
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Xiaoguang Xu
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Sushant Saluja
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Artur Akbarov
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Eddie Cano-Gamez
- Department of Human Genetics, Wellcome Sanger Institute, Cambridge, UK
| | - Michelle T McNulty
- Division of Nephrology, Boston Children's Hospital, Boston, MA, USA
- The Broad Institute, Cambridge, MA, USA
| | - Christopher Finan
- Institute of Cardiovascular Science, University College London, London, UK
| | - Hui Guo
- Centre for Biostatistics, School of Health Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Wojciech Wystrychowski
- Department of General, Vascular and Transplant Surgery, Medical University of Silesia, Katowice, Poland
| | - Monika Szulinska
- Department of Obesity, Metabolic Disorders Treatment and Clinical Dietetics, Karol Marcinkowski University of Medical Sciences, Poznan, Poland
| | - Huw B Thomas
- Division of Evolution and Genomic Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Sanjeev Pramanik
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
- East Lancashire Hospitals NHS Trust, Blackburn, UK
| | - Sandesh Chopade
- Institute of Cardiovascular Science, University College London, London, UK
| | - Priscilla R Prestes
- Health Innovation and Transformation Centre, School of Science, Psychology and Sport, Federation University Australia, Ballarat, Victoria, Australia
| | - Ingrid Wise
- Australian Institute of Tropical Health & Medicine, James Cook University, Cairns, Queensland, Australia
| | - Evangelos Evangelou
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece
| | - Mahan Salehi
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Yusif Shakanti
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Mikael Ekholm
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
- Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Matthew Denniff
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Alicja Nazgiewicz
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Felix Eichinger
- Department of Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Bradley Godfrey
- Department of Urology and Uro-oncology, Karol Marcinkowski University of Medical Sciences, Poznan, Poland
| | - Andrzej Antczak
- Department of Urology and Uro-oncology, Karol Marcinkowski University of Medical Sciences, Poznan, Poland
| | - Maciej Glyda
- Department of Transplantology and General Surgery Poznan, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Robert Król
- Department of General, Vascular and Transplant Surgery, Medical University of Silesia, Katowice, Poland
| | - Stephen Eyre
- Division of Musculoskeletal and Dermatological Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Jason Brown
- Division of Research and Innovation, Manchester University NHS Foundation Trust, Manchester, UK
| | - Carlo Berzuini
- Centre for Biostatistics, School of Health Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - John Bowes
- Division of Musculoskeletal and Dermatological Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Mark Caulfield
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- National Institute for Health Research, Barts Cardiovascular Biomedical Research Centre, Queen Mary University of London, London, UK
| | | | - Joanna Zywiec
- Department of Internal Medicine, Diabetology and Nephrology, Zabrze, Medical University of Silesia, Katowice, Poland
| | - Pawel Bogdanski
- Department of Obesity, Metabolic Disorders Treatment and Clinical Dietetics, Karol Marcinkowski University of Medical Sciences, Poznan, Poland
| | | | - Adrian S Woolf
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Royal Manchester Children's Hospital and Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, Manchester, UK
| | - David Talavera
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Bernard Keavney
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
- Division of Cardiology and Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, Manchester, UK
| | - Pasquale Maffia
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Tomasz J Guzik
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Department of Internal and Agricultural Medicine, Jagiellonian University College of Medicine, Kraków, Poland
| | - Raymond T O'Keefe
- Division of Evolution and Genomic Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Gosia Trynka
- Department of Human Genetics, Wellcome Sanger Institute, Cambridge, UK
- Open Targets, Wellcome Genome Campus, Cambridge, UK
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- National Institute for Health Research, Leicester Biomedical Research Centre, Leicester, UK
| | - Aroon Hingorani
- Institute of Cardiovascular Science, University College London, London, UK
| | - Matthew G Sampson
- Division of Nephrology, Boston Children's Hospital, Boston, MA, USA
- The Broad Institute, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Andrew P Morris
- Division of Musculoskeletal and Dermatological Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
- Department of Biostatistics, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Fadi J Charchar
- Health Innovation and Transformation Centre, School of Science, Psychology and Sport, Federation University Australia, Ballarat, Victoria, Australia
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- Department of Physiology, University of Melbourne, Parkville, Victoria, Australia
| | - Maciej Tomaszewski
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK.
- Manchester Heart Centre and Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, Manchester, UK.
| |
Collapse
|
10
|
Quigg M, Bazil CW, Boly M, Louis ES, Liu J, Ptacek L, Maganti R, Kalume F, Gluckman BJ, Pathmanathan J, Pavlova MK, Buchanan GF. Proceedings of the Sleep and Epilepsy Workshop: Section 1 Decreasing Seizures-Improving Sleep and Seizures, Themes for Future Research. Epilepsy Curr 2021; 21:15357597211004566. [PMID: 33787387 PMCID: PMC8609596 DOI: 10.1177/15357597211004566] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Epileptic seizures, sleep, and circadian timing share bilateral interactions, but concerted work to characterize these interactions and to leverage them to the advantage of patients with epilepsy remains in beginning stages. To further the field, a multidisciplinary group of sleep physicians, epileptologists, circadian timing experts, and others met to outline the state of the art, gaps of knowledge, and suggest ways forward in clinical, translational, and basic research. A multidisciplinary panel of experts discussed these interactions, centered on whether improvements in sleep or circadian rhythms improve decrease seizure frequency. In addition, education about sleep was lacking in among patients, their families, and physicians, and that focus on education was an extremely important "low hanging fruit" to harvest. Improvements in monitoring technology, experimental designs sensitive to the rigor required to dissect sleep versus circadian influences, and clinical trials in seizure reduction with sleep improvements were appropriate.
Collapse
Affiliation(s)
- Mark Quigg
- Department of Neurology, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Neurology and Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | | | - Melanie Boly
- Department of Neurology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | | | - Judy Liu
- Brown University, Providence, RI, USA
| | | | - Rama Maganti
- Department of Neurology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | | | - Bruce J. Gluckman
- Departments of Engineering Science & Mechanics, Neurosurgery, and Biomedical Engineering, Penn State University, University Park, PA, USA
| | | | - Milena K. Pavlova
- Department of Neurology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Gordon F. Buchanan
- Department of Neurology and Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| |
Collapse
|
11
|
Abstract
There is increasing recognition that epilepsy can be associated with a broad spectrum of comorbidities. While epileptic seizures are an essential element of epilepsy in children, there is a spectrum of neurological, mental health and cognitive disorders that add to the disease burden of childhood epilepsy resulting in a decreased quality of life. The most common comorbid conditions in childhood epilepsy include depression, anxiety, autism spectrum disorders, sleep disorders, attention deficits, cognitive impairment, and migraine. While epilepsy can result in comorbidities, many of the comorbidities of childhood have a bi-directional association, with the comorbid condition increasing risk for epilepsy and epilepsy increasing the risk for the comorbid condition. The bidirectional feature of epilepsy and the comorbidities suggest a common underlying pathological basis for both the seizures and comorbid condition. While recognition of the comorbid conditions of pediatric epilepsies is increasing, there has been a lag in the development of effective therapies partly out of concern that drugs used to treat the comorbid conditions could increase seizure susceptibility. There is now some evidence that most drugs used for comorbid conditions are safe and do not lower seizure threshold. Unfortunately, the evidence showing drugs are effective in treating many of the childhood comorbidities of epilepsy is quite limited. There is a great need for randomized, placebo-controlled drug trials for efficacy and safety in the treatment of comorbidities of childhood epilepsy.
Collapse
Affiliation(s)
- Gregory L Holmes
- Department of Neurological Sciences, Larner College of Medicine, University of Vermont, Stafford Hall, 118C, Burlington, VT, 05405, USA.
| |
Collapse
|
12
|
Bonnet U, Wiemann M. Topiramate Decelerates Bicarbonate-Driven Acid-Elimination of Human Neocortical Neurons: Strategic Significance for its Antiepileptic, Antimigraine and Neuroprotective Properties. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 19:264-275. [PMID: 32496992 DOI: 10.2174/1871527319666200604173208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND Mammalian central neurons regulate their intracellular pH (pHi) strongly and even slight pHi-fluctuations can influence inter-/intracellular signaling, synaptic plasticity and excitability. OBJECTIVE For the first time, we investigated topiramate´s (TPM) influence on pHi-behavior of human central neurons representing a promising target for anticonvulsants and antimigraine drugs. METHODS In slice-preparations of tissue resected from the middle temporal gyrus of five adults with intractable temporal lobe epilepsy, BCECF-AM-loaded neocortical pyramidal-cells were investigated by fluorometry. The pHi-regulation was estimated by using the recovery-slope from intracellular acidification after an Ammonium-Prepulse (APP). RESULTS Among 17 pyramidal neurons exposed to 50 μM TPM, seven (41.24%) responded with an altered resting-pHi (7.02±0.12), i.e., acidification of 0.01-0.03 pH-units. The more alkaline the neurons, the greater the TPM-related acidifications (r=0.7, p=0.001, n=17). The recovery from APPacidification was significantly slowed under TPM (p<0.001, n=5). Further experiments using nominal bicarbonate-free (n=2) and chloride-free (n=2) conditions pointed to a modulation of the HCO3 -- driven pHi-regulation by TPM, favoring a stimulation of the passive Cl-/HCO3 --antiporter (CBT) - an acid-loader predominantly in more alkaline neurons. CONCLUSION TPM modulated the bicarbonate-driven pHi-regulation, just as previously described in adult guinea-pig hippocampal neurons. We discussed the significance of the resulting subtle acidifications for beneficial antiepileptic, antimigraine and neuroprotective effects as well as for unwanted cognitive deficits.
Collapse
Affiliation(s)
- Udo Bonnet
- Department of Psychiatry, Psychotherapy, and Psychosomatic Medicine, Evangelisches Krankenhaus Castrop-Rauxel, Academic Teaching Hospital of the University Duisburg-Essen, Castrop-Rauxel, Germany.,Department of Psychiatry and Psychotherapy, Faculty of Medicine, LVR-Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Martin Wiemann
- Institute of Physiology, University of Duisburg-Essen, Essen, Germany.,IBE R&D gGmbH, Institute for Lung Health, D-48149 Munster, Germany
| |
Collapse
|
13
|
Chen G, Chen Y, Xie Y, Huang R, Chen T, Shi P, Zhang Z, Hou Y, Xing W, Wei L. Topiramate for hypoxic ischemic encephalopathy: A systematic review protocol. Medicine (Baltimore) 2020; 99:e18704. [PMID: 32332593 PMCID: PMC7220522 DOI: 10.1097/md.0000000000018704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 12/11/2019] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Hypoxic ischemic encephalopathy (HIE) is brain injury caused by different reasons and the most common diagnosed is neonatal HIE. Most of the existing treatments have their own shortcomings or there are still some unexplained mechanisms in it. Topiramate (TPM) is a new drug for the treatment for seizures in neonates with HIE, but is currently used off-label. Our protocol aims to access the efficiency and safety of TPM for HIE. METHODS AND ANALYSIS Eight databases will be searched by 2 independent researchers for the article on the topic of using TPM as treatment for HIE, including PubMed, the Cochrane Central Register of Controlled Trials (Cochrane Library), Embase, and Web of Science, China National Knowledge Infrastructure (CNKI), Chinese Biomedical Literature Database (CBM), Wang Fang Database and Chinese Science and Technology Periodical database (VIP). The included papers are those published from the established date of the databases to 2019. The therapeutic effects based on the grade of neonatal behavioral neurological assessment will be regarded as the primary outcomes. RevMan V5.3 will be used to compute the data synthesis and carry out meta-analysis. The risk of bias will be appraised by the Cochrane risk of bias tool. Rare ratio for dichotomous outcomes and mean different for continuous data will be expressed with 95% confidence intervals (CI) for analysis. A random effects model or a fixed effects model will be employed, when heterogeneity is found or not. Subgroup analysis and sensitivity analysis will be applied if the heterogeneity is obvious. RESULTS This study will provide the recent evidence of TPM for HIE from reducing seizure acticity. CONCLUSION The conclusion of this study will provide proof to evaluate if TPM is effective and safe in the treatment of HIE.PROSPERO registration number: PROSPERO CRD42018117981.
Collapse
Affiliation(s)
| | - Yijun Chen
- First Affiliated Hospital of Guangzhou Medical University
- National Clinical Research Center for Respiratory Disease
| | - Yaying Xie
- Guangzhou University of Chinese Medicine
| | | | | | - Peiyu Shi
- Guangzhou University of Chinese Medicine
| | | | | | - Wanli Xing
- Guangzhou University of Chinese Medicine
| | - Li Wei
- Department of Pharmacy, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
14
|
El Makawy AI, Mabrouk DM, Ibrahim FM, Ahmed KA. Genotoxic, biochemical and histopathological studies to assessment the topiramate hepatorenal toxicity in mice. Drug Chem Toxicol 2019; 45:103-112. [DOI: 10.1080/01480545.2019.1660364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
| | | | - Faten M. Ibrahim
- Medicinal and Aromatic Plants Research Department, National Research Centre, Giza, Egypt
| | - Kawkab A. Ahmed
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
15
|
Mechanisms Underlying Aggressive Behavior Induced by Antiepileptic Drugs: Focus on Topiramate, Levetiracetam, and Perampanel. Behav Neurol 2018; 2018:2064027. [PMID: 30581496 PMCID: PMC6276511 DOI: 10.1155/2018/2064027] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 10/30/2018] [Indexed: 12/28/2022] Open
Abstract
Antiepileptic drugs (AEDs) are effective against seizures, but their use is often limited by adverse effects, among them psychiatric and behavioral ones including aggressive behavior (AB). Knowledge of the incidence, risk factors, and the underlying mechanisms of AB induced by AEDs may help to facilitate management and reduce the risk of such side effects. The exact incidence of AB as an adverse effect of AEDs is difficult to estimate, but frequencies up to 16% have been reported. Primarily, levetiracetam (LEV), perampanel (PER), and topiramate (TPM), which have diverse mechanisms of action, have been associated with AB. Currently, there is no evidence for a specific pharmacological mechanism solely explaining the increased incidence of AB with LEV, PER, and TPM. Serotonin (5-HT) and GABA, and particularly glutamate (via the AMPA receptor), seem to play key roles. Other mechanisms involve hormones, epigenetics, and “alternative psychosis” and related phenomena. Increased individual susceptibility due to an underlying neurological and/or a mental health disorder may further explain why people with epilepsy are at an increased risk of AB when using AEDs. Remarkably, AB may occur with a delay of weeks or months after start of treatment. Information to patients, relatives, and caregivers, as well as sufficient clinical follow-up, is crucial, and there is a need for further research to understand the complex relationship between AED mechanisms of action and the induction/worsening of AB.
Collapse
|
16
|
Interactions of Mexiletine with Novel Antiepileptic Drugs in the Maximal Electroshock Test in Mice: An Isobolographic Analysis. Neurochem Res 2018; 43:1887-1896. [PMID: 30117096 PMCID: PMC6182375 DOI: 10.1007/s11064-018-2606-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 07/05/2018] [Accepted: 08/02/2018] [Indexed: 12/20/2022]
Abstract
The aim of the study was to evaluate precisely the type of interactions between mexiletine (an antiarrhythmic drug) and four new generation antiepileptic drugs: lamotrigine, oxcarbazepine, topiramate and pregabalin in the maximal electroshock test in mice (MES). The isobolographic analysis was used to assess the nature of interactions between the tested drugs. Total brain concentrations of antiepileptics were also measured to detect possible pharmacokinetic interactions. The results obtained indicated that the mixture of mexiletine and pregabalin at the fixed ratios of 1:1 and 3:1 led to supra-additive interaction in terms of seizure suppression, while the proportion of 1:3 occurred additive. Synergism was also demonstrated for the combination of mexiletine and topiramate in all three proportions. Combinations of mexiletine with lamotrigine and mexiletine with oxcarbazepine were found to be additive. Adverse-effect profiles of mexiletine, antiepileptics and drug combinations were evaluated in the chimney test (motor coordination) and step-through passive-avoidance task (long-term memory). Mexiletine and drug combinations did not impair long-term memory. Moreover, all combinations of mexiletine with lamotrigine, oxcarbazepine and topiramate had no significant effect on motor coordination. However, the results from the chimney test indicated that pregabalin, administered alone at its ED50 dose from the MES-test, significantly impaired motor performance. Similar adverse effects were observed when mexiletine was co-administered with pregabalin at the fixed-dose ratio combinations of 1:1 and 1:3. However, reduction of pregabalin dose at the fixed ratio of 3:1 seems to prevent significant motor impairment. The results may indicate that mexiletine can be considered as an adjunctive drug in antiepileptic treatment, particularly in patients with concomitant cardiac arrhythmia.
Collapse
|
17
|
Dextromethorphan/Quinidine in Migraine Prophylaxis: An Open-label Observational Clinical Study. Clin Neuropharmacol 2018; 41:64-69. [DOI: 10.1097/wnf.0000000000000272] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
18
|
Calabrò RS. Sexual dysfunction and topiramate: What does lie beneath the tip of the iceberg? Epilepsy Behav 2017; 73:281-282. [PMID: 28606689 DOI: 10.1016/j.yebeh.2017.05.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 05/19/2017] [Indexed: 10/19/2022]
|
19
|
Çilliler AE, Güven H, Çomoğlu SS. Epilepsy and headaches: Further evidence of a link. Epilepsy Behav 2017; 70:161-165. [PMID: 28427026 DOI: 10.1016/j.yebeh.2017.03.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 03/01/2017] [Accepted: 03/05/2017] [Indexed: 01/21/2023]
Abstract
OBJECTIVE Epilepsy and primary headaches are two of the most common neurologic conditions that share some common clinical characteristics, and can affect individuals of all age groups around the world. In recent years, the underlying pathophysiologic mechanisms potentially common to both headaches and epileptic seizures have been the subject of scrutiny. The objective of this study was to determine the frequencies and types of headaches in patients with epilepsy, and evaluate any temporal relationship with epileptic seizures. METHOD Demographic data, epilepsy durations, seizure frequencies, seizure types and antiepileptic medications used were captured of 349 patients who were followed up at our epilepsy outpatient clinic. Patients who experienced headaches were grouped based on the type of headaches and on whether their headaches occurred in the preictal, postictal or interictal period. RESULT Three hundred forty-nine patients (190 females, 159 males) were enrolled in the study. The patients' average age was 30.9±13.1 years, and average epilepsy duration was 13.5±10.9 years. The types of epileptic seizures were partial in 19.8% of patients, generalized in 57.9%, and secondary generalized in 20.3% of patients. Some 43.6% of the patients did not experience headaches, and 26.9% had migraine and 17.2% tension-type headaches. Headaches could not be classified in 12.3% of patients. The headaches occurred preictally in 9.6%, postictally in 41.6% and interictally in 8.6% of patients. The ratio of headaches was lower in male patients compared with females, and females experienced migraine-type headaches more frequently compared with males (p=0.006). Migraine-type headaches were less frequent a mong patients who experienced less than one seizure per year, but more frequent (p=0.017) among those who experienced more than one seizure per month, but less than one seizure per week. Migraine-type headaches were significantly more frequent (p=0.015) among patients receiving polytherapy compared with patients receiving monotherapy. CONCLUSION The results of this study suggest that headaches, particularly migraine-type headaches, were frequently experienced by patients with epilepsy, postictal headaches were more common, and the frequency of migraine attacks could be linked with seizure frequency and the type of treatment.
Collapse
Affiliation(s)
- Asli Ece Çilliler
- Dişkapi Yildirim Beyazit Training and Research Hospital Neurology Department, Ankara, Turkey.
| | - Hayat Güven
- Dişkapi Yildirim Beyazit Training and Research Hospital Neurology Department, Ankara, Turkey
| | - Selim Selçuk Çomoğlu
- Dişkapi Yildirim Beyazit Training and Research Hospital Neurology Department, Ankara, Turkey
| |
Collapse
|
20
|
Kingston WS, Schwedt TJ. The Relationship Between Headaches with Epileptic and Non-epileptic Seizures: a Narrative Review. Curr Pain Headache Rep 2017; 21:17. [DOI: 10.1007/s11916-017-0617-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
21
|
Santos PL, Brito RG, Oliveira MA, Quintans JSS, Guimarães AG, Santos MRV, Menezes PP, Serafini MR, Menezes IRA, Coutinho HDM, Araújo AAS, Quintans-Júnior LJ. Docking, characterization and investigation of β-cyclodextrin complexed with citronellal, a monoterpene present in the essential oil of Cymbopogon species, as an anti-hyperalgesic agent in chronic muscle pain model. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2016; 23:948-57. [PMID: 27387403 DOI: 10.1016/j.phymed.2016.06.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 06/04/2016] [Accepted: 06/09/2016] [Indexed: 05/09/2023]
Abstract
BACKGROUND Citronellal (CT) is a monoterpene with antinociceptive acute effect. β-Cyclodextrin (βCD) has enhanced the analgesic effect of various substances. HYPOTHESIS/PURPOSE To evaluate the effect of CT both complexed in β-cyclodextrin (CT-βCD) and non-complexed, in a chronic muscle pain model (CMP) in mice. STUDY DESIGN The complex containing CT in βCD was obtained and characterized in the laboratory. The anti-hyperalgesic effect of CT and CT-βCD was evaluated in a pre-clinical in vivo study in a murine CMP. METHODS The complex was characterized through differential scanning calorimetry, derivative thermogravimetry, moisture determination, infrared spectroscopy and scanning electron microscopy. Male Swiss mice were pre-treated with CT (50mg/kg, po), CT-βCD (50mg/kg, po), vehicle (isotonic saline, po) or standard drug (tramadol4 mg/kg, ip). 60 min after the treatment and then each 1h, the mechanic hyperalgesia was evaluated to obtain the time effect. In addition, the muscle strength using grip strength meter and hyperalgesia were also performed daily, for 7 days. We assessed by immunofluorescence for Fos protein on brains and spinal cords of mice. The involvement of the CT with the glutamatergic system was studied with molecular docking. RESULTS All characterization methods showed the CT-βCD complexation. CT-induced anti-hyperalgesic effect lasted until 6h (p <0.001) while CT-βCD lasted until 8h (p <0.001vs vehicle and p <0.001vs CT from the 6th h). CT-βCD reduced mechanical hyperalgesia on all days of treatment (p <0.05), without changing muscle strength. Periaqueductal gray (p <0.01) and rostroventromedular area (p <0.05) showed significant increase in the Fos protein expression while in the spinal cord, there was a reduction (p <0.001). CT showed favorable energy binding (-5.6 and -6.1) to GluR2-S1S2J protein based in the docking score function. CONCLUSION We can suggest that βCD improved the anti-hyperalgesic effect of CT, and that effect seems to involve the descending pain-inhibitory mechanisms, with a possible interaction of the glutamate receptors, which are considered as promising molecules for the management of chronic pain such as CMP.
Collapse
Affiliation(s)
- Priscila L Santos
- Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Renan G Brito
- Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Marlange A Oliveira
- Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | | | - Adriana G Guimarães
- Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Márcio R V Santos
- Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Paula P Menezes
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Mairim R Serafini
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Irwin R A Menezes
- Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil
| | - Henrique D M Coutinho
- Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil
| | - Adriano A S Araújo
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão, SE, Brazil..
| | | |
Collapse
|