1
|
Kanwal N, Musharraf SG. Analytical approaches for the determination of adulterated animal fats and vegetable oils in food and non-food samples. Food Chem 2024; 460:140786. [PMID: 39142208 DOI: 10.1016/j.foodchem.2024.140786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024]
Abstract
Edible oils and fats are crucial components of everyday cooking and the production of food products, but their purity has been a major issue for a long time. High-quality edible oils are contaminated with low- and cheap-quality edible oils to increase profits. The adulteration of edible oils and fats also produces many health risks. Detection of main and minor components can identify adulterations using various techniques, such as GC, HPLC, TLC, FTIR, NIR, NMR, direct mass spectrometry, PCR, E-Nose, and DSC. Each detection technique has its advantages and disadvantages. For example, chromatography offers high precision but requires extensive sample preparation, while spectroscopy is rapid and non-destructive but may lack resolution. Direct mass spectrometry is faster and simpler than chromatography-based MS, eliminating complex preparation steps. DNA-based oil authentication is effective but hindered by laborious extraction processes. E-Nose only distinguishes odours, and DSC directly studies lipid thermal properties without derivatization or solvents. Mass spectrometry-based techniques, particularly GC-MS is found to be highly effective for detecting adulteration of oils and fats in food and non-food samples. This review summarizes the benefits and drawbacks of these analytical approaches and their use in conjunction with chemometric tools to detect the adulteration of animal fats and vegetable oils. This combination provides a powerful technique with enormous chemotaxonomic potential that includes the detection of adulterations, quality assurance, assessment of geographical origin, assessment of the process, and classification of the product in complex matrices from food and non-food samples.
Collapse
Affiliation(s)
- Nayab Kanwal
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Syed Ghulam Musharraf
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan..
| |
Collapse
|
2
|
He Y, Bai X, Xiao Q, Liu F, Zhou L, Zhang C. Detection of adulteration in food based on nondestructive analysis techniques: a review. Crit Rev Food Sci Nutr 2020; 61:2351-2371. [PMID: 32543218 DOI: 10.1080/10408398.2020.1777526] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In recent years, people pay more and more attention to food quality and safety, which are significantly relating to human health. Food adulteration is a world-wide concerned issue relating to food quality and safety, and it is difficult to be detected. Modern detection techniques (high performance liquid chromatography, gas chromatography-mass spectrometer, etc.) can accurately identify the types and concentrations of adulterants in different food types. However, the characteristics as expensive, low efficient and complex sample preparation and operation limit the use of these techniques. The rapid, nondestructive and accurate detection techniques of food adulteration is of great and urgent demand. This paper introduced the principles, advantages and disadvantages of the nondestructive analysis techniques and reviewed the applications of these techniques in food adulteration screen in recent years. Differences among these techniques, differences on data interpretation and future prospects were also discussed.
Collapse
Affiliation(s)
- Yong He
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China.,Ministry of Agriculture and Rural Affairs, Key Laboratory of Spectroscopy Sensing, Hangzhou, Zhejiang, China
| | - Xiulin Bai
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China.,Ministry of Agriculture and Rural Affairs, Key Laboratory of Spectroscopy Sensing, Hangzhou, Zhejiang, China
| | - Qinlin Xiao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China.,Ministry of Agriculture and Rural Affairs, Key Laboratory of Spectroscopy Sensing, Hangzhou, Zhejiang, China
| | - Fei Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China.,Ministry of Agriculture and Rural Affairs, Key Laboratory of Spectroscopy Sensing, Hangzhou, Zhejiang, China
| | - Lei Zhou
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China.,Ministry of Agriculture and Rural Affairs, Key Laboratory of Spectroscopy Sensing, Hangzhou, Zhejiang, China
| | - Chu Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China.,Ministry of Agriculture and Rural Affairs, Key Laboratory of Spectroscopy Sensing, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Karuk Elmas ŞN, Arslan FN, Akin G, Kenar A, Janssen HG, Yilmaz I. Synchronous fluorescence spectroscopy combined with chemometrics for rapid assessment of cold–pressed grape seed oil adulteration: Qualitative and quantitative study. Talanta 2019; 196:22-31. [DOI: 10.1016/j.talanta.2018.12.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/07/2018] [Accepted: 12/11/2018] [Indexed: 10/27/2022]
|
4
|
Esteki M, Shahsavari Z, Simal-Gandara J. Use of spectroscopic methods in combination with linear discriminant analysis for authentication of food products. Food Control 2018. [DOI: 10.1016/j.foodcont.2018.03.031] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
6
|
Dankowska A, Domagała A, Kowalewski W. Quantification of Coffea arabica and Coffea canephora var. robusta concentration in blends by means of synchronous fluorescence and UV-Vis spectroscopies. Talanta 2017; 172:215-220. [DOI: 10.1016/j.talanta.2017.05.036] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 05/09/2017] [Accepted: 05/12/2017] [Indexed: 10/19/2022]
|
7
|
Temiz HT, Tamer U, Berkkan A, Boyaci IH. Synchronous fluorescence spectroscopy for determination of tahini adulteration. Talanta 2017; 167:557-562. [DOI: 10.1016/j.talanta.2017.02.044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 02/17/2017] [Accepted: 02/19/2017] [Indexed: 02/05/2023]
|
8
|
Rapid discrimination between buffalo and cow milk and detection of adulteration of buffalo milk with cow milk using synchronous fluorescence spectroscopy in combination with multivariate methods. J DAIRY RES 2017; 84:214-219. [DOI: 10.1017/s0022029917000073] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This research paper describes the potential of synchronous fluorescence (SF) spectroscopy for authentication of buffalo milk, a favourable raw material in the production of some premium dairy products. Buffalo milk is subjected to fraudulent activities like many other high priced foodstuffs. The current methods widely used for the detection of adulteration of buffalo milk have various disadvantages making them unattractive for routine analysis. Thus, the aim of the present study was to assess the potential of SF spectroscopy in combination with multivariate methods for rapid discrimination between buffalo and cow milk and detection of the adulteration of buffalo milk with cow milk. SF spectra of cow and buffalo milk samples were recorded between 400–550 nm excitation range with Δλ of 10–100 nm, in steps of 10 nm. The data obtained for ∆λ = 10 nm were utilised to classify the samples using principal component analysis (PCA), and detect the adulteration level of buffalo milk with cow milk using partial least square (PLS) methods. Successful discrimination of samples and detection of adulteration of buffalo milk with limit of detection value (LOD) of 6% are achieved with the models having root mean square error of calibration (RMSEC) and the root mean square error of cross-validation (RMSECV) and root mean square error of prediction (RMSEP) values of 2, 7, and 4%, respectively. The results reveal the potential of SF spectroscopy for rapid authentication of buffalo milk.
Collapse
|
9
|
Dankowska A. Data fusion of fluorescence and UV spectroscopies improves the detection of cocoa butter adulteration. EUR J LIPID SCI TECH 2017. [DOI: 10.1002/ejlt.201600268] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Anna Dankowska
- Faculty of Commodity Science; Poznań University of Economics and Business; Poznań Poland
| |
Collapse
|
10
|
Zettel V, Ahmad MH, Beltramo T, Hermannseder B, Hitzemann A, Nache M, Paquet-Durand O, Schöck T, Hecker F, Hitzmann B. Supervision of Food Manufacturing Processes Using Optical Process Analyzers - An Overview. CHEMBIOENG REVIEWS 2016. [DOI: 10.1002/cben.201600013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
11
|
Zettel V, Ahmad MH, Hitzemann A, Nache M, Paquet-Durand O, Schöck T, Hecker F, Hitzmann B. Optische Prozessanalysatoren für die Lebensmittelindustrie. CHEM-ING-TECH 2016. [DOI: 10.1002/cite.201500097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|