1
|
Roberts LB, Kelly AM, Hepworth MR. There's no place like home: How local tissue microenvironments shape the function of innate lymphoid cells. Mucosal Immunol 2025; 18:279-289. [PMID: 39900201 DOI: 10.1016/j.mucimm.2025.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/16/2025] [Accepted: 01/30/2025] [Indexed: 02/05/2025]
Abstract
Innate lymphoid cells (ILC) have emerged as critical immune effectors with key roles in orchestrating the wider immune response. While ILC are relatively rare cells they are found enriched within discrete microenvironments, predominantly within barrier tissues. An emerging body of evidence implicates complex and multi-layered interactions between cell types, tissue structure and the external environment as key determinants of ILC function within these niches. In this review we will discuss the specific components that constitute ILC-associated microenvironments and consider how they act to determine health and disease. The development of holistic, integrated models of ILC function within complex tissue environments will inform new understanding of the contextual cues and mechanisms that determine the protective versus disease-causing roles of this immune cell family.
Collapse
Affiliation(s)
- Luke B Roberts
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester M13 9PL United Kingdom; Lydia Becker Institute of Immunology and Inflammation, University of Manchester, United Kingdom
| | - Alanna M Kelly
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester M13 9PL United Kingdom; Lydia Becker Institute of Immunology and Inflammation, University of Manchester, United Kingdom
| | - Matthew R Hepworth
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester M13 9PL United Kingdom; Lydia Becker Institute of Immunology and Inflammation, University of Manchester, United Kingdom.
| |
Collapse
|
2
|
Morabito M, Thibodot P, Gigandet A, Compagnon P, Toso C, Berishvili E, Lacotte S, Peloso A. Liver Extracellular Matrix in Colorectal Liver Metastasis. Cancers (Basel) 2025; 17:953. [PMID: 40149289 PMCID: PMC11939972 DOI: 10.3390/cancers17060953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/06/2025] [Accepted: 03/08/2025] [Indexed: 03/29/2025] Open
Abstract
The liver is the most common site of metastasis of colorectal cancer (CRC), and colorectal liver metastasis is one of the major causes of CRC-related deaths worldwide. The tumor microenvironment, particularly the extracellular matrix (ECM), plays a critical role in CRC metastasis and chemoresistance. Based on findings from clinical and basic research, this review attempts to offer a complete understanding of the role of the ECM in colorectal liver metastasis and to suggest potential ways for therapeutic intervention. First, the ECMs' role in regulating cancer cell fate is explored. We then discuss the hepatic ECM fingerprint and its influence on the metastatic behavior of CRC cells, highlighting key molecular interactions that promote metastasis. In addition, we examine how changes in the ECM within the metastatic niche contribute to chemoresistance, focusing on ECM remodeling by ECM stiffening and the activation of specific signaling pathways. Understanding these mechanisms is crucial for the development of novel strategies to overcome metastasis and improve outcomes for CRC patients.
Collapse
Affiliation(s)
- Marika Morabito
- General, Emergency and Transplant Surgery Department, ASST Settelaghi, University Hospital and Faculty of Medicine of Insubria, 21100 Varese, Italy
| | - Pauline Thibodot
- Hepato-Biliary Center, Paul-Brousse Hospital, Assistance Publique-Hôpitaux de Paris, 94800 Villejuif, France
| | - Anthony Gigandet
- School of Medecine, Faculty of Medecine, University of Geneva, 1211 Geneva, Switzerland
| | - Philippe Compagnon
- Division of Transplantation, Department of Surgery, Geneva University Hospitals and Faculty of Medicine, 1205 Geneva, Switzerland;
| | - Christian Toso
- Division of Abdominal Surgery and Transplantation, Department of Surgery, Geneva University Hospitals and Faculty of Medicine, 1205 Geneva, Switzerland
| | - Ekaterine Berishvili
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, 1211 Geneva, Switzerland;
| | - Stéphanie Lacotte
- Hepatology and Transplantation Laboratory, Department of Surgery, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland;
| | - Andrea Peloso
- Hepato-Biliary Center, Paul-Brousse Hospital, Assistance Publique-Hôpitaux de Paris, 94800 Villejuif, France
- Division of Transplantation, Department of Surgery, Geneva University Hospitals and Faculty of Medicine, 1205 Geneva, Switzerland;
- Division of Abdominal Surgery and Transplantation, Department of Surgery, Geneva University Hospitals and Faculty of Medicine, 1205 Geneva, Switzerland
| |
Collapse
|
3
|
Anand S, Ravindra Bhoge P, Kikkeri R. Amphiphilic Glycoprobes for Cell Surface Engineering and Drug Delivery. Methods Mol Biol 2025; 2926:157-173. [PMID: 40266524 DOI: 10.1007/978-1-0716-4542-0_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Amphiphilic glycopeptides and glycopolymers have been characterized as potential glycocalyx engineering probes to regulate growth factors mediated stem cell differentiation and neural plasticity. Here, we describe a rational and facile method to synthesize fluorescent tagged amphiphilic multivalent glycoprobes using solid-phase peptide synthesizer and copper-free click chemistry. As a prototype, we report the synthesis of fluorescently tagged penta-valent sulfated L-iduronic acid glycopeptide for cell surface engineering and imaging.
Collapse
Affiliation(s)
- Saurabh Anand
- Indian Institute of Science Education and Research, Pune, India
| | | | | |
Collapse
|
4
|
López-Catalina A, Reverter A, Alexandre PA, Nguyen LT, González-Recio O. Stress-induced epigenetic effects driven by maternal lactation in dairy cattle: a comethylation network approach. Epigenetics 2024; 19:2381856. [PMID: 39044410 PMCID: PMC11271077 DOI: 10.1080/15592294.2024.2381856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/14/2024] [Indexed: 07/25/2024] Open
Abstract
Epigenetic marks do not follow the Mendelian laws of inheritance. The environment can alter the epigenotype of an individual when exposed to different external stressors. In lactating cows, the first stages of gestation overlap with the lactation peak, creating a negative energy balance that is difficult to overcome with diet. This negative energy balance could affect early embryo development that must compete with the mammary tissue for nutrients. We hypothesize that the methylation profiles of calves born to nonlactating heifers are different from those of calves born to lactating cows. We found 50,277 differentially methylated cytosines and 2,281 differentially methylated regions between these two groups of animals. A comethylation network was constructed to study the correlation between the phenotypes of the mothers and the epigenome of the calves, revealing 265 regions associated with the phenotypes. Our study revealed the presence of DMCs and DMRs in calves gestated by heifers and lactating cows, which were linked to the dam's lactation and the calves' ICAP and milk EBV. Gene-specific analysis highlighted associations with vasculature and organ morphogenesis and cell communication and signalling. These finding support the hypothesis that calves gestated by nonlactating mothers have a different methylation profile than those gestated by lactating cows.
Collapse
Affiliation(s)
- Adrián López-Catalina
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), CSIC, Crta. de la Coruña km 7.5, Madrid, Spain
- Departamento de Producción Agraria, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, Madrid, Spain
- CSIRO Agriculture & Food, Queensland Bioscience Precinct, Brisbane, Queensland, Australia
| | - Antonio Reverter
- CSIRO Agriculture & Food, Queensland Bioscience Precinct, Brisbane, Queensland, Australia
| | - Pamela A. Alexandre
- CSIRO Agriculture & Food, Queensland Bioscience Precinct, Brisbane, Queensland, Australia
| | - Loan T. Nguyen
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St Lucia, QLD, Australia
| | - Oscar González-Recio
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), CSIC, Crta. de la Coruña km 7.5, Madrid, Spain
| |
Collapse
|
5
|
Grandhi TSP, Mebrahtu M, Musso R, Fullman A, Nifong B, Wisdom K, Roh TT, Sender M, Poore D, Macdougall CE, Oren R, Griffin S, Cheng AT, Ekert JE. A microphysiological assay for studying T-cell chemotaxis, trafficking and tumor killing. Biofabrication 2024; 17:015004. [PMID: 39378897 DOI: 10.1088/1758-5090/ad847f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 10/08/2024] [Indexed: 10/10/2024]
Abstract
Tumors in patients non-responsive to immunotherapy harbor a series of barriers that impede the efficacy of effector T-cells. Consequently, therapeutically modulating the chemotaxis machinery to enable effector T cell infiltration and function in the tumor could result in more successful therapeutic outcomes. Complexin-vitromodels allow re-creation ofin-vivotumor complexities in anin-vitrosetting, allowing improved translatability to patient biology at the laboratory scale. We identified a gap in available industrial scale microphysiological (MPS) assays for faster validation of targets and strategies that enable T-cell chemotaxis and effector function within tumor microenvironments. Using a commercially available, 96-chip 2-lane microfluidic assay system, we present a novel, scalable, complexin vitroMPS assay to study 3D T-cell chemotaxis and function within native, extracellular matrix (ECM)-rich multicellular tumor environments. Activated or naïve CD3+ T-cells stained with far-red nuclear stain responded to the chemokine gradients generated within the matrigel-collagen ECM by migrating into the microfluidic channel (∼5 mm horizontal window), in a concentration- and cell type-dependent manner. Furthermore, we observed and tracked chemotaxis and cancer cell killing function of antigen-specific CD4.CD8. chimeric antigen receptor (CAR)-T cells that responded to CXCR3 agonist gradient built through the expansive 5 mm of cancer cell colony containing stroma. The 2-lane assay system yielded useful information regarding donor and dose-dependent differences in CAR-T cell chemotaxis and tumor killing. The scalable assay system allows a granular window into immune cell migration and function in tissue spaces beyond endothelium, addressing a missing gap in studying tissue-specific immune cell chemotaxis and function to bring forward advancements in cancer immunotherapy.
Collapse
Affiliation(s)
| | - Makda Mebrahtu
- Genome Biology, GSK, Collegeville, PA, United States of America
| | - Ryan Musso
- Genome Biology, GSK, Collegeville, PA, United States of America
| | - Alexis Fullman
- Genome Biology, GSK, Collegeville, PA, United States of America
| | - Brady Nifong
- Research Statistics, GSK, Collegeville, PA, United States of America
| | - Katrina Wisdom
- Complex In-Vitro Models, GSK, Collegeville, PA, United States of America
| | - Terrence T Roh
- Complex In-Vitro Models, GSK, Collegeville, PA, United States of America
| | - Matthew Sender
- Chemical Biology, GSK, Collegeville, PA, United States of America
| | - Derek Poore
- Immuno-Oncology and Combinations (IOC), GSK, Collegeville, PA, United States of America
| | | | - Ravit Oren
- Oncology Cell Therapy, GSK, Stevenage, United Kingdom
| | - Sue Griffin
- Oncology Translational Research, GSK, Stevenage, United Kingdom
| | - Aaron T Cheng
- Genome Biology, GSK, Collegeville, PA, United States of America
| | - Jason E Ekert
- Complex In-Vitro Models, GSK, Collegeville, PA, United States of America
| |
Collapse
|
6
|
Qvick A, Bratulic S, Carlsson J, Stenmark B, Karlsson C, Nielsen J, Gatto F, Helenius G. Discriminating Benign from Malignant Lung Diseases Using Plasma Glycosaminoglycans and Cell-Free DNA. Int J Mol Sci 2024; 25:9777. [PMID: 39337265 PMCID: PMC11431521 DOI: 10.3390/ijms25189777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/05/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024] Open
Abstract
We aimed to investigate the use of free glycosaminoglycan profiles (GAGomes) and cfDNA in plasma to differentiate between lung cancer and benign lung disease, in a cohort of 113 patients initially suspected of lung cancer. GAGomes were analyzed in all samples using the MIRAM® Free Glycosaminoglycan Kit with ultra-high-performance liquid chromatography and electrospray ionization triple quadrupole mass spectrometry. In a subset of samples, cfDNA concentration and NGS-data was available. We detected two GAGome features, 0S chondroitin sulfate (CS), and 4S CS, with cancer-specific changes. Based on the observed GAGome changes, we devised a model to predict lung cancer. The model, named the GAGome score, could detect lung cancer with 41.2% sensitivity (95% CI: 9.2-54.2%) at 96.4% specificity (95% CI: 95.2-100.0%, n = 113). When we combined the GAGome score with a cfDNA-based model, the sensitivity increased from 42.6% (95% CI: 31.7-60.6%, cfDNA alone) to 70.5% (95% CI: 57.4-81.5%) at 95% specificity (95% CI: 75.1-100%, n = 74). Notably, the combined GAGome and cfDNA testing improved the sensitivity, compared to cfDNA alone, especially in ASCL stage I (55.6% vs 11.1%). Our findings show that plasma GAGome profiles can enhance cfDNA testing performance, highlighting the applicability of a multiomics approach in lung cancer diagnostics.
Collapse
Affiliation(s)
- Alvida Qvick
- Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, 701 82 Örebro, Sweden
| | - Sinisa Bratulic
- Department of Life Sciences, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Jessica Carlsson
- Department of Urology, Faculty of Medicine and Health, Örebro University, 701 82 Örebro, Sweden
| | - Bianca Stenmark
- Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, 701 82 Örebro, Sweden
| | | | - Jens Nielsen
- Department of Life Sciences, Chalmers University of Technology, 412 96 Gothenburg, Sweden
- BioInnovation Institute, Ole Maaløes Vej 3, 2200 Copenhagen, Denmark
| | - Francesco Gatto
- Department of Life Sciences, Chalmers University of Technology, 412 96 Gothenburg, Sweden
- Department of Oncology-Pathology, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Gisela Helenius
- Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, 701 82 Örebro, Sweden
| |
Collapse
|
7
|
Kalebota N, Novak R, Hrkač S, Perić P, Salai G, Močibob M, Pranjić M, Zdráhal Z, Pustka V, Žerjavić NL, Milošević M, Vodanović M, Šalek SZ, Grgurević L. Proteomic exploration of potential blood biomarkers in haemophilic arthropathy. Health Sci Rep 2024; 7:e70046. [PMID: 39323462 PMCID: PMC11423339 DOI: 10.1002/hsr2.70046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 08/01/2024] [Accepted: 08/16/2024] [Indexed: 09/27/2024] Open
Abstract
Background and Aims The pathophysiology of haemophilic arthropathy (HA) is complex and largely undefined. Proteomic analyses provide insights into the intricate mechanisms of the HA.Our study aimed to identify differentially expressed proteins in relation to the severity of HA, explore their pathophysiological roles, and evaluate their potential as HA biomarkers. Methods Our cross-sectional observational study encompassed 30 HA patients and 15 healthy subjects. Plasma samples were pooled into three groups of 15 samples from those with severe haemophilic arthropathy (sHA), mild haemophilic arthropathy (mHA) and healthy controls. Proteomic analysis was performed using liquid chromatography-mass spectrometry. The severity of HA was assessed using the World Federation of Haemophilia Physical Examination Score and ultrasonography following the Haemophilia Early Arthropathy Detection with Ultrasound (HEAD-US) guidelines. Results A total of 788 proteins were identified, with 97% of the uniquely identified proteins being expressed in all analysed groups. We identified several up and downregulated proteins across the groups that were mainly related to inflammatory and immunity-modulating processes, as well as joint degeneration. We highlighted ten proteins relevant for the development of HA: cathepsin G, endoplasmic reticulum aminopeptidase 2, S100-A9, insulin-like growth factor I, apolipoprotein (a), osteopontin, pregnancy zone protein, cartilage oligomeric matrix protein, CD44, and cadherin-related family member 2. Conclusion Our analysis identified several proteins that shed further light on the distinctive pathogenesis of HA and could serve for biomarker research. However, these results need to be validated on a larger patient group.
Collapse
Affiliation(s)
- Nataša Kalebota
- Department of Rheumatology and Rehabilitation University Hospital Centre Zagreb Zagreb Croatia
| | - Ruđer Novak
- Centre for Translational and Clinical Research, Department of Proteomics University of Zagreb, School of Medicine Zagreb Croatia
- BIMIS - Biomedical Research Centre Šalata University of Zagreb School of Medicine Zagreb Croatia
| | - Stela Hrkač
- Department of Clinical Immunology Allergology and Rheumatology, University Hospital Dubrava Zagreb Croatia
| | - Porin Perić
- Department of Rheumatology and Rehabilitation University Hospital Centre Zagreb Zagreb Croatia
- University of Zagreb, School of Medicine Zagreb Croatia
| | - Grgur Salai
- Department of Pulmonology University Hospital Dubrava Zagreb Croatia
| | - Marko Močibob
- Department of Chemistry University of Zagreb, Faculty of Science Zagreb Croatia
| | - Marija Pranjić
- Department of Chemistry University of Zagreb, Faculty of Science Zagreb Croatia
| | - Zbyněk Zdráhal
- Central European Institute of Technology Masaryk University, Kamenice 5 Brno Czech Republic
| | - Václav Pustka
- Central European Institute of Technology Masaryk University, Kamenice 5 Brno Czech Republic
| | - Nadica Laktašić Žerjavić
- Department of Rheumatology and Rehabilitation University Hospital Centre Zagreb Zagreb Croatia
- University of Zagreb, School of Medicine Zagreb Croatia
| | - Milan Milošević
- Andrija Štampar School of Public Health University of Zagreb, School of Medicine Zagreb Croatia
| | - Marijo Vodanović
- Division of Hematology, Department of Internal Medicine University Hospital Centre Zagreb Zagreb Croatia
- University of Applied Health Sciences Zagreb Croatia
| | | | - Lovorka Grgurević
- Centre for Translational and Clinical Research, Department of Proteomics University of Zagreb, School of Medicine Zagreb Croatia
- BIMIS - Biomedical Research Centre Šalata University of Zagreb School of Medicine Zagreb Croatia
- Department of Anatomy, "Drago Perović" University of Zagreb, School of Medicine Zagreb Croatia
| |
Collapse
|
8
|
Ayilam Ramachandran R, Lemoff A, Robertson DM. Extracellular vesicles released by host epithelial cells during Pseudomonas aeruginosa infection function as homing beacons for neutrophils. Cell Commun Signal 2024; 22:341. [PMID: 38907250 PMCID: PMC11191230 DOI: 10.1186/s12964-024-01609-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/10/2024] [Indexed: 06/23/2024] Open
Abstract
BACKGROUND Pseudomonas aeruginosa (PA) is an opportunistic pathogen that can cause sight threatening infections in the eye and fatal infections in the cystic fibrosis airway. Extracellular vesicles (EVs) are released by host cells during infection and by the bacteria themselves; however, there are no studies on the composition and functional role of host-derived EVs during PA infection of the eye or lung. Here we investigated the composition and capacity of EVs released by PA infected epithelial cells to modulate innate immune responses in host cells. METHODS Human telomerase immortalized corneal epithelial cells (hTCEpi) cells and human telomerase immortalized bronchial epithelial cells (HBECs) were treated with a standard invasive test strain of Pseudomonas aeruginosa, PAO1, for 6 h. Host derived EVs were isolated by qEV size exclusion chromatography. EV proteomic profiles during infection were compared using mass spectrometry and functional studies were carried out using hTCEpi cells, HBECs, differentiated neutrophil-like HL-60 cells, and primary human neutrophils isolated from peripheral blood. RESULTS EVs released from PA infected corneal epithelial cells increased pro-inflammatory cytokine production in naïve corneal epithelial cells and induced neutrophil chemotaxis independent of cytokine production. The EVs released from PA infected bronchial epithelial cells were also chemotactic although they failed to induce cytokine secretion from naïve HBECs. At the proteomic level, EVs derived from PA infected corneal epithelial cells exhibited lower complexity compared to bronchial epithelial cells, with the latter having reduced protein expression compared to the non-infected control. CONCLUSIONS This is the first study to comprehensively profile EVs released by corneal and bronchial epithelial cells during Pseudomonas infection. Together, these findings show that EVs released by PA infected corneal and bronchial epithelial cells function as potent mediators of neutrophil migration, contributing to the exuberant neutrophil response that occurs during infection in these tissues.
Collapse
Affiliation(s)
| | - Andrew Lemoff
- The Departments of Biochemistry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Danielle M Robertson
- The Departments of Ophthalmology, UT Southwestern Medical Center, Dallas, TX, USA.
- The Department of Ophthalmology, UT Southwestern Medical Center, 5323 Harry Hines Blvd, 75390-9057, Dallas, TX, USA.
| |
Collapse
|
9
|
Anand S, Mardhekar S, Bhoge PR, Mishra SK, Kikkeri R. Molecular recognition and proteoglycan mimic arrangement: modulating cisplatin toxicity. Chem Commun (Camb) 2024; 60:4495-4498. [PMID: 38567462 DOI: 10.1039/d4cc00464g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
We have demonstrated that cisplatin (CP), an anticancer drug, showed a preference for binding the sulfated-L-iduronic acid (S-L-IdoA) unit over the sulfated-D-glucuronic acid unit of heparan sulfate. The multivalency of S-L-IdoA, such as in the proteoglycan mimic, resulted in distinct modes of cell-surface engineering in normal and cancer cells, with these disparities having a significant impact on CP-mediated toxicity.
Collapse
Affiliation(s)
- Saurabh Anand
- Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 4110008, India.
| | - Sandhya Mardhekar
- Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 4110008, India.
| | - Preeti Ravindra Bhoge
- Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 4110008, India.
| | - Sandeep Kumar Mishra
- Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 4110008, India.
| | - Raghavendra Kikkeri
- Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 4110008, India.
| |
Collapse
|
10
|
Lv D, Fei Y, Chen H, Wang J, Han W, Cui B, Feng Y, Zhang P, Chen J. Crosstalk between T lymphocyte and extracellular matrix in tumor microenvironment. Front Immunol 2024; 15:1340702. [PMID: 38690275 PMCID: PMC11058664 DOI: 10.3389/fimmu.2024.1340702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 03/26/2024] [Indexed: 05/02/2024] Open
Abstract
The extracellular matrix (ECM) is a complex three-dimensional structure composed of proteins, glycans, and proteoglycans, constituting a critical component of the tumor microenvironment. Complex interactions among immune cells, extracellular matrix, and tumor cells promote tumor development and metastasis, consequently influencing therapeutic efficacy. Hence, elucidating these interaction mechanisms is pivotal for precision cancer therapy. T lymphocytes are an important component of the immune system, exerting direct anti-tumor effects by attacking tumor cells or releasing lymphokines to enhance immune effects. The ECM significantly influences T cells function and infiltration within the tumor microenvironment, thereby impacting the behavior and biological characteristics of tumor cells. T cells are involved in regulating the synthesis, degradation, and remodeling of the extracellular matrix through the secretion of cytokines and enzymes. As a result, it affects the proliferation and invasive ability of tumor cells as well as the efficacy of immunotherapy. This review discusses the mechanisms underlying T lymphocyte-ECM interactions in the tumor immune microenvironment and their potential application in immunotherapy. It provides novel insights for the development of innovative tumor therapeutic strategies and drug.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jiao Chen
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
11
|
Hirani P, McDermott J, Rajeeve V, Cutillas PR, Jones JL, Pennington DJ, Wight TN, Santamaria S, Alonge KM, Pearce OM. Versican Associates with Tumor Immune Phenotype and Limits T-cell Trafficking via Chondroitin Sulfate. CANCER RESEARCH COMMUNICATIONS 2024; 4:970-985. [PMID: 38517140 PMCID: PMC10989462 DOI: 10.1158/2767-9764.crc-23-0548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/02/2024] [Accepted: 03/15/2024] [Indexed: 03/23/2024]
Abstract
Immunotherapies for cancers of epithelial origin have limited efficacy, and a growing body of evidence links the composition of extracellular matrix (ECM) with the likelihood of a favorable response to treatment. The ECM may be considered an immunologic barrier, restricting the localization of cytotoxic immune cells to stromal areas and inhibiting their contact with tumor cells. Identifying ECM components of this immunologic barrier could provide targets that whether degraded in situ may support antitumor immunity and improve immunotherapy response. Using a library of primary triple-negative breast cancer tissues, we correlated CD8+ T-cell tumor contact with ECM composition and identified a proteoglycan, versican (VCAN), as a putative member of the immunologic barrier. Our analysis reveals that CD8+ T-cell contact with tumor associates with the location of VCAN expression, the specific glycovariant of VCAN [defined through the pattern of posttranslational attachments of glycosaminoglycans (GAG)], and the cell types that produce the variant. In functional studies, the isomers of chondroitin sulfate presented on VCAN have opposing roles being either supportive or inhibiting of T-cell trafficking, and removal of the GAGs ameliorates these effects on T-cell trafficking. Overall, we conclude that VCAN can either support or inhibit T-cell trafficking within the tumor microenvironment depending on the pattern of GAGs present, and that VCAN is a major component of the ECM immunologic barrier that defines the type of response to immunotherapy. SIGNIFICANCE The response to immunotherapy has been poor toward solid tumors despite immune cells infiltrating into the tumor. The ECM has been associated with impacting T-cell infiltration toward the tumor and in this article we have identified VCAN and its structural modification, chondroitin sulfate as having a key role in T-cell invasion.
Collapse
Affiliation(s)
- Priyanka Hirani
- Barts Cancer Institute, John Vane Science Centre, Queen Mary University of London, London, United Kingdom
| | - Jacqueline McDermott
- Department of Histopathology, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Vinothini Rajeeve
- Barts Cancer Institute, John Vane Science Centre, Queen Mary University of London, London, United Kingdom
| | - Pedro R. Cutillas
- Barts Cancer Institute, John Vane Science Centre, Queen Mary University of London, London, United Kingdom
| | - J. Louise Jones
- Barts Cancer Institute, John Vane Science Centre, Queen Mary University of London, London, United Kingdom
| | - Daniel J. Pennington
- Centre for Immunobiology, Blizard Institute, Barts and the London Medical School, Queen Mary University of London, London, United Kingdom
| | - Thomas N. Wight
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington
| | - Salvatore Santamaria
- Department of Biochemical Sciences, School of Biosciences, Faculty of Health and Medical Sciences, Edward Jenner Building, University of Surrey, Surrey, United Kingdom
| | - Kimberly M. Alonge
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington
| | - Oliver M.T. Pearce
- Barts Cancer Institute, John Vane Science Centre, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
12
|
Stepp MA, Menko AS. Clearing the light path: proteoglycans and their important roles in the lens and cornea. PROTEOGLYCAN RESEARCH 2024; 2:e20. [PMID: 39568541 PMCID: PMC11575962 DOI: 10.1002/pgr2.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/11/2024] [Indexed: 11/22/2024]
Abstract
Some of the earliest studies of glycans were performed on mammalian corneas and lenses with many of the key concepts we currently recognize as being fundamental to our understanding of basic cell biology arising from these studies. Proteoglycans and their GAG side chains are essential components of the ECM of the lens capsule. They also are present in the anterior corneal epithelial basement membrane and the posterior (Decemet's) basement membrane, and they organize collagen fiber diameters and spacing in the corneal stroma to maintain stromal clarity. Studies using genetically engineered mice and characterization of spontaneously arising mutations in genes controlling proteoglycan synthesis have generated new insight into the roles played by proteoglycans in signal transduction. We now know that proteoglycans and GAGs can regulate cell signaling and the maintenance of avascularity and immune privilege that are hallmarks of these tissues. In addition, proteoglycan-rich matrices provide the pathways for immune cells to populate the surface of the lens as a response to corneal wounding and in a model of Experimental Autoimmune Uveitis. Here we describe what is known about proteoglycans and GAGs in the cornea and lens. This knowledge has begun to provide promising leads into new proteoglycan-based treatments aimed at restoring and maintaining homeostasis in the cornea. Future studies are needed to determine how these new drugs impact the recruitment of immune cells to the lens for functions in restoring/maintaining homeostasis in the eye.
Collapse
Affiliation(s)
- Mary Ann Stepp
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
- Department of Ophthalmology, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - A. Sue Menko
- Department of Pathology and Genomic Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
- Department of Ophthalmology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
13
|
Nakkazi A, Forster D, Whitfield GA, Dyer DP, Dickie BR. A systematic review of normal tissue neurovascular unit damage following brain irradiation-Factors affecting damage severity and timing of effects. Neurooncol Adv 2024; 6:vdae098. [PMID: 39239570 PMCID: PMC11375288 DOI: 10.1093/noajnl/vdae098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024] Open
Abstract
Background Radiotherapy is key in the treatment of primary and secondary brain tumors. However, normal tissue is inevitably irradiated, causing toxicity and contributing to cognitive dysfunction. The relative importance of vascular damage to cognitive decline is poorly understood. Here, we systematically review the evidence for radiation-induced damage to the entire neurovascular unit (NVU), particularly focusing on establishing the factors that influence damage severity, and timing and duration of vascular effects relative to effects on neural tissue. Methods Using PubMed and Web of Science, we searched preclinical and clinical literature published between January 1, 1970 and December 1, 2022 and evaluated factors influencing NVU damage severity and timing of NVU effects resulting from ionizing radiation. Results Seventy-two rodents, 4 canines, 1 rabbit, and 5 human studies met inclusion criteria. Radiation increased blood-brain barrier (BBB) permeability, reduced endothelial cell number and extracellular matrix proteoglycans, reduced tight junction proteins, upregulated cellular adhesion molecule expression, reduced activity of glucose and BBB efflux transporters and activated glial cells. In the brain parenchyma, increased metalloproteinases 2 and 9 levels, demyelination, cell death, and inhibited differentiation were observed. Effects on the vasculature and neural compartment were observed across acute, delayed, and late timepoints, and damage extent was higher with low linear energy transfer radiation, higher doses, lower dose rates, broader beams, and in the presence of a tumor. Conclusions Irradiation of normal brain tissue leads to widespread and varied impacts on the NVU. Data indicate that vascular damage is in most cases an early effect that does not quickly resolve. More studies are needed to confirm sequence of damages, and mechanisms that lead to cognitive dysfunction.
Collapse
Affiliation(s)
- Annet Nakkazi
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, The University of Manchester, Manchester, UK
- Faculty of Biology, Medicine, and Health, Division of Informatics, Imaging, and Data Sciences, School of Health Sciences, The University of Manchester, Manchester, UK
| | - Duncan Forster
- Faculty of Biology, Medicine, and Health, Division of Informatics, Imaging, and Data Sciences, School of Health Sciences, The University of Manchester, Manchester, UK
| | - Gillian A Whitfield
- Division of Cancer Sciences, Manchester Cancer Research Centre, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
- The Christie NHS Foundation Trust, Manchester, UK
| | - Douglas P Dyer
- Wellcome Centre for Cell-Matrix Research, Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, The University of Manchester, Manchester, UK
| | - Ben R Dickie
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, The University of Manchester, Manchester, UK
- Faculty of Biology, Medicine, and Health, Division of Informatics, Imaging, and Data Sciences, School of Health Sciences, The University of Manchester, Manchester, UK
| |
Collapse
|
14
|
Gray AL, Schiessl I, Dyer DP. Chronic cranial window implantation for high-resolution intravital imaging of the endothelial glycocalyx in mouse cortex. STAR Protoc 2023; 4:102712. [PMID: 37967013 PMCID: PMC10684883 DOI: 10.1016/j.xpro.2023.102712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/15/2023] [Accepted: 10/25/2023] [Indexed: 11/17/2023] Open
Abstract
The endothelial glycocalyx is an integral component of the brain vascular barrier. Visualizing its structure in vivo is essential to understand its physiological and pathophysiological mechanisms. Here, we present a surgical protocol for chronic cranial window implantation in mice, alongside the use of multiphoton microscopy tools to image the cortical vasculature. We describe steps for cranial window implantation, intravenous injection of fluorescent markers, and intravital imaging. We then detail a technique to quantify glycocalyx thickness using Imaris image analysis software. For complete details on the use and execution of this protocol, please refer to Gray et al. (2023).1.
Collapse
Affiliation(s)
- Anna Lindsay Gray
- Wellcome Centre for Cell-Matrix Research, Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, UK; Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance National Health Service Foundation Trust, University of Manchester, Manchester M13 9PL, UK.
| | - Ingo Schiessl
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance National Health Service Foundation Trust, University of Manchester, Manchester M13 9PL, UK; Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK.
| | - Douglas Philip Dyer
- Wellcome Centre for Cell-Matrix Research, Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, UK; Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance National Health Service Foundation Trust, University of Manchester, Manchester M13 9PL, UK.
| |
Collapse
|
15
|
Ridley AJL, Ou Y, Karlsson R, Pun N, Birchenough HL, Mulholland IZ, Birch ML, MacDonald AS, Jowitt TA, Lawless C, Miller RL, Dyer DP. Chemokines form complex signals during inflammation and disease that can be decoded by extracellular matrix proteoglycans. Sci Signal 2023; 16:eadf2537. [PMID: 37934811 DOI: 10.1126/scisignal.adf2537] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 10/20/2023] [Indexed: 11/09/2023]
Abstract
Chemokine-driven leukocyte recruitment is a key component of the immune response and of various diseases. Therapeutically targeting the chemokine system in inflammatory disease has been unsuccessful, which has been attributed to redundancy. We investigated why chemokines instead have specific, specialized functions, as demonstrated by multiple studies. We analyzed the expression of genes encoding chemokines and their receptors across species, tissues, and diseases. This analysis revealed complex expression patterns such that genes encoding multiple chemokines that mediated recruitment of the same leukocyte type were expressed in the same context, such as the genes encoding the CXCR3 ligands CXCL9, CXCL10, and CXCL11. Through biophysical approaches, we showed that these chemokines differentially interacted with extracellular matrix glycosaminoglycans (ECM GAGs), which was enhanced by sulfation of specific GAGs. Last, in vivo approaches demonstrated that GAG binding was critical for the CXCL9-dependent recruitment of specific T cell subsets but not of others, irrespective of CXCR3 expression. Our data demonstrate that interactions with ECM GAGs regulated whether chemokines were presented on cell surfaces or remained more soluble, thereby affecting chemokine availability and ensuring specificity of chemokine action. Our findings provide a mechanistic understanding of chemokine-mediated immune cell recruitment and identify strategies to target specific chemokines during inflammatory disease.
Collapse
Affiliation(s)
- Amanda J L Ridley
- Wellcome Centre for Cell-Matrix Research, Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, UK
| | - Yaqing Ou
- Wellcome Centre for Cell-Matrix Research, Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, UK
| | - Richard Karlsson
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Nabina Pun
- Wellcome Centre for Cell-Matrix Research, Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, UK
| | - Holly L Birchenough
- Wellcome Centre for Cell-Matrix Research, Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, UK
| | - Iashia Z Mulholland
- Wellcome Centre for Cell-Matrix Research, Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, UK
| | - Mary L Birch
- Biological Services Facility, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Andrew S MacDonald
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, UK
| | - Thomas A Jowitt
- Wellcome Centre for Cell-Matrix Research, Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, UK
| | - Craig Lawless
- Wellcome Centre for Cell-Matrix Research, Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, UK
| | - Rebecca L Miller
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Douglas P Dyer
- Wellcome Centre for Cell-Matrix Research, Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester M6 8HD, UK
| |
Collapse
|
16
|
Abstract
Type 2 immunity mediates protective responses to helminths and pathological responses to allergens, but it also has broad roles in the maintenance of tissue integrity, including wound repair. Type 2 cytokines are known to promote fibrosis, an overzealous repair response, but their contribution to healthy wound repair is less well understood. This review discusses the evidence that the canonical type 2 cytokines, IL-4 and IL-13, are integral to the tissue repair process through two main pathways. First, essential for the progression of effective tissue repair, IL-4 and IL-13 suppress the initial inflammatory response to injury. Second, these cytokines regulate how the extracellular matrix is modified, broken down, and rebuilt for effective repair. IL-4 and/or IL-13 amplifies multiple aspects of the tissue repair response, but many of these pathways are highly redundant and can be induced by other signals. Therefore, the exact contribution of IL-4Rα signaling remains difficult to unravel.
Collapse
Affiliation(s)
- Judith E Allen
- Lydia Becker Institute for Immunology and Inflammation and Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom;
| |
Collapse
|
17
|
Guo H, Li Y, Qiu L, Li J, Guo X, Zhang Y, Wang J. Gua Lou Er Chen decoction attenuates atherosclerosis by reducing proteoglycans accumulation and inflammation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 115:154811. [PMID: 37094421 DOI: 10.1016/j.phymed.2023.154811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/30/2023] [Accepted: 04/05/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Proteoglycans (PGs) accumulation and inflammation are two interactional pathological processes of atherosclerosis (AS). Up to now, there is no ideal drug for decreasing these pathological changes. Gua Lou Er Chen decoction (GED) has been used to treat AS for several years. However, if GED could treat AS through reducing PGs accumulation and inflammation remains unknown. PURPOSE This study was designed to illustrate whether GED could attenuate AS by reducing chondroitin sulphate proteoglycan (CSPG) expressions and alleviating inflammation. METHODS In vivo study, apolipoprotein E-deficient mice were fed a high-fat diet to induce AS. In vitro study, oxidised low-density lipoprotein (ox-LDL) and tumour necrosis factor (TNF)-α were used to induce proteoglycans accumulation and inflammation changes of vascular smooth muscle cells (VSMCs) and RAW264.7 macrophages. Oil Red O was used to stain mouse aortic lipid plaque. Haematoxylin eosin staining was used to assess the pathological changes of aortic valve and thoracic aorta. Specialised kits were used to identify blood lipids and sGAGs. Immunofluorescence and immunohistochemistry was used to identify aortic valve CSPG and versican. Western blotting, enzyme-linked immunosorbent assay and quantitative reverse transcription-polymerase chain reaction were used to measure versican, interleukin (IL)-6, TNF-α, and chondroitin sulphate (CS) synthetase expressions. CCK-8 was used to measure the cells proliferation. RESULTS In vivo experiments revealed that GED significantly improved hyperlipidemia, lowered lipid plaque deposition in the aorta, and increased plaque stability of AS mice. In addition, further studies revealed that GED lowered the sGAGs, CSPG, and versican levels and down-regulated CS synthetase and inflammatory factor expressions. In vitro experiments revealed that GED decreased TNF-α expression in the RAW264.7 macrophage supernatant stimulated by ox-LDL; decreased versican, CS-related synthetase, and IL-6 expressions; reduced VSMC proliferation stimulated by ox-LDL; down-regulated sGAG and versican expressions of VSMCs stimulated by TNF-α. CONCLUSION Our results demonstrated that GED could attenuate AS by reducing hyperlipidemia, hyper-expression of CSPG, and inflammation. This study might provide a novel insight into the development of innovative drug for AS.
Collapse
Affiliation(s)
- Hongya Guo
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yunxing Li
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Lingyan Qiu
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Jianyin Li
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Xiaochun Guo
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yujing Zhang
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Jian Wang
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| |
Collapse
|
18
|
Winther AR, da Silva Duarte V, Porcellato D. Metataxonomic analysis and host proteome response in dairy cows with high and low somatic cell count: a quarter level investigation. Vet Res 2023; 54:32. [PMID: 37016420 PMCID: PMC10074679 DOI: 10.1186/s13567-023-01162-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 03/01/2023] [Indexed: 04/06/2023] Open
Abstract
Host response to invasive microbes in the bovine udder has an important role on the animal health and is essential to the dairy industry to ensure production of high-quality milk and reduce the mastitis incidence. To better understand the biology behind these host-microbiome interactions, we investigated the somatic cell proteomes at quarter level for four cows (collected before and after milking) using a shotgun proteomics approach. Simultaneously, we identified the quarter microbiota by amplicon sequencing to detect presence of mastitis pathogens or other commensal taxa. In total, 32 quarter milk samples were analyzed divided in two groups depending on the somatic cell count (SCC). The high SCC group (>100,000 cell/mL) included 10 samples and significant different proteome profiles were detected. Differential abundance analysis uncovers a specific expression pattern in high SCC samples revealing pathways involved in immune responses such as inflammation, activation of the complement system, migration of immune cells, and tight junctions. Interestingly, different proteome profiles were also identified in quarter samples containing one of the two mastitis pathogens, Staphylococcus aureus and Streptococcus uberis, indicating a different response of the host depending on the pathogen. Weighted correlation network analysis identified three modules of co-expressed proteins which were correlated with the SCC in the quarters. These modules contained proteins assigned to different aspects of the immune response, but also amino sugar and nucleotide sugar metabolism, and biosynthesis of amino acids. The results of this study provide deeper insights on how the proteome expression changes at quarter level in naturally infected cows and pinpoint potential interactions and important biological functions during host-microbe interaction.
Collapse
Affiliation(s)
- Anja Ruud Winther
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, NMBU, Ås, Norway.
| | - Vinícius da Silva Duarte
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, NMBU, Ås, Norway
| | - Davide Porcellato
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, NMBU, Ås, Norway
| |
Collapse
|
19
|
Dias ML, Wajsenzon IJR, Alves GBN, Paranhos BA, Andrade CBV, Siqueira Monteiro VR, de Sousa RMR, da Silva Pereira ENG, Rodrigues KL, Daliry A, Mello DB, Coeli dos Santos Goldenberg R. Cirrhotic Liver Sustains In Situ Regeneration of Acellular Liver Scaffolds after Transplantation into G-CSF-Treated Animals. Cells 2023; 12:cells12070976. [PMID: 37048049 PMCID: PMC10093225 DOI: 10.3390/cells12070976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023] Open
Abstract
Acellular liver scaffolds (ALS) produced by decellularization have been successfully explored for distinct regenerative purposes. To date, it is unknown whether transplanted ALSs are affected by cirrhotic livers, either becoming cirrhotic themselves or instead remaining as a robust template for healthy cell growth after transplantation into cirrhotic rats. Moreover, little is known about the clinical course of recipient cirrhotic livers after ALS transplantation. To address these questions, we transplanted ALSs into cirrhotic rats previously treated with the granulocyte colony-stimulating factor. Here, we report successful cellular engraftment within the transplanted ALSs at 7, 15, and 30 days after transplantation. Recellularization was orchestrated by liver tissue cell activation, resident hepatocytes and bile duct proliferation, and an immune response mediated by the granulocyte components. Furthermore, we showed that transplanted ALSs ensured a pro-regenerative and anti-inflammatory microenvironment, attracted vessels from the host cirrhotic tissue, and promoted progenitor cell recruitment. ALS transplantation induced cirrhotic liver regeneration and extracellular matrix remodeling. Moreover, the transplanted ALS sustained blood circulation and attenuated alterations in the ultrasonographic and biochemical parameters in cirrhotic rats. Taken together, our results confirm that transplanted ALSs are not affected by cirrhotic livers and remain a robust template for healthy cell growth and stimulated cirrhotic liver regeneration.
Collapse
|
20
|
Gray AL, Karlsson R, Roberts ARE, Ridley AJL, Pun N, Khan B, Lawless C, Luís R, Szpakowska M, Chevigné A, Hughes CE, Medina-Ruiz L, Birchenough HL, Mulholland IZ, Salanga CL, Yates EA, Turnbull JE, Handel TM, Graham GJ, Jowitt TA, Schiessl I, Richter RP, Miller RL, Dyer DP. Chemokine CXCL4 interactions with extracellular matrix proteoglycans mediate widespread immune cell recruitment independent of chemokine receptors. Cell Rep 2023; 42:111930. [PMID: 36640356 PMCID: PMC11064100 DOI: 10.1016/j.celrep.2022.111930] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 11/18/2022] [Accepted: 12/14/2022] [Indexed: 01/07/2023] Open
Abstract
Leukocyte recruitment from the vasculature into tissues is a crucial component of the immune system but is also key to inflammatory disease. Chemokines are central to this process but have yet to be therapeutically targeted during inflammation due to a lack of mechanistic understanding. Specifically, CXCL4 (Platelet Factor 4, PF4) has no established receptor that explains its function. Here, we use biophysical, in vitro, and in vivo techniques to determine the mechanism underlying CXCL4-mediated leukocyte recruitment. We demonstrate that CXCL4 binds to glycosaminoglycan (GAG) sugars on proteoglycans within the endothelial extracellular matrix, resulting in increased adhesion of leukocytes to the vasculature, increased vascular permeability, and non-specific recruitment of a range of leukocytes. Furthermore, GAG sulfation confers selectivity onto chemokine localization. These findings present mechanistic insights into chemokine biology and provide future therapeutic targets.
Collapse
Affiliation(s)
- Anna L Gray
- Wellcome Centre for Cell-Matrix Research, Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK; Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, UK
| | - Richard Karlsson
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | - Abigail R E Roberts
- University of Leeds, School of Biomedical Sciences, Faculty of Biological Sciences, School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, Astbury Centre for Structural Molecular Biology, and Bragg Centre for Materials Research, Leeds LS2 9JT, UK
| | - Amanda J L Ridley
- Wellcome Centre for Cell-Matrix Research, Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Nabina Pun
- Wellcome Centre for Cell-Matrix Research, Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Bakhtbilland Khan
- Wellcome Centre for Cell-Matrix Research, Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Craig Lawless
- Wellcome Centre for Cell-Matrix Research, Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Rafael Luís
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, 4354 Esch-sur-Alzette, Luxembourg; Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg; Tumor Immunotherapy and Microenvironment, Department of Cancer Research, Luxembourg Institute of Health, 2012 Luxembourg, Luxembourg
| | - Martyna Szpakowska
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, 4354 Esch-sur-Alzette, Luxembourg
| | - Andy Chevigné
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, 4354 Esch-sur-Alzette, Luxembourg
| | - Catherine E Hughes
- Chemokine Research Group, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Laura Medina-Ruiz
- Chemokine Research Group, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Holly L Birchenough
- Wellcome Centre for Cell-Matrix Research, Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Iashia Z Mulholland
- Wellcome Centre for Cell-Matrix Research, Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Catherina L Salanga
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Edwin A Yates
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Jeremy E Turnbull
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark; Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK; Centre for Glycosciences, Keele University, Keele, Staffordshire ST5 5BG, UK
| | - Tracy M Handel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Gerard J Graham
- Chemokine Research Group, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Thomas A Jowitt
- Wellcome Centre for Cell-Matrix Research, Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Ingo Schiessl
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, UK; Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Ralf P Richter
- University of Leeds, School of Biomedical Sciences, Faculty of Biological Sciences, School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, Astbury Centre for Structural Molecular Biology, and Bragg Centre for Materials Research, Leeds LS2 9JT, UK
| | - Rebecca L Miller
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | - Douglas P Dyer
- Wellcome Centre for Cell-Matrix Research, Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK; Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, UK.
| |
Collapse
|
21
|
Scarini JF, de Lima-Souza RA, Lavareze L, Ribeiro de Assis MCF, Damas II, Altemani A, Egal ESA, dos Santos JN, Bello IO, Mariano FV. Heterogeneity and versatility of the extracellular matrix during the transition from pleomorphic adenoma to carcinoma ex pleomorphic adenoma: cumulative findings from basic research and new insights. FRONTIERS IN ORAL HEALTH 2023; 4:942604. [PMID: 37138857 PMCID: PMC10149834 DOI: 10.3389/froh.2023.942604] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 03/17/2023] [Indexed: 05/05/2023] Open
Abstract
Pleomorphic adenoma (PA) is the most common salivary gland tumor, accounting for 50%-60% of these neoplasms. If untreated, 6.2% of PA may undergo malignant transformation to carcinoma ex-pleomorphic adenoma (CXPA). CXPA is a rare and aggressive malignant tumor, whose prevalence represents approximately 3%-6% of all salivary gland tumors. Although the pathogenesis of the PA-CXPA transition remains unclear, CXPA development requires the participation of cellular components and the tumor microenvironment for its progression. The extracellular matrix (ECM) comprises a heterogeneous and versatile network of macromolecules synthesized and secreted by embryonic cells. In the PA-CXPA sequence, ECM is formed by a variety of components including collagen, elastin, fibronectin, laminins, glycosaminoglycans, proteoglycans, and other glycoproteins, mainly secreted by epithelial cells, myoepithelial cells, cancer-associated fibroblasts, immune cells, and endothelial cells. Like in other tumors including breast cancer, ECM changes play an important role in the PA-CXPA sequence. This review summarizes what is currently known about the role of ECM during CXPA development.
Collapse
Affiliation(s)
- João Figueira Scarini
- Department of Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
- Department of Oral Diagnosis, School of Dentistry, University of Campinas (FOP/UNICAMP), Piracicaba, Brazil
| | - Reydson Alcides de Lima-Souza
- Department of Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
- Department of Oral Diagnosis, School of Dentistry, University of Campinas (FOP/UNICAMP), Piracicaba, Brazil
| | - Luccas Lavareze
- Department of Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
- Department of Oral Diagnosis, School of Dentistry, University of Campinas (FOP/UNICAMP), Piracicaba, Brazil
| | - Maria Clara Falcão Ribeiro de Assis
- Department of Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
- Department of Oral Diagnosis, School of Dentistry, University of Campinas (FOP/UNICAMP), Piracicaba, Brazil
| | - Ingrid Iara Damas
- Department of Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
- Department of Oral Diagnosis, School of Dentistry, University of Campinas (FOP/UNICAMP), Piracicaba, Brazil
| | - Albina Altemani
- Department of Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Erika Said Abu Egal
- Department of Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
- Biorepository and Molecular Pathology, Huntsman Cancer Institute, University of Utah (UU), Salt Lake City, UT, United States
| | - Jean Nunes dos Santos
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Federal University of Bahia, Salvador, Brazil
| | - Ibrahim Olajide Bello
- Department of Oral Medicine and Diagnostic Sciences, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Fernanda Viviane Mariano
- Department of Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
- Correspondence: Fernanda Viviane Mariano
| |
Collapse
|
22
|
Ricard-Blum S. Building, Visualizing, and Analyzing Glycosaminoglycan-Protein Interaction Networks. Methods Mol Biol 2023; 2619:211-224. [PMID: 36662472 DOI: 10.1007/978-1-0716-2946-8_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
This chapter describes how to generate, visualize, and analyze interaction networks of glycosaminoglycans (GAGs), which are linear polyanionic polysaccharides mostly located at the cell surface and in the extracellular matrix. The protocol is divided into three major steps: (1) the collection of GAG-mediated interaction data, (2) the visualization of GAG interaction networks, and (3) the computational enrichment analyses of these networks to identify their overrepresented features (e.g., protein domains, location, molecular functions, and biological pathways) compared to a reference proteome. These analyses are critical to interpret GAG interactomic datasets, decipher their specificities and functions, and ultimately identify GAG-protein interactions to target for therapeutic purpose.
Collapse
Affiliation(s)
- Sylvie Ricard-Blum
- ICBMS, UMR 5246 University Lyon 1, CNRS, Institute of Molecular and Supramolecular Chemistry and Biochemistry, Villeurbanne Cedex, France.
| |
Collapse
|
23
|
Liu Y, Niu P, Zhou M, Xue H. The role of proteoglycan form of DMP1 in cranial repair. BMC Mol Cell Biol 2022; 23:43. [PMID: 36175851 PMCID: PMC9524138 DOI: 10.1186/s12860-022-00443-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 09/20/2022] [Indexed: 11/11/2022] Open
Abstract
Background The cranial region is a complex set of blood vessels, cartilage, nerves and soft tissues. The reconstruction of cranial defects caused by trauma, congenital defects and surgical procedures presents clinical challenges. Our previous data showed that deficiency of the proteoglycan (PG) form of dentin matrix protein 1 (DMP1-PG) could lead to abnormal cranial development. In addition, DMP1-PG was highly expressed in the cranial defect areas. The present study aimed to investigate the potential role of DMP1-PG in intramembranous ossification in cranial defect repair. Methods Mouse cranial defect models were established by using wild- type (WT) and DMP1-PG point mutation mice. Microcomputed tomography (micro-CT) and histological staining were performed to assess the extent of repair. Immunofluorescence assays and real-time quantitative polymerase chain reaction (RT‒qPCR) were applied to detect the differentially expressed osteogenic markers. RNA sequencing was performed to probe the molecular mechanism of DMP1-PG in regulating defect healing. Results A delayed healing process and an abnormal osteogenic capacity of primary osteoblasts were observed in DMP1-PG point mutation mice. Furthermore, impaired inflammatory signaling pathways were detected by using RNA transcription analysis of this model. Conclusions Our data indicate that DMP1-PG is an indispensable positive regulator during cranial defect healing. Supplementary Information The online version contains supplementary material available at 10.1186/s12860-022-00443-4.
Collapse
|
24
|
Srimasorn S, Souter L, Green DE, Djerbal L, Goodenough A, Duncan JA, Roberts ARE, Zhang X, Débarre D, DeAngelis PL, Kwok JCF, Richter RP. A quartz crystal microbalance method to quantify the size of hyaluronan and other glycosaminoglycans on surfaces. Sci Rep 2022; 12:10980. [PMID: 35768463 PMCID: PMC9243130 DOI: 10.1038/s41598-022-14948-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/15/2022] [Indexed: 11/09/2022] Open
Abstract
Hyaluronan (HA) is a major component of peri- and extra-cellular matrices and plays important roles in many biological processes such as cell adhesion, proliferation and migration. The abundance, size distribution and presentation of HA dictate its biological effects and are also useful indicators of pathologies and disease progression. Methods to assess the molecular mass of free-floating HA and other glycosaminoglycans (GAGs) are well established. In many biological and technological settings, however, GAGs are displayed on surfaces, and methods to obtain the size of surface-attached GAGs are lacking. Here, we present a method to size HA that is end-attached to surfaces. The method is based on the quartz crystal microbalance with dissipation monitoring (QCM-D) and exploits that the softness and thickness of films of grafted HA increase with HA size. These two quantities are sensitively reflected by the ratio of the dissipation shift (ΔD) and the negative frequency shift (- Δf) measured by QCM-D upon the formation of HA films. Using a series of size-defined HA preparations, ranging in size from ~ 2 kDa tetrasaccharides to ~ 1 MDa polysaccharides, we establish a monotonic yet non-linear standard curve of the ΔD/ - Δf ratio as a function of HA size, which reflects the distinct conformations adopted by grafted HA chains depending on their size and surface coverage. We demonstrate that the standard curve can be used to determine the mean size of HA, as well as other GAGs, such as chondroitin sulfate and heparan sulfate, of preparations of previously unknown size in the range from 1 to 500 kDa, with a resolution of better than 10%. For polydisperse samples, our analysis shows that the process of surface-grafting preferentially selects smaller GAG chains, and thus reduces the average size of GAGs that are immobilised on surfaces comparative to the original solution sample. Our results establish a quantitative method to size HA and other GAGs grafted on surfaces, and also highlight the importance of sizing GAGs directly on surfaces. The method should be useful for the development and quality control of GAG-based surface coatings in a wide range of research areas, from molecular interaction analysis to biomaterials coatings.
Collapse
Affiliation(s)
- Sumitra Srimasorn
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.,School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, Astbury Centre for Structural Molecular Biology, and Bragg Centre for Materials Research, University of Leeds, Leeds, LS2 9JT, UK
| | - Luke Souter
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Dixy E Green
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73126, USA
| | - Lynda Djerbal
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Ashleigh Goodenough
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.,School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, Astbury Centre for Structural Molecular Biology, and Bragg Centre for Materials Research, University of Leeds, Leeds, LS2 9JT, UK
| | - James A Duncan
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.,School of Chemistry, Faculty of Engineering and Physical Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Abigail R E Roberts
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.,School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, Astbury Centre for Structural Molecular Biology, and Bragg Centre for Materials Research, University of Leeds, Leeds, LS2 9JT, UK
| | - Xiaoli Zhang
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.,School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, Astbury Centre for Structural Molecular Biology, and Bragg Centre for Materials Research, University of Leeds, Leeds, LS2 9JT, UK
| | | | - Paul L DeAngelis
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73126, USA
| | - Jessica C F Kwok
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK. .,Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská, 1083, Prague, Czech Republic.
| | - Ralf P Richter
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK. .,School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, Astbury Centre for Structural Molecular Biology, and Bragg Centre for Materials Research, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|