1
|
Weston WC, Hales KH, Hales DB. Flaxseed Increases Animal Lifespan and Reduces Ovarian Cancer Severity by Toxically Augmenting One-Carbon Metabolism. Molecules 2021; 26:5674. [PMID: 34577143 PMCID: PMC8471351 DOI: 10.3390/molecules26185674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 09/11/2021] [Accepted: 09/12/2021] [Indexed: 01/06/2023] Open
Abstract
We used an LC-MS/MS metabolomics approach to investigate one-carbon metabolism in the plasma of flaxseed-fed White Leghorn laying hens (aged 3.5 years). In our study, dietary flaxseed (via the activity of a vitamin B6 antagonist known as "1-amino d-proline") induced at least 15-fold elevated plasma cystathionine. Surprisingly, plasma homocysteine (Hcy) was stable in flaxseed-fed hens despite such highly elevated cystathionine. To explain stable Hcy, our data suggest accelerated Hcy remethylation via BHMT and MS-B12. Also supporting accelerated Hcy remethylation, we observed elevated S-adenosylmethionine (SAM), an elevated SAM:SAH ratio, and elevated methylthioadenosine (MTA), in flaxseed-fed hens. These results suggest that flaxseed increases SAM biosynthesis and possibly increases polyamine biosynthesis. The following endpoint phenotypes were observed in hens consuming flaxseed: decreased physiological aging, increased empirical lifespan, 9-14% reduced body mass, and improved liver function. Overall, we suggest that flaxseed can protect women from ovarian tumor metastasis by decreasing omental adiposity. We also propose that flaxseed protects cancer patients from cancer-associated cachexia by enhancing liver function.
Collapse
Affiliation(s)
- William C. Weston
- Department of Molecular, Cellular & Systemic Physiology, School of Medicine, Southern Illinois University, Carbondale, IL 62901, USA;
| | - Karen H. Hales
- Department of Obstetrics & Gynecology, School of Medicine, Southern Illinois University, Carbondale, IL 62901, USA;
| | - Dale B. Hales
- Department of Molecular, Cellular & Systemic Physiology, School of Medicine, Southern Illinois University, Carbondale, IL 62901, USA;
- Department of Obstetrics & Gynecology, School of Medicine, Southern Illinois University, Carbondale, IL 62901, USA;
| |
Collapse
|
2
|
Pal P, Starkweather KN, Hales KH, Hales DB. A Review of Principal Studies on the Development and Treatment of Epithelial Ovarian Cancer in the Laying Hen Gallus gallus. Comp Med 2021; 71:271-284. [PMID: 34325771 DOI: 10.30802/aalas-cm-20-000116] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Often referred to as the silent killer, ovarian cancer is the most lethal gynecologic malignancy. This disease rarely shows any physical symptoms until late stages and no known biomarkers are available for early detection. Because ovarian cancer is rarely detected early, the physiology behind the initiation, progression, treatment, and prevention of this disease remains largely unclear. Over the past 2 decades, the laying hen has emerged as a model that naturally develops epithelial ovarian cancer that is both pathologically and histologically similar to that of the human form of the disease. Different molecular signatures found in human ovarian cancer have also been identified in chicken ovarian cancer including increased CA125 and elevated E-cadherin expression, among others. Chemoprevention studies conducted in this model have shown that decreased ovulation and inflammation are associated with decreased incidence of ovarian cancer development. The purpose of this article is to review the major studies performed in laying hen model of ovarian cancer and discuss how these studies shape our current understanding of the pathophysiology, prevention, and treatment of epithelial ovarian cancer.
Collapse
Affiliation(s)
- Purab Pal
- Department of Physiology, Southern Illinois University, Carbondale, Illinois
| | | | - Karen Held Hales
- Department of Obstetrics and Gynecology, Southern Illinois University School of Medicine, Springfield, Illinois
| | - Dale Buchanan Hales
- Department of Physiology, Southern Illinois University, Carbondale, Illinois; Department of Obstetrics and Gynecology, Southern Illinois University School of Medicine, Springfield, Illinois;,
| |
Collapse
|
3
|
Choi PW, So WW, Yang J, Liu S, Tong KK, Kwan KM, Kwok JSL, Tsui SKW, Ng SK, Hales KH, Hales DB, Welch WR, Crum CP, Fong WP, Berkowitz RS, Ng SW. MicroRNA-200 family governs ovarian inclusion cyst formation and mode of ovarian cancer spread. Oncogene 2020; 39:4045-4060. [PMID: 32214198 DOI: 10.1038/s41388-020-1264-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 03/05/2020] [Accepted: 03/09/2020] [Indexed: 12/22/2022]
Abstract
Epidemiologic and histopathologic findings and the laying hen model support the long-standing incessant ovulation hypothesis and cortical inclusion cyst involvement in sporadic ovarian cancer development. MicroRNA-200 (miR-200) family is highly expressed in ovarian cancer. Herewith, we show that ovarian surface epithelial (OSE) cells with ectopic miR-200 expression formed stabilized cysts in three-dimensional (3D) organotypic culture with E-cadherin fragment expression and steroid hormone pathway activation, whereas ovarian cancer 3D cultures with miR-200 knockdown showed elevated TGF-β expression, mitotic spindle disorientation, increased lumenization, disruption of ROCK-mediated myosin II phosphorylation, and SRC signaling, which led to histotype-dependent loss of collective movement in tumor spread. Gene expression profiling revealed that epithelial-mesenchymal transition and hypoxia were the top enriched gene sets regulated by miR-200 in both OSE and ovarian cancer cells. The molecular changes uncovered by the in vitro studies were verified in both human and laying hen ovarian cysts and tumor specimens. As miR-200 is also essential for ovulation, our results of estrogen pathway activation in miR-200-expressing OSE cells add another intriguing link between incessant ovulation and ovarian carcinogenesis.
Collapse
Affiliation(s)
- Pui-Wah Choi
- Department of Obstetrics/Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.,School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Wai Wing So
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Junzheng Yang
- Department of Obstetrics/Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Shubai Liu
- Department of Obstetrics/Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Ka Kui Tong
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Kin Ming Kwan
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Center for Cell and Developmental Biology, The Chinese University of Hong Kong, Hong Kong, China.,State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Jamie S-L Kwok
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Stephen K W Tsui
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Shu-Kay Ng
- School of Medicine and Menzies Health Institute Queensland, Griffith University, Nathan, QLD, 4111, Australia
| | - Karen H Hales
- Department of Obstetrics/Gynecology, Southern Illinois School of Medicine, Carbondale, IL, 62901, USA
| | - Dale B Hales
- Department of Obstetrics/Gynecology, Southern Illinois School of Medicine, Carbondale, IL, 62901, USA.,Department of Physiology, Biochemistry & Molecular Biology, Southern Illinois School of Medicine, Carbondale, IL, 62901, USA
| | - William R Welch
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Christopher P Crum
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Wing-Ping Fong
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| | - Ross S Berkowitz
- Department of Obstetrics/Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Shu-Wing Ng
- Department of Obstetrics/Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.,Department of Obstetrics and Gynecology, Mother Infant Research Institute, Tufts Medical Center, 800 Washington Street, Boston, MA, 02111, USA
| |
Collapse
|
4
|
Pal P, Hales K, Petrik J, Hales DB. Pro-apoptotic and anti-angiogenic actions of 2-methoxyestradiol and docosahexaenoic acid, the biologically derived active compounds from flaxseed diet, in preventing ovarian cancer. J Ovarian Res 2019; 12:49. [PMID: 31128594 PMCID: PMC6535187 DOI: 10.1186/s13048-019-0523-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 05/10/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND We have previously shown that a whole flaxseed supplemented diet decreased the onset and severity of ovarian cancer in the laying hen, the only known animal model of spontaneous ovarian cancer. Flaxseed is rich in omega-3 fatty acids (OM3FA), mostly α-Linoleic acid (ALA), which gets converted to Docosahexaenoic acid (DHA) by the action of delta-6 desaturase enzyme. Ingestion of flaxseed also causes an increase in production of 2-methoxyestradiol (2MeOE2) via the induction of the CYP1A1 pathway of estrogen metabolism. We have previously reported that the flaxseed diet induces apoptosis via p38-MAPK pathway in chicken tumors. The objective of this study was to investigate the effect of the flaxseed diet on ovarian cancer in chickens, focusing on two hallmarks of cancer, apoptosis and angiogenesis. RESULTS The anti-cancer effects of two active biologically derived compounds of flax diet, 2MeOE2 and DHA, were individually tested on human ovarian cancer cells and in vivo by the Chick Chorioallantoic Membrane (CAM) assay. Our results indicate that a flaxseed-supplemented diet promotes apoptosis and inhibits angiogenesis in chicken tumors but not in normal ovaries. 2MeOE2 promotes apoptosis in human ovarian cancer cells, inhibits angiogenesis on CAM and its actions are dependent on the p38-MAPK pathway. DHA does not have any pro-apoptotic effect on human ovarian cancer cells but has strong anti-angiogenic effects as seen on CAM, but not dependent on the p38-MAPK pathway. CONCLUSIONS Dietary flaxseed supplementation promotes a pro-apoptotic and anti-angiogenic effect in ovarian tumors, not in normal ovaries. The biologically derived active compounds from flaxseed diet act through different pathways to elicit their respective anti-cancer effects. A flaxseed-supplemented diet is a promising approach for prevention of ovarian cancer as well as having a significant potential as an adjuvant treatment to supplement chemotherapeutic agents for treatment of advanced stages of ovarian cancer.
Collapse
Affiliation(s)
- Purab Pal
- Department of Physiology, Southern Illinois University, 1125 Lincoln Drive, Life Science II, Room 245B, Carbondale, IL, 62901, USA
| | - Karen Hales
- Department of Obstetrics and Gynecology, Southern Illinois University School of Medicine, Springfield, IL, 62702, USA
| | - Jim Petrik
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Dale Buchanan Hales
- Department of Physiology, Southern Illinois University, 1125 Lincoln Drive, Life Science II, Room 245B, Carbondale, IL, 62901, USA.
- Department of Obstetrics and Gynecology, Southern Illinois University School of Medicine, Springfield, IL, 62702, USA.
| |
Collapse
|
5
|
Preclinical Models of Ovarian Cancer: Pathogenesis, Problems, and Implications for Prevention. Clin Obstet Gynecol 2018; 60:789-800. [PMID: 28719396 DOI: 10.1097/grf.0000000000000312] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Preclinical models are relatively underutilized and underfunded resources for modeling the pathogenesis and prevention of ovarian cancers. Several reviews have detailed the numerous published models of ovarian cancer. In this review, we will provide an overview of experimental model systems, their strengths and limitations, and use selected models to illustrate how they can be used to address specific issues about ovarian cancer pathogenesis. We will then highlight some of the preclinical prevention studies performed to date and discuss experiments needed to address important unanswered questions about ovarian cancer prevention strategies.
Collapse
|
6
|
Histology of the Ovary of the Laying Hen (Gallus domesticus). Vet Sci 2017; 4:vetsci4040066. [PMID: 29232906 PMCID: PMC5753646 DOI: 10.3390/vetsci4040066] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 11/29/2017] [Accepted: 12/05/2017] [Indexed: 11/23/2022] Open
Abstract
The laying hen (Gallus domesticus) is a robust animal model for epithelial ovarian cancer. The use of animal models is critical in identifying early disease markers and developing and testing chemotherapies. We describe the microscopic characteristics of the normally functioning laying hen ovary and proximal oviduct to establish baselines from which lesions associated with ovarian cancer can be more readily identified. Ovaries and oviducts were collected from 18-month-old laying hens (n = 18) and fixed in 10% neutral buffered formalin. Hematoxylin- and eosin-stained sections were examined by light microscopy. Both post-ovulatory follicular regression and atresia of small follicles produce remnant clusters of vacuolated cells with no histological evidence that scar tissue persists. Infiltrates of heterophils are associated with atresia of small follicles, a relationship not previously documented in laying hen ovaries. Because these tissues can be mistaken for cancerous lesions, we present a detailed histological description of remnant Wolffian tissues in the laying hen ovary. Immunohistochemical staining for pancytokeratin produced a positive response in ovarian surface epithelium and staining for vimentin produced a positive response in granulosa cells of follicles. Epithelial cells lining glands of the remnant epoöphoron had a positive response to both pancytokeratin and vimentin, a result also observed in women.
Collapse
|
7
|
The Functions of MicroRNA-200 Family in Ovarian Cancer: Beyond Epithelial-Mesenchymal Transition. Int J Mol Sci 2017. [PMID: 28587302 DOI: 10.3390/ijms18061207] [] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The majority of studies on microRNA-200 family members (miR-200s) in human cancers are based on the premise that miR-200s maintain epithelial cell integrity by suppressing epithelial-mesenchymal transition (EMT) through direct inhibition of mesenchymal transcription factors zinc finger E-box-binding homeobox 1/2 (ZEB1/ZEB2) and transforming growth factor-β (TGF-β), a potent inducer of EMT. Hence, downregulation of miR-200 in cancer cells promotes EMT and cancer metastasis. Yet, miR-200s are highly expressed in ovarian cancer, and ovarian cancer metastasizes primarily by dissemination within the pelvic cavity. In this review, we will refocus the epithelial property of ovarian cancer cells and the role of miR-200s in safeguarding this property, as well as the diverse roles of miR-200s in inclusion cyst formation, cancer cell growth, collective movement, angiogenesis, exosome-mediated cell communication, and chemoresponse. Taken together, miR-200s play a significant role in the initiation, progression and metastasis of ovarian cancer and may serve as diagnostic biomarkers and a target in therapeutic development.
Collapse
|
8
|
The Functions of MicroRNA-200 Family in Ovarian Cancer: Beyond Epithelial-Mesenchymal Transition. Int J Mol Sci 2017. [PMID: 28587302 DOI: 10.3390/ijms18061207]+[] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The majority of studies on microRNA-200 family members (miR-200s) in human cancers are based on the premise that miR-200s maintain epithelial cell integrity by suppressing epithelial-mesenchymal transition (EMT) through direct inhibition of mesenchymal transcription factors zinc finger E-box-binding homeobox 1/2 (ZEB1/ZEB2) and transforming growth factor-β (TGF-β), a potent inducer of EMT. Hence, downregulation of miR-200 in cancer cells promotes EMT and cancer metastasis. Yet, miR-200s are highly expressed in ovarian cancer, and ovarian cancer metastasizes primarily by dissemination within the pelvic cavity. In this review, we will refocus the epithelial property of ovarian cancer cells and the role of miR-200s in safeguarding this property, as well as the diverse roles of miR-200s in inclusion cyst formation, cancer cell growth, collective movement, angiogenesis, exosome-mediated cell communication, and chemoresponse. Taken together, miR-200s play a significant role in the initiation, progression and metastasis of ovarian cancer and may serve as diagnostic biomarkers and a target in therapeutic development.
Collapse
|
9
|
Choi PW, Ng SW. The Functions of MicroRNA-200 Family in Ovarian Cancer: Beyond Epithelial-Mesenchymal Transition. Int J Mol Sci 2017; 18:ijms18061207. [PMID: 28587302 PMCID: PMC5486030 DOI: 10.3390/ijms18061207] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 05/30/2017] [Accepted: 06/01/2017] [Indexed: 12/11/2022] Open
Abstract
The majority of studies on microRNA-200 family members (miR-200s) in human cancers are based on the premise that miR-200s maintain epithelial cell integrity by suppressing epithelial-mesenchymal transition (EMT) through direct inhibition of mesenchymal transcription factors zinc finger E-box-binding homeobox 1/2 (ZEB1/ZEB2) and transforming growth factor-β (TGF-β), a potent inducer of EMT. Hence, downregulation of miR-200 in cancer cells promotes EMT and cancer metastasis. Yet, miR-200s are highly expressed in ovarian cancer, and ovarian cancer metastasizes primarily by dissemination within the pelvic cavity. In this review, we will refocus the epithelial property of ovarian cancer cells and the role of miR-200s in safeguarding this property, as well as the diverse roles of miR-200s in inclusion cyst formation, cancer cell growth, collective movement, angiogenesis, exosome-mediated cell communication, and chemoresponse. Taken together, miR-200s play a significant role in the initiation, progression and metastasis of ovarian cancer and may serve as diagnostic biomarkers and a target in therapeutic development.
Collapse
Affiliation(s)
- Pui-Wah Choi
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology, and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Shu-Wing Ng
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology, and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
10
|
McCord J, Sun Z, Deutsch EW, Moritz RL, Muddiman DC. The PeptideAtlas of the Domestic Laying Hen. J Proteome Res 2017; 16:1352-1363. [PMID: 28166638 DOI: 10.1021/acs.jproteome.6b00952] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Proteomics-based biological research is greatly expanded by high-quality mass spectrometry studies, which are themselves enabled by access to quality mass spectrometry resources, such as high-quality curated proteome data repositories. We present a PeptideAtlas for the domestic chicken, containing an extensive and robust collection of chicken tissue and plasma samples with substantial value for the chicken proteomics community for protein validation and design of downstream targeted proteome quantitation. The chicken PeptideAtlas contains 6646 canonical proteins at a protein FDR of 1.3%, derived from ∼100 000 peptides at a peptide level FDR of 0.1%. The rich collection of readily accessible data is easily mined for the purposes of data validation and experimental planning, particularly in the realm of developing proteome quantitation workflows. Herein we demonstrate the use of the atlas to mine information on common chicken acute-phase proteins and biomarkers for cancer detection research, as well as their localization and polymorphisms. This wealth of information will support future proteome-based research using this highly important agricultural organism in pursuit of both chicken and human health outcomes.
Collapse
Affiliation(s)
- James McCord
- W.M. Keck FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University , Raleigh, North Carolina 27695, United States
| | - Zhi Sun
- Institute for Systems Biology , Seattle, Washington 98109, United States
| | - Eric W Deutsch
- Institute for Systems Biology , Seattle, Washington 98109, United States
| | - Robert L Moritz
- Institute for Systems Biology , Seattle, Washington 98109, United States
| | - David C Muddiman
- W.M. Keck FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University , Raleigh, North Carolina 27695, United States
| |
Collapse
|
11
|
Bernardo ADEM, Thorsteinsdóttir S, Mummery CL. Advantages of the avian model for human ovarian cancer. Mol Clin Oncol 2015; 3:1191-1198. [PMID: 26807219 DOI: 10.3892/mco.2015.619] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 05/15/2015] [Indexed: 12/18/2022] Open
Abstract
Ovarian cancer (OC) is the most lethal gynecological cancer. Early detection of OC is crucial for providing efficient treatment, whereas high mortality rates correlate with late detection of OC, when the tumor has already metastasized to other organs. The most prevalent type of OC is epithelial OC (EOC). Models that have been used to study EOC include the fruit fly, mouse and laying hen, in addition to human EOC cells in 3D culture in vitro. These models have helped in the elucidation of the genetic component of this disease and the development of drug therapies. However, the histological origin of EOC and early markers of the disease remain largely unknown. In this study, we aimed to review the relative value of each of the different models in EOC and their contributions to understanding this disease. It was concluded that the spontaneous occurrence of EOC in the adult hen, the prolific ovulation, the similarity of metastatic progression with that in humans and the advantages of using the chicken embryo for modelling the development of the reproductive system, renders the hen particularly suitable for studying the early development of EOC. Further investigation of this avian model may contribute to a better understanding of EOC, improve clinical insight and ultimately contribute to decreasing its mortality rates among humans.
Collapse
Affiliation(s)
- Ana DE Melo Bernardo
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands
| | - Sólveig Thorsteinsdóttir
- Centre for Ecology, Evolution and Environmental Change, Department of Animal Biology, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Christine L Mummery
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands
| |
Collapse
|
12
|
Hawkridge AM. The chicken model of spontaneous ovarian cancer. Proteomics Clin Appl 2015; 8:689-99. [PMID: 25130871 DOI: 10.1002/prca.201300135] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Revised: 02/24/2014] [Accepted: 08/07/2014] [Indexed: 12/24/2022]
Abstract
The chicken is a unique experimental model for studying the spontaneous onset and progression of ovarian cancer (OVC). The prevalence of OVC in chickens can range from 5 to 35% depending on age, genetic strain, reproductive history, and diet. Furthermore, the chicken presents epidemiological, morphological, and molecular traits that are similar to human OVC making it a relevant experimental model for translation research. Similarities to humans include associated increased risk of OVC with the number of ovulations, common histopathological subtypes including high-grade serous, and molecular-level markers or pathways such as CA-125 expression and p53 mutation frequency. Collectively, the similarities between chicken and human OVC combined with a tightly controlled genetic background and predictable onset window provides an outstanding experimental model for studying the early events and progression of spontaneous OVC tumors under controlled environmental conditions. This review will cover the existing literature on OVC in the chicken and highlight potential opportunities for further exploitation (e.g. biomarkers, prevention, treatment, and genomics).
Collapse
Affiliation(s)
- Adam M Hawkridge
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, USA; Department of Pharmacotherapy & Outcomes Science, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
13
|
Johnson PA, Stephens CS, Giles JR. The domestic chicken: Causes and consequences of an egg a day. Poult Sci 2015; 94:816-20. [PMID: 25667424 DOI: 10.3382/ps/peu083] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The domestic laying chicken has been intensely selected to be a persistent ovulator. That is, the tendency for broodiness has been nearly eliminated and, given the appropriate lighting and nutrition, many strains of laying hens produce an egg on almost every day. The regulatory mechanisms involved in coordination of neuroendocrine and ovarian events have been well studied and described. In spite of this, there has been little attention focused on the oocyte itself. Recent findings in mammals have indicated that the oocyte produces several oocyte-specific factors, including growth differentiation factor 9 (GDF9) and bone morphogenetic factor 15 (BMP15), which influence the surrounding cells and follicular development. Our studies indicate that GDF9 is present in the hen oocyte and influences granulosa cell proliferation. Additionally, Bmp15 mRNA is most abundant in oocytes of small follicles and stimulates an increase in follicle stimulating hormone (FSH) receptor mRNA in granulosa cells. BMP15 also enhances yolk uptake in growing follicles by decreasing tight junctions between granulosa cells. These studies indicate that the oocyte likely contributes to follicle development. Commercial laying hens also spontaneously develop ovarian cancer at a high rate, and susceptibility to this disease has been associated with ovulatory events in women. Studies have shown that ovulation, or events associated with ovulation, increase the prevalence of ovarian cancer in hens. Inhibition of ovulation in hens through a hormonal strategy mimicking oral contraceptives results in a decrease of ovarian cancer incidence. Recent studies in women have suggested that some ovarian tumors may arise from the distal oviduct. Gene expression profiles in very early stage tumors from hens show a high expression of oviduct-related genes, supporting the possibility of oviduct origin for some ovarian tumors. Genetic selection for high productivity in commercial laying hens has generated an efficient and valuable food source as well as an important animal model for human ovarian cancer.
Collapse
Affiliation(s)
- P A Johnson
- Department of Animal Science, Cornell University, Ithaca, NY 14853
| | - C S Stephens
- Department of Animal Science, Cornell University, Ithaca, NY 14853
| | - J R Giles
- Department of Animal Science, Cornell University, Ithaca, NY 14853
| |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to highlight recent research and insights into the relationship between fertility drug use and ovarian cancer risk. RECENT FINDINGS Results from two large case-control studies provided further evidence that fertility drug use does not significantly contribute to risk of ovarian cancer among the majority of women when adjusting for known confounding factors. However, questions regarding the effect on certain subgroups, including long-term fertility drug users, women who remain nulligravid after fertility treatment, women with BRCA1 or BRCA2 mutations and borderline ovarian tumours, still remain. In addition, it may currently just be too early to determine whether there is an association between fertility drug use and ovarian cancer risk given that many of the exposed women are only now beginning to reach the ovarian cancer age range. SUMMARY Whether use of fertility drugs increases the risk of ovarian cancer is an important question that requires further investigation, in particular given the large number of women utilizing fertility treatments. Fortunately, results from recent studies have been mainly reassuring. Large well designed studies with sufficient follow-up time are needed to further evaluate the effects of fertility treatments within subgroups defined by patient and tumour characteristics.
Collapse
|
15
|
Bradaric MJ, Penumatsa K, Barua A, Edassery SL, Yu Y, Abramowicz JS, Bahr JM, Luborsky JL. Immune cells in the normal ovary and spontaneous ovarian tumors in the laying hen (Gallus domesticus) model of human ovarian cancer. PLoS One 2013; 8:e74147. [PMID: 24040191 PMCID: PMC3767673 DOI: 10.1371/journal.pone.0074147] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 07/26/2013] [Indexed: 12/22/2022] Open
Abstract
Background Spontaneous ovarian cancer in chickens resembles human tumors both histologically and biochemically. The goal was to determine if there are differences in lymphocyte content between normal ovaries and ovarian tumors in chickens as a basis for further studies to understand the role of immunity in human ovarian cancer progression. Methods Hens were selected using grey scale and color Doppler ultrasound to determine if they had normal or tumor morphology. Cells were isolated from ovaries (n = 6 hens) and lymphocyte numbers were determined by flow cytometry using antibodies to avian CD4 and CD8 T and B (Bu1a) cells. Ovarian sections from another set of hens (n = 26) were assessed to verify tumor type and stage and to count CD4, CD8 and Bu1a immunostained cells by morphometric analysis. Results T and B cells were more numerous in ovarian tumors than in normal ovaries by flow cytometry and immunohistochemistry. There were less CD4+ cells than CD8+ and Bu1a+ cells in normal ovaries or ovarian tumors. CD8+ cells were the dominant T cell sub-type in both ovarian stroma and in ovarian follicles compared to CD4+ cells. Bu1a+ cells were consistently found in the stroma of normal ovaries and ovarian tumors but were not associated with follicles. The number of immune cells was highest in late stage serous tumors compared to endometrioid and mucinous tumors. Conclusions The results suggest that similar to human ovarian cancer there are comparatively more immune cells in chicken ovarian tumors than in normal ovaries, and the highest immune cell content occurs in serous tumors. Thus, this study establishes a foundation for further study of tumor immune responses in a spontaneous model of ovarian cancer which will facilitate studies of the role of immunity in early ovarian cancer progression and use of the hen in pre-clinical vaccine trials.
Collapse
Affiliation(s)
- Michael J. Bradaric
- Department of Pharmacology, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Krishna Penumatsa
- Department of Pharmacology, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Animesh Barua
- Department of Pharmacology, Rush University Medical Center, Chicago, Illinois, United States of America
- Department of Pathology, Rush University Medical Center, Chicago, Illinois, United States of America
- Department of Obstetrics & Gynecology, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Seby L. Edassery
- Department of Pharmacology, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Yi Yu
- Department of Pharmacology, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Jacques S. Abramowicz
- Department of Obstetrics & Gynecology, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Janice M. Bahr
- Department of Animal Science, University of Illinois Urbana-Champaign, Illinois, United States of America
| | - Judith L. Luborsky
- Department of Pharmacology, Rush University Medical Center, Chicago, Illinois, United States of America
- Department of Obstetrics & Gynecology, Rush University Medical Center, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
16
|
Lengyel E, Burdette JE, Kenny HA, Matei D, Pilrose J, Haluska P, Nephew KP, Hales DB, Stack MS. Epithelial ovarian cancer experimental models. Oncogene 2013; 33:3619-33. [PMID: 23934194 DOI: 10.1038/onc.2013.321] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Revised: 06/21/2013] [Accepted: 06/21/2013] [Indexed: 12/13/2022]
Abstract
Epithelial ovarian cancer (OvCa) is associated with high mortality and, as the majority (>75%) of women with OvCa have metastatic disease at the time of diagnosis, rates of survival have not changed appreciably over 30 years. A mechanistic understanding of OvCa initiation and progression is hindered by the complexity of genetic and/or environmental initiating events and lack of clarity regarding the cell(s) or tissue(s) of origin. Metastasis of OvCa involves direct extension or exfoliation of cells and cellular aggregates into the peritoneal cavity, survival of matrix-detached cells in a complex ascites fluid phase and subsequent adhesion to the mesothelium lining covering abdominal organs to establish secondary lesions containing host stromal and inflammatory components. Development of experimental models to recapitulate this unique mechanism of metastasis presents a remarkable scientific challenge, and many approaches used to study other solid tumors (for example, lung, colon and breast) are not transferable to OvCa research given the distinct metastasis pattern and unique tumor microenvironment (TME). This review will discuss recent progress in the development and refinement of experimental models to study OvCa. Novel cellular, three-dimensional organotypic, and ex vivo models are considered and the current in vivo models summarized. The review critically evaluates currently available genetic mouse models of OvCa, the emergence of xenopatients and the utility of the hen model to study OvCa prevention, tumorigenesis, metastasis and chemoresistance. As these new approaches more accurately recapitulate the complex TME, it is predicted that new opportunities for enhanced understanding of disease progression, metastasis and therapeutic response will emerge.
Collapse
Affiliation(s)
- E Lengyel
- Section of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL, USA
| | - J E Burdette
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois/Chicago, Chicago, IL, USA
| | - H A Kenny
- Section of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL, USA
| | - D Matei
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - J Pilrose
- Medical Sciences, Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Bloomington, IN, USA
| | - P Haluska
- Division of Medical Oncology, Mayo Clinic, Rochester, MN, USA
| | - K P Nephew
- Medical Sciences, Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Bloomington, IN, USA
| | - D B Hales
- Department of Physiology, Southern Illinois University, Carbondale, IL, USA
| | - M S Stack
- Department of Chemistry and Biochemistry, Harper Cancer Research Institute, University of Notre Dame, South Bend, IN, USA
| |
Collapse
|
17
|
Abstract
The domestic laying hen is the only non-human animal that spontaneously develops ovarian cancer with a high prevalence. Hens ovulate prolifically, and this has made the hen intuitively appealing as a model of this disease in light of epidemiological evidence that ovulation rate is highly correlated with the risk of human ovarian cancer. As in women, ovarian cancer in the hen is age-related and it is also grossly and histologically similar to that in humans. In both women and hens, the cancer metastasizes to similar tissues with an accumulation of ascites fluid. Some aggressive ovarian cancers in women arise from cells in the oviduct; this is intriguing because ovarian cancers in the hen express an oviductal protein that is normally absent in the ovary.
Collapse
Affiliation(s)
- Patricia A Johnson
- Department of Animal Science, Cornell University, Ithaca, NY 14853, USA.
| | | |
Collapse
|
18
|
Asante A, Leonard PH, Weaver AL, Goode EL, Jensen JR, Stewart EA, Coddington CC. Fertility drug use and the risk of ovarian tumors in infertile women: a case-control study. Fertil Steril 2013; 99:2031-6. [PMID: 23552324 DOI: 10.1016/j.fertnstert.2013.02.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 02/07/2013] [Accepted: 02/07/2013] [Indexed: 10/27/2022]
Abstract
OBJECTIVE To assess the influence of infertility and fertility drugs on risk of ovarian tumors. DESIGN Case-control study (Mayo Clinic Ovarian Cancer Study). SETTING Ongoing academic study of ovarian cancer. PATIENT(S) A total of 1,900 women (1,028 with ovarian tumors and 872 controls, frequency matched on age and region of residence) who had provided complete information in a self-report questionnaire about history of infertility and fertility drug use. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Effect of infertility history, use of fertility drugs and oral contraception, and gravidity on the risk of ovarian tumor development, after controlling for potential confounders. RESULT(S) Among women who had a history of infertility, use of fertility drugs was reported by 44 (24%) of 182 controls and 38 (17%) of 226 cases. Infertile women who used fertility drugs were not at increased risk of developing ovarian tumors compared with infertile women who did not use fertility drugs; the adjusted odds ratio was 0.64 (95% CI, 0.37, 1.11). The findings were similar when stratified by gravidity and when analyzed separately for borderline versus invasive tumors. CONCLUSION(S) We found no statistically significant association between fertility drug use and risk of ovarian tumors. Further larger, prospective studies are needed to confirm this observation.
Collapse
Affiliation(s)
- Albert Asante
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, Minnesota 55905, USA.
| | | | | | | | | | | | | |
Collapse
|
19
|
Elkin R, Bauer R, Schneider W. The restricted ovulator chicken strain: an oviparous vertebrate model of reproductive dysfunction caused by a gene defect affecting an oocyte-specific receptor. Anim Reprod Sci 2012; 136:1-13. [PMID: 23123285 PMCID: PMC3521959 DOI: 10.1016/j.anireprosci.2012.10.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 09/23/2012] [Accepted: 10/12/2012] [Indexed: 01/26/2023]
Abstract
A unique non-laying strain of chickens with heritable hyperlipidemia and aortic atherosclerosis was first described in 1974. Subsequent work established that the phenotype results from a naturally occurring point mutation in the gene specifying the very low density lipoprotein (VLDL) receptor, a 95-kDa membrane protein which normally mediates the massive uptake of the main circulating hepatically-synthesized yolk precursors, VLDL and vitellogenin. As a result, hens of the mutant strain termed "restricted ovulator" (R/O) have approximately 5-fold elevations in circulating cholesterol and triglyceride concentrations compared with normal layers, and hepatic lipogenesis and cholesterogenesis are markedly attenuated due to feedback inhibition. R/O hens also exhibit hyperestrogenemia, hypoprogesteronemia, elevated circulating gonadotropins, and up-regulated pituitary progesterone receptor mRNA and isoforms. The ovaries of R/O hens are abnormal in that they lack a follicular hierarchy and contain many small preovulatory follicles of various colors, shapes, and sizes. However, since R/O hens occasionally lay eggs, it is possible that endocytic receptors other than the VLDL receptor may be able to facilitate oocyte growth and/or that yolk precursor uptake can occur via a nonspecific bulk process. A mammalian model of impaired fecundity with abnormal lipoprotein metabolism also has been described, but different mechanisms are likely responsible for its reproductive dysfunction. Nevertheless, as our understanding of the molecular physiology and biochemistry of avian oocyte growth continues to expand, in part due to studies of the R/O model, new analogies may emerge between avian and mammalian systems, which ultimately could help to answer important questions in reproductive biology.
Collapse
Affiliation(s)
- R.G. Elkin
- Department of Animal Science, The Pennsylvania State University, University Park, PA 16802, USA
| | - R. Bauer
- Department of Medical Biochemistry, Medical University of Vienna, Max F. Perutz Laboratories, Dr. Bohr-Gasse 9/2, A-1030 Vienna, Austria
| | - W.J. Schneider
- Department of Medical Biochemistry, Medical University of Vienna, Max F. Perutz Laboratories, Dr. Bohr-Gasse 9/2, A-1030 Vienna, Austria
| |
Collapse
|
20
|
Barua A, Yellapa A, Bahr JM, Abramowicz JS, Edassery SL, Basu S, Rotmensch J, Bitterman P. Expression of death receptor 6 by ovarian tumors in laying hens, a preclinical model of spontaneous ovarian cancer. Transl Oncol 2012; 5:260-8. [PMID: 22937178 PMCID: PMC3431036 DOI: 10.1593/tlo.12184] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 04/25/2012] [Accepted: 04/27/2012] [Indexed: 11/18/2022] Open
Abstract
Tumor-associated neoangiogenesis and suppression of antitumor immunity are hallmarks of tumor development and progression. Death receptor 6 (DR6) has been reported to be associated with suppression of antitumor immunity and tumor progression in several malignancies. However, expression of DR6 by malignant ovarian epithelial tumors at an early stage is unknown. The goals of this study were to determine whether DR6 is expressed by malignant ovarian epithelial tumors at an early stage and to examine whether DR6 expression is associated with ovarian cancer (OVCA) progression in a laying hen model of spontaneous OVCA. Expression of DR6 was examined in normal and malignant ovaries, normal ovarian surface epithelial (OSE) cells, or malignant epithelial cells and in serum of 3-year-old hens. The population of microvessels expressing DR6 was significantly higher in hens with early-stage OVCA than hens with normal ovaries (P < .01) and increased further in late-stage OVCA. The results of this study showed that, in addition to microvessels, tumor cells in the ovary also express DR6 with a significantly higher intensity than normal OSE cells. Similar patterns of DR6 expression were also observed by immunoblot analysis and gene expression studies. Furthermore, DR6 was also detected in the serum of hens. In conclusion, DR6 expression is associated with OVCA development and progression in laying hens. This study may be helpful to examine the feasibility of DR6 as a useful surrogate marker of OVCA, a target for antitumor immunotherapy and molecular imaging and thus provide a foundation for clinical studies.
Collapse
Affiliation(s)
- Animesh Barua
- Department of Pharmacology, Rush University Medical Center, Chicago, IL
- Department of Obstetrics and Gynecology, Rush University Medical Center, Chicago, IL
- Department of Pathology, Rush University Medical Center, Chicago, IL
| | - Aparna Yellapa
- Department of Pharmacology, Rush University Medical Center, Chicago, IL
| | - Janice M Bahr
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Jacques S Abramowicz
- Department of Obstetrics and Gynecology, Rush University Medical Center, Chicago, IL
| | - Seby L Edassery
- Department of Pharmacology, Rush University Medical Center, Chicago, IL
| | - Sanjib Basu
- Department of Preventive Medicine (Biostatistics), Rush University Medical Center, Chicago, IL
| | - Jacob Rotmensch
- Department of Obstetrics and Gynecology, Rush University Medical Center, Chicago, IL
| | - Pincas Bitterman
- Department of Pathology, Rush University Medical Center, Chicago, IL
| |
Collapse
|
21
|
Treviño LS, Buckles EL, Johnson PA. Oral contraceptives decrease the prevalence of ovarian cancer in the hen. Cancer Prev Res (Phila) 2011; 5:343-9. [PMID: 22135044 DOI: 10.1158/1940-6207.capr-11-0344] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Ovarian cancer is the leading cause of reproductive cancer death in U.S. women. This high mortality rate is due to the lack of early detection methods and ineffectiveness of therapy for advanced disease. Until more effective screening methods and therapies are developed, chemoprevention strategies are warranted. The hen has a high spontaneous prevalence of ovarian cancer and has been used as a model for studying ovarian cancer chemoprevention. In this study, we used the hen to determine the effect of progestin alone, estrogen alone, or progestin and estrogen in combination (as found in oral contraceptives) on ovarian cancer prevalence. We found that treatment with progestin alone and in combination with estrogen decreased the prevalence of ovarian cancer. A significant risk reduction of 91% was observed in the group treated with progestin alone (risk ratio = 0.0909; 95% CI: 0.0117-0.704) and an 81% reduction was observed in the group treated with progestin plus estrogen (risk ratio = 0.1916; 95% CI = 0.043-0.864). Egg production was also significantly reduced in these treatment groups compared with control. We found no effect of progestin, either alone or in combination with estrogen, on apoptosis or proliferation in the ovary, indicating that this is not the likely mechanism responsible for the protective effect of progestin in the hen. Our results support the use of oral contraceptives to prevent ovarian cancer and suggest that ovulation is related to the risk of ovarian cancer in hens and that other factors, such as hormones, more than likely modify this risk.
Collapse
Affiliation(s)
- Lindsey S Treviño
- Department of Animal Science, Cornell University, Ithaca, New York 14853, USA
| | | | | |
Collapse
|