1
|
Bresgen N, Kovacs M, Lahnsteiner A, Felder TK, Rinnerthaler M. The Janus-Faced Role of Lipid Droplets in Aging: Insights from the Cellular Perspective. Biomolecules 2023; 13:912. [PMID: 37371492 PMCID: PMC10301655 DOI: 10.3390/biom13060912] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/22/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
It is widely accepted that nine hallmarks-including mitochondrial dysfunction, epigenetic alterations, and loss of proteostasis-exist that describe the cellular aging process. Adding to this, a well-described cell organelle in the metabolic context, namely, lipid droplets, also accumulates with increasing age, which can be regarded as a further aging-associated process. Independently of their essential role as fat stores, lipid droplets are also able to control cell integrity by mitigating lipotoxic and proteotoxic insults. As we will show in this review, numerous longevity interventions (such as mTOR inhibition) also lead to strong accumulation of lipid droplets in Saccharomyces cerevisiae, Caenorhabditis elegans, Drosophila melanogaster, and mammalian cells, just to name a few examples. In mammals, due to the variety of different cell types and tissues, the role of lipid droplets during the aging process is much more complex. Using selected diseases associated with aging, such as Alzheimer's disease, Parkinson's disease, type II diabetes, and cardiovascular disease, we show that lipid droplets are "Janus"-faced. In an early phase of the disease, lipid droplets mitigate the toxicity of lipid peroxidation and protein aggregates, but in a later phase of the disease, a strong accumulation of lipid droplets can cause problems for cells and tissues.
Collapse
Affiliation(s)
- Nikolaus Bresgen
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, 5020 Salzburg, Austria; (N.B.)
| | - Melanie Kovacs
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, 5020 Salzburg, Austria; (N.B.)
| | - Angelika Lahnsteiner
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, 5020 Salzburg, Austria; (N.B.)
| | - Thomas Klaus Felder
- Department of Laboratory Medicine, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Mark Rinnerthaler
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, 5020 Salzburg, Austria; (N.B.)
| |
Collapse
|
2
|
Aggarwal M, Garg R, Parthasarthy G, Nowacki AS, Padival R, McCullough A, Qazi T, Click B, Rieder F, Cohen BL. Crohn's Disease Is Associated with Liver Fibrosis in Patients with Nonalcoholic Fatty Liver Disease. Dig Dis Sci 2023; 68:1006-1015. [PMID: 35731428 PMCID: PMC10022843 DOI: 10.1007/s10620-022-07562-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 05/09/2022] [Indexed: 02/08/2023]
Abstract
BACKGROUND Chronic inflammation in IBD is postulated to drive NAFLD progression from steatosis to fibrosis. AIMS To study the histopathological spectrum of NAFLD in Crohn disease (CD) and Ulcerative colitis (UC). METHODS Patients with biopsy proven NAFLD at a quaternary center from 2008 to 2018 were included in this retrospective analysis. Inflammatory bowel disease (IBD) diagnosed either clinically and/or endoscopically at the time of liver biopsy. Multivariable regression and propensity score (PS) weighted analysis were conducted. Statistical analysis were performed using SAS statistical software. RESULTS Among 1009 patients with NAFLD a diagnosis of IBD was identified in 50 cases (34 CD and 16 UC). On multivariable analysis; CD was independently associated with significantly higher odds of advanced fibrosis (AF) on liver biopsy (adjusted OR = 4.09, 95% CI = 1.40-11.94) compared to NAFLD patients without IBD. Similar results were obtained with both the overlap PS weighted model (OR = 3.17, 95% CI = 1.55-6.49) and the PS matched model (OR = 3.49, 95% CI = 1.50-8.13). CONCLUSION In a large cohort of patients with histologically well characterized NAFLD, AF was more common in CD patients than NAFLD patients without IBD. These findings must be confirmed in a larger cohort, but suggest CD patients with NAFLD could be at greater risk for liver fibrosis.
Collapse
Affiliation(s)
- Manik Aggarwal
- Department of Internal Medicine, Cleveland Clinic, 9500 Euclid Avenue, A3-208, Cleveland, OH, 44195, USA.
| | - Rajat Garg
- Digestive Disease and Surgery Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | - Amy S Nowacki
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH, USA
| | - Ruthvik Padival
- Gastroenterology and Hepatology, Intermountain Health, Murray, UT, USA
| | - Arthur McCullough
- Digestive Disease and Surgery Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Taha Qazi
- Digestive Disease and Surgery Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Benjamin Click
- Gastroenterology and Hepatology, University of Colorado, Aurora, CO, USA
| | - Florian Rieder
- Digestive Disease and Surgery Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Benjamin L Cohen
- Digestive Disease and Surgery Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
3
|
Liver Steatosis: A Marker of Metabolic Risk in Children. Int J Mol Sci 2022; 23:ijms23094822. [PMID: 35563210 PMCID: PMC9100068 DOI: 10.3390/ijms23094822] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/24/2022] [Accepted: 04/24/2022] [Indexed: 11/16/2022] Open
Abstract
Obesity is one of the greatest health challenges affecting children of all ages and ethnicities. Almost 19% of children and adolescents worldwide are overweight or obese, with an upward trend in the last decades. These reports imply an increased risk of fat accumulation in hepatic cells leading to a series of histological hepatic damages gathered under the acronym NAFLD (Non-Alcoholic Fatty Liver Disease). Due to the complex dynamics underlying this condition, it has been recently renamed as 'Metabolic Dysfunction Associated Fatty Liver Disease (MAFLD)', supporting the hypothesis that hepatic steatosis is a key component of the large group of clinical and laboratory abnormalities of Metabolic Syndrome (MetS). This review aims to share the latest scientific knowledge on MAFLD in children in an attempt to offer novel insights into the complex dynamics underlying this condition, focusing on the novel molecular aspects. Although there is still no treatment with a proven efficacy for this condition, starting from the molecular basis of the disease, MAFLD's therapeutic landscape is rapidly expanding, and different medications seem to act as modifiers of liver steatosis, inflammation, and fibrosis.
Collapse
|
4
|
von Loeffelholz C, Coldewey SM, Birkenfeld AL. A Narrative Review on the Role of AMPK on De Novo Lipogenesis in Non-Alcoholic Fatty Liver Disease: Evidence from Human Studies. Cells 2021; 10:cells10071822. [PMID: 34359991 PMCID: PMC8306246 DOI: 10.3390/cells10071822] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/01/2021] [Accepted: 07/15/2021] [Indexed: 02/06/2023] Open
Abstract
5′AMP-activated protein kinase (AMPK) is known as metabolic sensor in mammalian cells that becomes activated by an increasing adenosine monophosphate (AMP)/adenosine triphosphate (ATP) ratio. The heterotrimeric AMPK protein comprises three subunits, each of which has multiple phosphorylation sites, playing an important role in the regulation of essential molecular pathways. By phosphorylation of downstream proteins and modulation of gene transcription AMPK functions as a master switch of energy homeostasis in tissues with high metabolic turnover, such as the liver, skeletal muscle, and adipose tissue. Regulation of AMPK under conditions of chronic caloric oversupply emerged as substantial research target to get deeper insight into the pathogenesis of non-alcoholic fatty liver disease (NAFLD). Evidence supporting the role of AMPK in NAFLD is mainly derived from preclinical cell culture and animal studies. Dysbalanced de novo lipogenesis has been identified as one of the key processes in NAFLD pathogenesis. Thus, the scope of this review is to provide an integrative overview of evidence, in particular from clinical studies and human samples, on the role of AMPK in the regulation of primarily de novo lipogenesis in human NAFLD.
Collapse
Affiliation(s)
- Christian von Loeffelholz
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, 07747 Jena, Germany;
- Correspondence: ; Tel.: +49-3641-9323-177; Fax: +49-3641-9323-102
| | - Sina M. Coldewey
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, 07747 Jena, Germany;
- Septomics Research Center, Jena University Hospital, 07747 Jena, Germany
- Center for Sepsis Control and Care, Jena University Hospital, 07747 Jena, Germany
| | - Andreas L. Birkenfeld
- Department of Diabetology Endocrinology and Nephrology, University Hospital Tübingen, Eberhard Karls University Tübingen, 72074 Tübingen, Germany;
- Department of Therapy of Diabetes, Institute of Diabetes Research and Metabolic Diseases in the Helmholtz Center Munich, Eberhard Karls University Tübingen, 72074 Tübingen, Germany
- Division of Diabetes and Nutritional Sciences, Rayne Institute, King’s College London, London SE5 9RJ, UK
| |
Collapse
|
5
|
Lupin γ-conglutin protects against cell death induced by oxidative stress and lipotoxicity, but transiently inhibits in vitro insulin secretion by increasing K ATP channel currents. Int J Biol Macromol 2021; 187:76-90. [PMID: 34280449 DOI: 10.1016/j.ijbiomac.2021.07.088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 07/03/2021] [Accepted: 07/13/2021] [Indexed: 02/08/2023]
Abstract
Lupin γ-conglutin beneficially modulates glycemia, but whether it protects against oxidative and lipotoxic damage remains unknown. Here, we studied the effects of γ-conglutin on cell death provoked by hydrogen peroxide and palmitate in HepG2 hepatocytes and insulin-producing MIN6 cells, and if a modulation of mitochondrial potential and reactive oxygen species (ROS) levels was involved. We also investigated how γ-conglutin influences insulin secretion and electrical activity of β-cells. The increased apoptosis of HepG2 cells exposed to hydrogen peroxide was prevented by γ-conglutin, and the viability and ROS content in γ-conglutin-treated cells was similar to that of non-exposed cells. Additionally, γ-conglutin partially protected MIN6 cells against hydrogen peroxide-induced death. This was associated with a marked reduction in ROS. No significant changes were found in the mitochondrial potential of γ-conglutin-treated cells. Besides, we observed a partial protection against lipotoxicity only in hepatocytes. Unexpectedly, we found a transient inhibition of insulin secretion, plasma membrane hyperpolarization, and higher KATP channel currents in β-cells treated with γ-conglutin. Our data show that γ-conglutin protects against cell death induced by oxidative stress or lipotoxicity by decreasing ROS and might also indicate that γ-conglutin promotes a β-cell rest, which could be useful for preventing β-cell exhaustion in chronic hyperglycemia.
Collapse
|
6
|
Zhao J, Hu Y, Peng J. Targeting programmed cell death in metabolic dysfunction-associated fatty liver disease (MAFLD): a promising new therapy. Cell Mol Biol Lett 2021; 26:17. [PMID: 33962586 PMCID: PMC8103580 DOI: 10.1186/s11658-021-00254-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/04/2021] [Indexed: 02/07/2023] Open
Abstract
Most currently recommended therapies for metabolic dysfunction-associated fatty liver disease (MAFLD) involve diet control and exercise therapy. We searched PubMed and compiled the most recent research into possible forms of programmed cell death in MAFLD, including apoptosis, necroptosis, autophagy, pyroptosis and ferroptosis. Here, we summarize the state of knowledge on the signaling mechanisms for each type and, based on their characteristics, discuss how they might be relevant in MAFLD-related pathological mechanisms. Although significant challenges exist in the translation of fundamental science into clinical therapy, this review should provide a theoretical basis for innovative MAFLD clinical treatment plans that target programmed cell death.
Collapse
Affiliation(s)
- Jianan Zhao
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528, Zhangheng Road, Shanghai, China
| | - Yiyang Hu
- Institute of Clinical Pharmacology, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, 528, Zhangheng Road, Shanghai, China.
- Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Pudong District, Shanghai, 201203, China.
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, 528, Zhangheng Road, Shanghai, China.
| | - Jinghua Peng
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528, Zhangheng Road, Shanghai, China.
- Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Pudong District, Shanghai, 201203, China.
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, 528, Zhangheng Road, Shanghai, China.
| |
Collapse
|
7
|
How does hepatic lipid accumulation lead to lipotoxicity in non-alcoholic fatty liver disease? Hepatol Int 2021; 15:21-35. [PMID: 33548031 PMCID: PMC7886759 DOI: 10.1007/s12072-020-10121-2] [Citation(s) in RCA: 215] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 12/10/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD), characterized as excess lipid accumulation in the liver which is not due to alcohol use, has emerged as one of the major health problems around the world. The dysregulated lipid metabolism creates a lipotoxic environment which promotes the development of NAFLD, especially the progression from simple steatosis (NAFL) to non-alcoholic steatohepatitis (NASH). PURPOSEAND AIM This review focuses on the mechanisms of lipid accumulation in the liver, with an emphasis on the metabolic fate of free fatty acids (FFAs) in NAFLD and presents an update on the relevant cellular processes/mechanisms that are involved in lipotoxicity. The changes in the levels of various lipid species that result from the imbalance between lipolysis/lipid uptake/lipogenesis and lipid oxidation/secretion can cause organellar dysfunction, e.g. ER stress, mitochondrial dysfunction, lysosomal dysfunction, JNK activation, secretion of extracellular vesicles (EVs) and aggravate (or be exacerbated by) hypoxia which ultimately lead to cell death. The aim of this review is to provide an overview of how abnormal lipid metabolism leads to lipotoxicity and the cellular mechanisms of lipotoxicity in the context of NAFLD.
Collapse
|
8
|
Wang Y, Guo X, Xu W, Cai J, Zhang Y, Wu C, Li S, Sun Y, Liu W, Tao T. Role of Androgen in Liver Fat Content in Women: Metabolically Advantageous or Disadvantageous? Endocr Pract 2020; 26:1003-1016. [PMID: 33471689 DOI: 10.4158/ep-2019-0407] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 04/29/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Androgens have a controversial effect on liver fat content (LFC) in androgen-excess females and androgen-deficient males. Polycystic ovarian syndrome (PCOS) is often associated with hyperandrogenism and nonalcoholic fatty liver disease. The aim of this study was to explore the association between hyperandrogenemia and increased liver fat content in women with PCOS, independent of other metabolic parameters. METHODS This case series study included 501 women with PCOS and 112 aged-matched controls in the outpatient department of a tertiary hospital. Anthropometric measurements, hepatic and renal function, glucose and lipid metabolism parameters, and sex hormones were examined in these women. LFC was measured by quantitative ultrasonography. RESULTS Women with hyperandrogenism (P<.001), an oligomenorrhoea/anovulation phenotype (P = .0064), and a diagnosis of PCOS (P<.001) had higher LFC. Androgen level is an important factor among the 9 independent risk factors of LFC (P = .0239) and may have a dimorphic impact on LFC. In all women, when the free androgen index (FAI) was less than 41.94, LFC increased with the elevated FAI; when the FAI was greater than 41.94, LFC decreased with the elevated FAI (P<.001). In women with PCOS, receiver operating characteristic curve analysis demonstrated that LFC could at least partially predict impaired glucose regulation, impaired lipid metabolism, and insulin resistance (P<.0001 for all). CONCLUSION Androgen level is associated with LFC in dimorphic directions. LFC may be a predictive factor of insulin resistance, impaired glucose regulation, and impaired lipid metabolism in women with PCOS.
Collapse
Affiliation(s)
- Yuying Wang
- From the Department of Endocrinology and Metabolism, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Xiaojing Guo
- the Department of Health Statistics, Second Military Medical University, Shanghai, China
| | - Wendi Xu
- From the Department of Endocrinology and Metabolism, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jie Cai
- From the Department of Endocrinology and Metabolism, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yi Zhang
- From the Department of Endocrinology and Metabolism, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Chunhua Wu
- the Division of Ultrasonography, Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Shengxian Li
- From the Department of Endocrinology and Metabolism, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yun Sun
- the Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Liu
- From the Department of Endocrinology and Metabolism, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China; the Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China..
| | - Tao Tao
- From the Department of Endocrinology and Metabolism, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.
| |
Collapse
|
9
|
Cigarette smoking differentially regulates inflammatory responses in a mouse model of nonalcoholic steatohepatitis depending on exposure time point. Food Chem Toxicol 2019; 135:110930. [PMID: 31678261 DOI: 10.1016/j.fct.2019.110930] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 10/25/2019] [Accepted: 10/27/2019] [Indexed: 02/07/2023]
Abstract
Cigarette smoke (CS) is a risk factor for the development of nonalcoholic fatty liver disease. However, the role of mainstream CS (MSCS) in the pathogenesis of nonalcoholic steatohepatitis (NASH) remains unclear. During the first (early exposure) or last (late exposure) three weeks of methionine-choline deficient with high fat diet feeding (6 weeks), each diet group was exposed to MSCS (300 or 600 μg/L). Hepatic or serum biochemical analysis showed that MSCS differentially modulated hepatic injury in NASH milieu, depending on exposure time points. Consistently, NASH-related hepatocellular apoptosis and fibrosis were increased in the early exposure group, but decreased in the late exposure group, except for steatosis. Ex vivo experiments showed that CS extract differentially regulated inflammatory responses in co-cultured hepatocytes and macrophages isolated from steatohepatitic livers after 10 days or 3 weeks of diet feeding. Furthermore, CS differentially up- and down-regulated the expression levels of M1/M2 polarization markers and peroxisome proliferator-activated receptor-gamma (PPARγ) in livers (29% and 38%, respectively) or co-cultured macrophages (2 and 2.5 fold, respectively). Collectively, our findings indicate that opposite effects of MSCS on NASH progression are mediated by differential modulation of PPARγ and its-associated M1/M2 polarization in hepatic macrophages, depending on exposure time points.
Collapse
|
10
|
Chen X, Bian M, Jin H, Lian N, Shao J, Zhang F, Zheng S. Dihydroartemisinin attenuates alcoholic fatty liver through regulation of lipin-1 signaling. IUBMB Life 2019; 71:1740-1750. [PMID: 31265202 DOI: 10.1002/iub.2113] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 06/16/2019] [Indexed: 12/17/2022]
Abstract
Alcoholic liver disease (ALD) is generated from excessive alcohol consumption, characterized by hepatic steatosis. Mechanistically, excessive hepatic lipid accumulation was attributed to the aberrant lipin-1 signaling during the development of alcoholic steatosis in rodent species and human. Dihydroartemisinin (DHA) has been recently identified to relieve hepatocytes necrosis and prevent from hepatic steatosis in alcohol-induced liver diseases; however, the role of DHA in ALD has not been elucidated completely. Therefore, this study was aimed to further identify the potential mechanisms of pharmacological effects of DHA on ALD. Results demonstrated that DHA regulated the expression and nucleocytoplasmic shuttling of lipin-1 in mice with chronic ethanol exposure. Results confirmed that the disruption of lipin-1 signaling abolished the suppression of DHA on alcohol-induced hepatic steatosis. Interestingly, DHA also significantly improved liver injury, and inflammation mediated by lipin-1 signaling in chronic alcohol-fed mice. in vivo experiments further consolidated the concept that DHA protected against hepatocyte lipoapoptosis dependent on the regulation of nucleocytoplasmic shuttling of lipin-1 signaling, resulting in attenuated ratio of Lpin1 β/α. Obvious increases in cell apoptosis were observed in alcohol-treated lipin1β-overexpressed mice. Although DHA attenuated cell apoptosis, overexpression of lipin-1β neutralized DHA action. DHA ameliorated activation of endoplasmic reticulum stress through inhibiting activation of JNK and CHOP, which was abrogated by overexpression of lipin-1β. In summary, DHA significantly improved liver injury, steatosis and hepatocyte lipoapoptosis in chronic alcohol-fed mice via regulation of lipin-1 signaling.
Collapse
Affiliation(s)
- Xingran Chen
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Mianli Bian
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Huanhuan Jin
- Department of Pharmacology, School of Pharmacy, Wannan Medical College, Wuhu, China
| | - Naqi Lian
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jiangjuan Shao
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.,Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Feng Zhang
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.,Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Shizhong Zheng
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.,Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
11
|
Kakisaka K, Suzuki Y, Fujiwara Y, Suzuki A, Kanazawa J, Takikawa Y. Caspase-independent hepatocyte death: A result of the decrease of lysophosphatidylcholine acyltransferase 3 in non-alcoholic steatohepatitis. J Gastroenterol Hepatol 2019; 34:1256-1262. [PMID: 30160786 DOI: 10.1111/jgh.14461] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/17/2018] [Accepted: 08/24/2018] [Indexed: 01/14/2023]
Abstract
BACKGROUND AND AIMS Lipotoxicity causes liver inflammation, which leads to non-alcoholic steatohepatitis (NASH). Lysophosphatidylcholine (LPC) is a causal agent of lipotoxicity. Recently, lysophosphatidylcholine acyltransferase (LPCAT) was identified as an enzyme that catalyzes the esterification of LPC, which potentially decreases LPC levels. However, the effect of LPCAT in lipotoxicity of the liver is not fully understood. Our aim was to determine whether LPCAT attenuates lipotoxicity in the liver. METHODS Mice fed a high-fat diet with sucrose (HFDS) or high-fat diet without sucrose, and Huh-7 cells treated with palmitate were used. RESULTS Mice-fed HFDS showed advanced liver fibrosis as compared with mice-fed high-fat diet or normal chow. Lysophosphatidylcholine acyltransferase 3 (LPCAT3) mRNA expression in the liver was significantly decreased in the HFDS liver, and LPC content in the HFDS liver was significantly increased as compared with the other groups. When Huh-7 cells with short hairpin RNA-mediated knockdown of LPCAT3 (shLPCAT3 cells) were treated with palmitate, the intracellular LPC concentration and cell death were significantly higher than those in wild-type Huh-7 cells. Palmitate-induced cell death in shLPCAT3 was attenuated by a combination of receptor-interacting protein kinase 1 inhibitor with pan-caspase inhibitor. In contrast, intracellular LPC and palmitate-induced cell death were significantly lower in LPCAT3-overexpressing Huh-7 cells than in wild-type cells. CONCLUSION Depletion of LPCAT3 in a mouse model of NASH leads to caspase-independent cell death, and LPCAT3 is a potential therapeutic target in NASH.
Collapse
Affiliation(s)
- Keisuke Kakisaka
- Division of Hepatology, Department of Internal Medicine, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Yuji Suzuki
- Division of Hepatology, Department of Internal Medicine, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Yudai Fujiwara
- Division of Hepatology, Department of Internal Medicine, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Akiko Suzuki
- Division of Hepatology, Department of Internal Medicine, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Jo Kanazawa
- Division of Hepatology, Department of Internal Medicine, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Yasuhiro Takikawa
- Division of Hepatology, Department of Internal Medicine, School of Medicine, Iwate Medical University, Morioka, Japan
| |
Collapse
|
12
|
Akazawa Y, Nakashima R, Matsuda K, Okamaoto K, Hirano R, Kawasaki H, Miuma S, Miyaaki H, Malhi H, Abiru S, Itoh M, Kondo H, Fukuoka J, Nakao K, Nakashima M. Detection of DNA damage response in nonalcoholic fatty liver disease via p53-binding protein 1 nuclear expression. Mod Pathol 2019; 32:997-1007. [PMID: 30809000 DOI: 10.1038/s41379-019-0218-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 01/14/2019] [Accepted: 01/15/2019] [Indexed: 01/18/2023]
Abstract
Nonalcoholic fatty liver disease is a major liver disease that leads to cirrhosis and/or hepatocellular carcinoma in a subset of patients. The mechanism underlying disease progression is largely unknown. p53-binding protein 1 (53BP1) is a DNA damage response protein that rapidly localizes at the site of DNA double-strand breaks. In this study, we investigated nuclear 53BP1-positive foci formation as an indicator of DNA double-strand breaks in human nonalcoholic fatty liver disease liver tissues by immunofluorescence microscopy. A total of 52 liver tissue samples, including 43 nonalcoholic fatty liver disease samples and 9 controls, were studied. Our results show that the number of abnormal 53BP1-positive foci in hepatocytes (defined as three or more discrete nuclear foci and/or large foci greater than 1 μM) was significantly increased in nonalcoholic fatty liver disease patients compared to that in controls, both in nonalcoholic fatty liver (p < 0.01) and nonalcoholic steatohepatitis patients (p < 0.01). The number of large foci was significantly increased in the nonalcoholic steatohepatitis cases compared to that in the nonalcoholic fatty liver cases (p < 0.05) and correlated with increased stage of fibrosis. The number of large-foci-expressing hepatocytes was positively correlated with increased age (p < 0.01) and negatively correlated with serum platelet count (p < 0.05). In addition, we performed an in vitro assay using rat hepatocytes treated with the saturated free fatty acid palmitate. Treatment appeared to augment the number of abnormal foci, indicating an induction of double-strand breaks in the hepatocytes through free fatty acid treatment in a caspase-dependent manner. This study demonstrates that 53BP1-positive nuclear foci formation is associated with disease progression in nonalcoholic fatty liver disease patients. Analysis of 53BP1 expression might be a feasible technique to estimate genomic instability in nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Yuko Akazawa
- Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan. .,Department of Pathology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.
| | - Ryoma Nakashima
- Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Katsuya Matsuda
- Department of Tumor and Diagnostic Pathology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Koji Okamaoto
- Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Ran Hirano
- Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hiroko Kawasaki
- Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Satoshi Miuma
- Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hisamitsu Miyaaki
- Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Harmeet Malhi
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Seigo Abiru
- Clinical Research Center, National Hospital Organization, Nagasaki Medical Center, Omura, Japan
| | - Masahiro Itoh
- Clinical Research Center, National Hospital Organization, Nagasaki Medical Center, Omura, Japan
| | - Hisayohi Kondo
- Biostatistics Section, Division of Scientific Data Registry, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Junya Fukuoka
- Department of Pathology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kazuhiko Nakao
- Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Masahiro Nakashima
- Department of Tumor and Diagnostic Pathology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
13
|
The role of hepatic macrophages in nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Lab Anim Res 2018; 34:133-139. [PMID: 30671098 PMCID: PMC6333604 DOI: 10.5625/lar.2018.34.4.133] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 09/28/2018] [Accepted: 10/01/2018] [Indexed: 12/18/2022] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is becoming common chronic liver disease because of the increasing global prevalence of obesity and consequently Nonalcoholic fatty liver disease (NAFLD). However, the mechanism for progression of NAFLD to NASH and then cirrhosis is not completely understood, yet. The triggering of these hepatic diseases is thought from hepatocyte injury caused by over-accumulated lipid toxicity. Injured hepatocytes release damage-associated molecular patterns (DAMPs), which can stimulate the Kupffer cells (KCs), liver-resident macrophages, to release pro-inflammatory cytokines and chemokines, and recruit monocyte-derived macrophages (MDMs). The increased activation of KCs and recruitment of MDMs accelerate the progression of NAFLD to NASH and cirrhosis. Therefore, characterization for activation of hepatic macrophages, both KCs and MDMs, is a baseline to figure out the progression of hepatic diseases. The purpose of this review is to discuss the current understanding of mechanisms of NAFLD and NASH, mainly focusing on characterization and function of hepatic macrophages and suggests the regulators of hepatic macrophages as the therapeutic target in hepatic diseases.
Collapse
|
14
|
Aller R, Fernández-Rodríguez C, Lo Iacono O, Bañares R, Abad J, Carrión JA, García-Monzón C, Caballería J, Berenguer M, Rodríguez-Perálvarez M, Miranda JL, Vilar-Gómez E, Crespo J, García-Cortés M, Reig M, Navarro JM, Gallego R, Genescà J, Arias-Loste MT, Pareja MJ, Albillos A, Muntané J, Jorquera F, Solà E, Hernández-Guerra M, Rojo MÁ, Salmerón J, Caballería L, Diago M, Molina E, Bataller R, Romero-Gómez M. Consensus document. Management of non-alcoholic fatty liver disease (NAFLD). Clinical practice guideline. GASTROENTEROLOGIA Y HEPATOLOGIA 2018; 41:328-349. [PMID: 29631866 DOI: 10.1016/j.gastrohep.2017.12.003] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 09/11/2017] [Accepted: 12/01/2017] [Indexed: 02/07/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the main cause of liver diseases in Spain and the incidence is raising due to the outbreak of type 2 diabetes and obesity. This CPG suggests recommendation about diagnosis, mainly non-invasive biomarkers, and clinical management of this entity. Life-style modifications to achieve weight loss is the main target in the management of NAFLD. Low caloric Mediterranean diet and 200 minutes/week of aerobic exercise are encouraged. In non-responders patients with morbid obesity, bariatric surgery or metabolic endoscopy could be indicated. Pharmacological therapy is indicated in patients with NASH and fibrosis and non-responders to weight loss measures. NAFLD could influence liver transplantation, as a growing indication, the impact of steatosis in the graft viability, de novo NAFLD rate after OLT and a raised cardiovascular risk that modify the management of this entity. The current CPG was the result of the First Spanish NAFLD meeting in Seville.
Collapse
Affiliation(s)
- Rocío Aller
- Servicio de Gastroenterología, Hospital Clínico Universitario de Valladolid. Facultad de Medicina, Universidad de Valladolid. Centro de Investigación de Endocrinología y Nutrición, Facultad de Medicina, Universidad de Valladolid, Valladolid, España
| | - Conrado Fernández-Rodríguez
- Servicio de Gastroenterología, Hospital Universitario Fundación Alcorcón. Facultad de Medicina, Universidad Rey Juan Carlos, Alcorcón, Madrid, España
| | - Oreste Lo Iacono
- Servicio de Aparato Digestivo, Hospital del Tajo, Aranjuez, Madrid, España
| | - Rafael Bañares
- Servicio de Gastroenterología y Hepatología, Hospital Gregorio Marañón, Madrid, España
| | - Javier Abad
- Servicio de Gastroenterología y Hepatología, Hospital Puerta de Hierro, Madrid, España
| | | | | | - Joan Caballería
- Unidad de Hepatología, Hospital Clínic, IDIBAPS, CIBERehd, Barcelona, España
| | - Marina Berenguer
- Servicio de Medicina Digestiva, Hospital La Fe, Valencia, España
| | | | - José López Miranda
- Unidad de Trasplante Hepático, UGC de Aparato Digestivo, Hospital Reina Sofía, Córdoba, España
| | - Eduardo Vilar-Gómez
- UGC Aparato Digestivo, CIBERehd, Instituto de Biomedicina de Sevilla. Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Sevilla, España
| | - Javier Crespo
- Servicio Aparato Digestivo, Hospital Universitario Marqués de Valdecilla, Universidad de Cantabria. CIBERehd. Instituto de Investigación Valdecilla (IDIVAL), Santander, España
| | | | - María Reig
- Unidad de Hepatología, Hospital Clínic, IDIBAPS, CIBERehd, Barcelona, España
| | - José María Navarro
- Unidad de Hepatología, Servicio de Digestivo, Hospital Costa del Sol, Marbella, Málaga, España
| | - Rocío Gallego
- UGC Aparato Digestivo, CIBERehd, Instituto de Biomedicina de Sevilla. Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Sevilla, España
| | - Joan Genescà
- Servicio de Medicina Interna-Hepatología, Hospital Universitario Vall d'Hebron, Institut de Recerca Vall d'Hebron (VHIR), Universitat Autònoma de Barcelona, CIBERehd , Barcelona, España
| | - María Teresa Arias-Loste
- Servicio Aparato Digestivo, Hospital Universitario Marqués de Valdecilla, Universidad de Cantabria. CIBERehd. Instituto de Investigación Valdecilla (IDIVAL), Santander, España
| | | | - Agustín Albillos
- Servicio de Gastroenterología y Hepatología, Hospital Universitario Ramón y Cajal, Universidad de Alcalá, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS). CIBERehd, Madrid, España
| | - Jordi Muntané
- UGC de Cirugía General y Aparato Digestivo, Hospital Universitario Virgen del Rocío/Instituto de Biomedicina de Sevilla/CSIC/Universidad de Sevilla. CIBERehd, Sevilla, España
| | - Francisco Jorquera
- Servicio de Aparato Digestivo, Complejo Asistencial Universitario de León, IBIOMED y CIBERehd, León, España
| | - Elsa Solà
- Unidad de Hepatología, Hospital Clínic, IDIBAPS, CIBERehd, Barcelona, España
| | | | - Miguel Ángel Rojo
- Servicio de Gastroenterología, Hospital Clínico Universitario de Valladolid. Facultad de Medicina, Universidad de Valladolid. Centro de Investigación de Endocrinología y Nutrición, Facultad de Medicina, Universidad de Valladolid, Valladolid, España
| | - Javier Salmerón
- UGC de Aparato Digestivo, Hospital San Cecilio, Granada, España
| | - Llorenc Caballería
- Unidad de Apoyo a la Investigación de la Atención Primaria en la Metropolitana Norte, Barcelona, España
| | - Moisés Diago
- Servicio de Aparato Digestivo, Hospital General de Valencia, Valencia, España
| | - Esther Molina
- Unidad de Hepatología, Servicio de Aparato Digestivo, Hospital Clínico-Xerencia de Xestión Integrada de Santiago de Compostela, Santiago de Compostela, La Coruña, España
| | - Ramón Bataller
- Liver Unit, University of Pittsburg Medical Center, Pittsburg, Pennsylvania, Estados Unidos
| | - Manuel Romero-Gómez
- UGC Aparato Digestivo, CIBERehd, Instituto de Biomedicina de Sevilla. Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Sevilla, España.
| |
Collapse
|
15
|
Kim KH, Lee MS. Pathogenesis of Nonalcoholic Steatohepatitis and Hormone-Based Therapeutic Approaches. Front Endocrinol (Lausanne) 2018; 9:485. [PMID: 30197624 PMCID: PMC6117414 DOI: 10.3389/fendo.2018.00485] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/06/2018] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is an emerging global health problem and a potential risk factor for type 2 diabetes, cardiovascular disease, and chronic kidney disease. Nonalcoholic steatohepatitis (NASH), an advanced form of NAFLD, is a predisposing factor for development of cirrhosis and hepatocellular carcinoma. The increasing prevalence of NASH emphasizes the need for novel therapeutic approaches. Although therapeutic drugs against NASH are not yet available, fundamental insights into the pathogenesis of NASH have been made during the past few decades. Multiple therapeutic strategies have been developed and are currently being explored in clinical trials or preclinical testing. The pathogenesis of NASH involves multiple intracellular/extracellular events in various cell types in the liver or crosstalk events between the liver and other organs. Here, we review current findings and knowledge regarding the pathogenesis of NASH, focusing on the most recent advances. We also highlight hormone-based therapeutic approaches for treatment of NASH.
Collapse
Affiliation(s)
- Kook Hwan Kim
- Severance Biomedical Research Institute, Yonsei University College of Medicine, Seoul, South Korea
- *Correspondence: Kook Hwan Kim ;
| | - Myung-Shik Lee
- Severance Biomedical Research Institute, Yonsei University College of Medicine, Seoul, South Korea
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
- Myung-Shik Lee
| |
Collapse
|
16
|
Dihydroartemisinin inhibits ER stress-mediated mitochondrial pathway to attenuate hepatocyte lipoapoptosis via blocking the activation of the PI3K/Akt pathway. Biomed Pharmacother 2018; 97:975-984. [DOI: 10.1016/j.biopha.2017.11.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 11/03/2017] [Accepted: 11/03/2017] [Indexed: 12/19/2022] Open
|
17
|
Choi N, Kim JW, Jeong H, Shin DG, Seo JH, Kim JH, Lim CW, Han KM, Kim B. Fermented ginseng, GBCK25, ameliorates steatosis and inflammation in nonalcoholic steatohepatitis model. J Ginseng Res 2017; 43:196-208. [PMID: 30962734 PMCID: PMC6437395 DOI: 10.1016/j.jgr.2017.10.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/27/2017] [Accepted: 10/13/2017] [Indexed: 12/11/2022] Open
Abstract
Background Nonalcoholic steatohepatitis (NASH) is one of the chronic inflammatory liver diseases and a leading cause of advanced liver fibrosis, cirrhosis, and hepatocellular carcinoma. The main purpose of this study was to clarify the effects of GBCK25 fermented by Saccharomyces servazzii GB-07 and pectinase, on NASH severity in mice. Methods Six-wk-old male mice were fed either a normal diet (ND) or a Western diet (WD) for 12 wks to induce NASH. Each group was orally administered with vehicle or GBCK25 once daily at a dose of 10 mg/kg, 20 mg/kg, 100 mg/kg, 200 mg/kg, or 400 mg/kg during that time. The effects of GBCK25 on cellular damage and inflammation were determined by in vitro experiments. Results Histopathologic analysis and hepatic/serum biochemical levels revealed that WD-fed mice showed severe steatosis and liver injury compared to ND-fed mice. Such lesions were significantly decreased in the livers of WD-fed mice with GBCK25 administration. Consistently, mRNA expression levels of NASH-related inflammatory-, fibrogenic-, and lipid metabolism-related genes were decreased in the livers of WD-fed mice administered with GBCK25 compared to WD-fed mice. Western blot analysis revealed decreased protein levels of cytochrome P450 2E1 (CYP2E1) with concomitantly reduced activation of c-Jun N-terminal kinase (JNK) in the livers of WD-fed mice administered with GBCK25. Also, decreased cellular damage and inflammation were observed in alpha mouse liver 12 (AML12) cells and RAW264.7 cells, respectively. Conclusion Administration of GBCK25 ameliorates NASH severity through the modulation of CYP2E1 and its associated JNK-mediated cellular damage. GBCK25 could be a potentially effective prophylactic strategy to prevent metabolic diseases including NASH.
Collapse
Affiliation(s)
- Naeun Choi
- Biosafety Research Institute and Laboratory of Pathology (BK21 Plus Program), College of Veterinary Medicine, Chonbuk National University, Iksan, Republic of Korea
| | - Jong Won Kim
- Biosafety Research Institute and Laboratory of Pathology (BK21 Plus Program), College of Veterinary Medicine, Chonbuk National University, Iksan, Republic of Korea
| | - Hyeneui Jeong
- Biosafety Research Institute and Laboratory of Pathology (BK21 Plus Program), College of Veterinary Medicine, Chonbuk National University, Iksan, Republic of Korea
| | - Dong Gue Shin
- Research & Development Center of GENERAL BIO Co., Ltd, Namwon City, Jeollabuk-Do, Republic of Korea
| | - Jeong Hun Seo
- Research & Development Center of GENERAL BIO Co., Ltd, Namwon City, Jeollabuk-Do, Republic of Korea
| | - Jong Hoon Kim
- Biosafety Research Institute and Laboratory of Pathology (BK21 Plus Program), College of Veterinary Medicine, Chonbuk National University, Iksan, Republic of Korea
| | - Chae Woong Lim
- Biosafety Research Institute and Laboratory of Pathology (BK21 Plus Program), College of Veterinary Medicine, Chonbuk National University, Iksan, Republic of Korea
| | - Kang Min Han
- Department of Pathology, Dongguk University Ilsan Hospital, Goyang, Republic of Korea
| | - Bumseok Kim
- Biosafety Research Institute and Laboratory of Pathology (BK21 Plus Program), College of Veterinary Medicine, Chonbuk National University, Iksan, Republic of Korea
| |
Collapse
|
18
|
Takaki H, Akazawa Y, Kido Y, Morishita M, Honda T, Shibata H, Miuma S, Miyaaki H, Taura N, Kondo H, Nakao K. Hepatitis C Virus Infection Increases c-Jun N-Terminal Kinase (JNK) Phosphorylation and Accentuates Hepatocyte Lipoapoptosis. Med Sci Monit 2017; 23:4526-4532. [PMID: 28931802 PMCID: PMC5621789 DOI: 10.12659/msm.903210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Background Hepatitis C virus (HCV) infection and metabolic diseases including nonalcoholic steatohepatitis (NASH) exhibit a complex interplay. Although free fatty acid-mediated apoptosis is a prominent feature of NASH, the impact of HCV infection on hepatocyte lipotoxicity has remained largely unexplored. The study aimed at identifying whether infection by HCV affected the apoptotic pathway in hepatocytes during fatty acid assault. Material/Methods OR6 cells, which are derived from human hepatocellular carcinoma Huh-7 cells and harbor a full-length HCV RNA genome replication system, were treated with palmitate. Apoptosis was examined by 4′,6-diamidino-2-phenylindole staining. Activation and expression of JNK, Bim, cIAP-1, and Mcl-1 were examined by immunoblotting. mRNA expression of CHOP, a major player in endoplasmic reticulum stress-mediated apoptosis, was assessed by real-time PCR. Results Palmitate-induced hepatocyte apoptosis was significantly enhanced in OR6 cells compared to cured cells, in which the HCV genome had been eradicated by treatment with interferon-α. Although basal expression of CHOP mRNA was enhanced in OR6 cells compared to cured cells, it was similarly upregulated in both cell lines following palmitate treatment. Notably, palmitate-induced JNK phosphorylation was accentuated in OR6 cells compared to cured cells. Inhibition of JNK with SP600125 attenuated palmitate-induced apoptosis. Palmitate-mediated upregulation of BH3-only protein Bim, which acts downstream of JNK, was also enhanced in OR6 cells compared to cured cells. In contrast, Mcl-1 and cIAP-1 were equally reduced in OR6 cells and cured cells following palmitate treatment. Conclusions These findings suggest that during lipoapoptosis, HCV infection may enhance hepatocyte toxicity by increasing JNK phosphorylation.
Collapse
Affiliation(s)
- Hiroko Takaki
- Department of Gastroenterology and Hepatology, Nagasaki University Hospital, Nagasaki City, Nagasaki, Japan
| | - Yuko Akazawa
- Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki City, Nagasaki, Japan.,Department of Pathology, Nagasaki University Hospital, Nagasaki City, Nagasaki, Japan
| | - Youko Kido
- Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki City, Nagasaki, Japan
| | - Mami Morishita
- Department of Gastroenterology and Hepatology, Nagasaki University Hospital, Nagasaki City, Nagasaki, Japan
| | - Takuya Honda
- Department of Gastroenterology and Hepatology, Nagasaki University Hospital, Nagasaki City, Nagasaki, Japan
| | - Hidetaka Shibata
- Department of Gastroenterology and Hepatology, Nagasaki University Hospital, Nagasaki City, Nagasaki, Japan
| | - Satoshi Miuma
- Department of Gastroenterology and Hepatology, Nagasaki University Hospital, Nagasaki City, Nagasaki, Japan
| | - Hisamitsu Miyaaki
- Department of Gastroenterology and Hepatology, Nagasaki University Hospital, Nagasaki City, Nagasaki, Japan
| | - Naota Taura
- Department of Gastroenterology and Hepatology, Nagasaki University Hospital, Nagasaki City, Nagasaki, Japan
| | - Hisayoshi Kondo
- Biostatistics Section, Division of Scientific Data Registry, Department of Radioisotope Medicine, Atomic Bomb Disease Institute, Nagasaki City, Nagasaki, Japan
| | - Kazuhiko Nakao
- Department of Gastroenterology and Hepatology, Nagasaki University Hospital, Nagasaki City, Nagasaki, Japan
| |
Collapse
|
19
|
Insulin resistance promotes Lysyl Oxidase Like 2 induction and fibrosis accumulation in non-alcoholic fatty liver disease. Clin Sci (Lond) 2017; 131:1301-1315. [PMID: 28468951 DOI: 10.1042/cs20170175] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 04/10/2017] [Accepted: 05/02/2017] [Indexed: 12/12/2022]
Abstract
In patients with non-alcoholic fatty liver disease (NAFLD), insulin resistance (IR) associates with fibrosis progression independently of the hepatic inflammation, but the mechanisms are still unclear. We modeled the independent contribution of inflammation (non-alcoholic steatohepatitis: NASH) by exploiting the methionine-choline deficient (MCD) diet, and that of IR by insulin receptor (InsR) haploinsufficiency (InsR+/-) in the pathogenesis of liver fibrosis in C57BL/6 mice. We confirmed the study findings in 96 patients with NAFLD. InsR+/- enhanced hepatic fat content and impaired hepatic insulin signaling leading to Forkhead box protein O1 (FoxO1) accumulation in MCD-fed mice. Remarkably, despite reduced inflammation and hampered transdifferentiation of hepatic stellate cells (HSCs), InsR+/- promoted hepatic fibrosis accumulation, which correlated with the induction of the Lysyl Oxidase Like 2 (Loxl2), involved in matrix stabilization. Loxl2 up-regulation was not a cell autonomous property of insulin resistant HSCs, but was dependent on microparticles (MPs) released specifically by insulin resistant hepatocytes (HEPs) exposed to fatty acids. The mechanism entailed FoxO1 up-regulation, as FoxO1 silencing normalized Loxl2 expression reversing fibrosis in InsR+/- MCD-fed mice. Loxl2 up-regulation was similarly detected during IR induced by obesity, but not by lipogenic stimuli (fructose feeding). Most importantly, LOXL2 up-regulation was observed in NAFLD patients with type 2 diabetes (T2D) and LOXL2 hepatic and circulating levels correlated with histological fibrosis progression. IR favors fibrosis deposition independently of the classic 'inflammation - HSC transdifferentiation' pathway. The mechanism entails a cross-talk between enhanced lipotoxicity in insulin resistant HEPs and Loxl2 production by HSCs, which was confirmed in patients with diabetes, thereby facilitating extracellular matrix (ECM) stabilization.
Collapse
|
20
|
Mukai T, Egawa M, Takeuchi T, Yamashita H, Kusudo T. Silencing of FABP1 ameliorates hepatic steatosis, inflammation, and oxidative stress in mice with nonalcoholic fatty liver disease. FEBS Open Bio 2017; 7:1009-1016. [PMID: 28680813 PMCID: PMC5494302 DOI: 10.1002/2211-5463.12240] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 04/22/2017] [Accepted: 05/02/2017] [Indexed: 12/21/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is increasing in prevalence worldwide and has been identified as a risk factor for cirrhosis and hepatocellular carcinoma. However, there is no effective pharmacologic treatment for NAFLD. FABP1 is a liver‐specific fatty acid‐binding protein (FABP) that plays important roles in intracellular lipid metabolism in the liver. We investigated the effect of repression of FABP1 expression on NAFLD, using adenovirus‐mediated silencing of FABP1. FABP1 knockdown in the liver decreased the liver weight and hepatic triglyceride (TG) accumulation. The expression of inflammatory and oxidative stress markers in the liver was also reduced. The level of thiobarbituric acid‐reactive substances, a marker of lipid peroxidation, in the liver of FABP1 knockdown mice was significantly decreased. These results suggest that FABP1 reduction in the liver is an effective approach against NAFLD.
Collapse
Affiliation(s)
- Takako Mukai
- Faculty of Human Sciences Tezukayama Gakuin University Sakai Japan
| | - Miki Egawa
- Department of Biomedical Sciences College of Life and Health Sciences Chubu University Kasugai Japan
| | - Tamaki Takeuchi
- Department of Biomedical Sciences College of Life and Health Sciences Chubu University Kasugai Japan
| | - Hitoshi Yamashita
- Department of Biomedical Sciences College of Life and Health Sciences Chubu University Kasugai Japan
| | - Tatsuya Kusudo
- Faculty of Human Sciences Tezukayama Gakuin University Sakai Japan.,Department of Biomedical Sciences College of Life and Health Sciences Chubu University Kasugai Japan
| |
Collapse
|