1
|
Decha N, Thonglam J, Meesane J, Pornsuwan S, Tansakul C. Dual functional profluorescent nitroxides for the detection of reactive oxygen species and inhibition of collagen degradation during reassembly. Org Biomol Chem 2024; 22:1254-1268. [PMID: 38251273 DOI: 10.1039/d3ob01667f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
High content of reactive oxygen species (ROS) in the human body leads to oxidative stress and serious health problems, such as cancer and cardiovascular or bone diseases. It is also one of the agents that cause collagen damage. Herein, detection of ROS, scavenging of formed carbon-centered radicals and inhibition of collagen fragmentation were performed in a single operation using newly synthesized profluorescent nitroxide PN1via a switch-on approach. Reassembly of acid soluble collagen (ASC) in the presence of hydroxyl and hydroperoxyl radicals, representatives of ROS, was monitored to study the efficiency of the PN1 probe. Self-assembly curves of collagen fibril solution were in accordance with differential scanning calorimetry (DSC) and scanning electron microscopy (SEM) observations, and indicated that PN1 efficiently inhibited the collagen chain scission. In order to prevent the leakage of the probe in materials, a PN2 monomer was successfully incorporated with MMA to form a profluorescent copolymer probe. Furthermore, PN1 and PN2-MMA copolymer probes offered high sensitivity of detection of ROS in the presence of collagen fibrils with detection limits of 1.1 and 2.7 μM, respectively. The mechanism of ROS detection and inhibition of collagen degradation by profluorescent nitroxides was proposed.
Collapse
Affiliation(s)
- Nattawut Decha
- Division of Physical Science and Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand.
| | - Jutakan Thonglam
- Institute of Biomedical Engineering, Department of Biomedical Science and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90100, Thailand
| | - Jirut Meesane
- Institute of Biomedical Engineering, Department of Biomedical Science and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90100, Thailand
| | - Soraya Pornsuwan
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Chittreeya Tansakul
- Division of Physical Science and Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand.
| |
Collapse
|
2
|
Ahmad MI, Li Y, Pan J, Liu F, Dai H, Fu Y, Huang T, Farooq S, Zhang H. Collagen and gelatin: Structure, properties, and applications in food industry. Int J Biol Macromol 2024; 254:128037. [PMID: 37963506 DOI: 10.1016/j.ijbiomac.2023.128037] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/01/2023] [Accepted: 11/09/2023] [Indexed: 11/16/2023]
Abstract
Food-producing animals have the highest concentration of collagen in their extracellular matrix. Collagen and gelatin are widely used in food industry due to their specific structural, physicochemical, and biochemical properties, which enable them to improve health and nutritional value as well as to increase the stability, consistency, and elasticity of food products. This paper reviews the structural and functional properties including inherent self-assembly, gel forming, water-retaining, emulsifying, foaming, and thickening properties of collagen and gelatin. Then the colloid structures formed by collagen such as emulsions, films or coatings, and fibers are summarized. Finally, the potential applications of collagen and gelatin in muscle foods, dairy products, confectionary and dessert, and beverage products are also reviewed. The objective of this review is to provide the current market value, progress as well as applications of collagen and its derivatives in food industry.
Collapse
Affiliation(s)
- Muhammad Ijaz Ahmad
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Yonghui Li
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA
| | - Jinfeng Pan
- National Engineering Research Centre for Seafood, Collaborative Innovation Centre of Provincial and Ministerial Co-construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Centre for Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Fei Liu
- State Key Laboratory of Food Science and Technology, Science Center for Future Foods, Jiangnan University, School of Food Science and Technology, International Joint Laboratory on Food Safety, Wuxi 214122, China
| | - Hongjie Dai
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Yu Fu
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Tao Huang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315800, China
| | - Shahzad Farooq
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Hui Zhang
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
3
|
Prontera CT, Gallo N, Giannuzzi R, Pugliese M, Primiceri V, Mariano F, Maggiore A, Gigli G, Sannino A, Salvatore L, Maiorano V. Collagen Membrane as Water-Based Gel Electrolyte for Electrochromic Devices. Gels 2023; 9:gels9040310. [PMID: 37102922 PMCID: PMC10137362 DOI: 10.3390/gels9040310] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/28/2023] Open
Abstract
Bio-based polymers are attracting great interest due to their potential for several applications in place of conventional polymers. In the field of electrochemical devices, the electrolyte is a fundamental element that determines their performance, and polymers represent good candidates for developing solid-state and gel-based electrolytes toward the development of full-solid-state devices. In this context, the fabrication and characterization of uncrosslinked and physically cross-linked collagen membranes are reported to test their potential as a polymeric matrix for the development of a gel electrolyte. The evaluation of the membrane's stability in water and aqueous electrolyte and the mechanical characterization demonstrated that cross-linked samples showed a good compromise in terms of water absorption capability and resistance. The optical characteristics and the ionic conductivity of the cross-linked membrane, after overnight dipping in sulfuric acid solution, demonstrated the potential of the reported membrane as an electrolyte for electrochromic devices. As proof of concept, an electrochromic device was fabricated by sandwiching the membrane (after sulfuric acid dipping) between a glass/ITO/PEDOT:PSS substrate and a glass/ITO/SnO2 substrate. The results in terms of optical modulation and kinetic performance of such a device demonstrated that the reported cross-linked collagen membrane could represent a valid candidate as a water-based gel and bio-based electrolyte for full-solid-state electrochromic devices.
Collapse
Affiliation(s)
- Carmela Tania Prontera
- CNR NANOTEC-Institute of Nanotechnology c/o Campus Ecotekne, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Nunzia Gallo
- Department of Engineering for Innovations, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Roberto Giannuzzi
- CNR NANOTEC-Institute of Nanotechnology c/o Campus Ecotekne, University of Salento, Via Monteroni, 73100 Lecce, Italy
- Department of Mathematics and Physics "Ennio De Giorgi", University of Salento, Via per Arnesano, 73100 Lecce, Italy
| | - Marco Pugliese
- CNR NANOTEC-Institute of Nanotechnology c/o Campus Ecotekne, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Vitantonio Primiceri
- CNR NANOTEC-Institute of Nanotechnology c/o Campus Ecotekne, University of Salento, Via Monteroni, 73100 Lecce, Italy
- Department of Mathematics and Physics "Ennio De Giorgi", University of Salento, Via per Arnesano, 73100 Lecce, Italy
| | - Fabrizio Mariano
- CNR NANOTEC-Institute of Nanotechnology c/o Campus Ecotekne, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Antonio Maggiore
- CNR NANOTEC-Institute of Nanotechnology c/o Campus Ecotekne, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Giuseppe Gigli
- CNR NANOTEC-Institute of Nanotechnology c/o Campus Ecotekne, University of Salento, Via Monteroni, 73100 Lecce, Italy
- Department of Mathematics and Physics "Ennio De Giorgi", University of Salento, Via per Arnesano, 73100 Lecce, Italy
| | - Alessandro Sannino
- Department of Engineering for Innovations, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Luca Salvatore
- Department of Engineering for Innovations, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Vincenzo Maiorano
- CNR NANOTEC-Institute of Nanotechnology c/o Campus Ecotekne, University of Salento, Via Monteroni, 73100 Lecce, Italy
| |
Collapse
|
4
|
Wang S, Zhou D, Liu N, Sun Y, Sun G. Physicochemical and Fibril Formation Properties of Pufferfish ( Takifugu obscurus) Skin Collagen from Solvent Extraction in Different Conditions. Gels 2022; 9:gels9010017. [PMID: 36661785 PMCID: PMC9857395 DOI: 10.3390/gels9010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Acid-solubilized (ASC) and pepsin-solubilized collagen (PSC) extracted at 4 °C (ASC-4 and PSC-4), 12 °C (ASC-12 and PSC-12), and 20 °C (ASC-20 and PSC-20) from the skin of farmed pufferfish (Takifugu obscurus) was characterized by SDS-polyacrylamide gel electrophoresis (SDS-PAGE), Fourier-transform infrared spectroscopy (FTIR), and fibril-forming tests. The results indicate that extraction at 12 °C can effectively improve the extraction efficiency of natural collagen compared with extraction at 4 °C. However, extraction at 20 °C results in a decrease in molecular integrity, thus, inducing the resultant collagen to degrade or even lose fibril-forming ability. Transmission electron microscope (TEM) images revealed that ASC-4, PSC-4, ASC-12, and PSC-12 can assemble into fibrils with D-periodicities, and ASC-20 associated into molecular aggregates alongside partial D-banded fibrils, while no well-defined fibrils were observed in PSC-20. Scanning electron microscope (SEM) analysis confirmed the well-defined fibril morphologies of ASC-4, PSC-4, ASC-12, and PSC-12 with imino acid contents between 190.0 and 197.8 residues/1000 residues. The denaturation temperature of ASC-4, PSC-4, ASC-12 and PSC-12 was 30.0, 27.6, 25.9 and 22.7 °C, respectively. This study indicates that ASC and PSC extracted at 4 °C and 12 °C could be alternatives to terrestrial collagens for industrial applications.
Collapse
Affiliation(s)
- Shanshan Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Deqing Zhou
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
- Correspondence: ; Tel./Fax: +86-0532-85819337
| | - Nan Liu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Yong Sun
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Guohui Sun
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| |
Collapse
|
5
|
An X, Duan S, Jiang Z, Chen S, Sun W, Liu X, Sun Z, Li Y, Yan M. Role of chlorogenic acid and procyanidin in the modification of self-assembled fibrillar gel prepared from tilapia collagen. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.110177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
6
|
Yan M, An X, Duan S, Jiang Z, Liu X, Zhao X, Li Y. A comparative study on cross-linking of fibrillar gel prepared by tilapia collagen and hyaluronic acid with EDC/NHS and genipin. Int J Biol Macromol 2022; 213:639-650. [PMID: 35671907 DOI: 10.1016/j.ijbiomac.2022.06.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/20/2022] [Accepted: 06/01/2022] [Indexed: 11/26/2022]
Abstract
Chemical cross-linking is an important step to grant satisfying properties to collagen-based materials. However, there are few comparative studies on crossing-linking of collagen-based fibrillar gels which are preferred biomaterials for similar properties to native tissues with different cross-linking agents. In this study, a fibrillar gel was fabricated with tilapia collagen and hyaluronic acid, and cross-linking conditions with EDC/NHS and genipin were discussed. Genipin gave gels much higher equilibrium cross-linking degree than EDC/NHS. ATR-FTIR and XPS showed EDC/NHS offered short-range cross-linking formed by amino and carboxyl groups in fibrils, while genipin induced long-range cross-linking by nucleophilic reaction through attack of amino groups in fibrils on carbon atoms at C-3 as well as ester groups in genipin, besides improved hydrogen bonds. XRD and SEM revealed the structural integrity of gels was strengthened after cross-linking, whereas fibril bundles disaggregated into thin fibrils. Consequently, swelling capacity and anti-degraded property were enhanced significantly, while thermal stability weakened. The fibrillar gels had good biocompatibility, but interestingly the appearance and migration of L929 fibroblasts were influenced by cross-linking degree. These results demonstrated that aquatic collagen-based fibrillar gel cross-linked by genipin had greater potential in biomaterials than EDC/NHS, whereas the cross-linking degree should be controlled.
Collapse
Affiliation(s)
- Mingyan Yan
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Xiangsheng An
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Shujun Duan
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Zhicong Jiang
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Xiaoyan Liu
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Xiaochen Zhao
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Yinping Li
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| |
Collapse
|
7
|
Costa FT, Oliveira TP, Droval AA, Marques LLM, Fuchs RHB, Cardoso FAR. Evaluation of physicochemical properties of Nile tilapia skin collagen extracted in acid médium. BRAZ J BIOL 2022; 84:e255440. [PMID: 35584456 DOI: 10.1590/1519-6984.255440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 01/18/2022] [Indexed: 11/21/2022] Open
Abstract
Tilapia has high-temperature tolerance, can breed in captivity, grow fast, and have excellent cost-benefit. Because of these characteristics, this species is of great interest in aquaculture and, currently, the most produced fish in Brazil. However, by increasing tilapia production, there was also a rise in the amount of organic waste, mainly from filleting, which discards 70% of waste. There are many studies on collagen extraction from tilapia skin as an alternative to reduce these residues and add commercial value. In this work, the extraction of protein concentrate was tested using an acid protocol, in which the tilapia skins underwent a pre-treatment in an acid medium and saline precipitation, with variations in time and concentration. After its extraction, the skin was evaluated for ash, moisture, protein, solubility, and pH. The protein concentrate obtained showed low ash contents, and the humidity is within those presented by the literature. The protein concentrate showed levels from 68.73 to 80.58% of protein and a low solubility between 4.03 to 6.93%. In conclusion, acid extraction is a possible means of collagen extraction, and tilapia skin is a good alternative to reuse waste generated in the fish industry.
Collapse
Affiliation(s)
- F T Costa
- Universidade Tecnológica Federal do Paraná - UTFPR, Department of Food and Chemical Engineering, Campo Mourão, PR, Brasil
| | - T P Oliveira
- Universidade Tecnológica Federal do Paraná - UTFPR, Post-Graduation Program of in Technological Innovations - PPGIT, Campo Mourão, PR, Brasil
| | - A A Droval
- Universidade Tecnológica Federal do Paraná - UTFPR, Post-graduation Program of Food Technology - PPGTA, Campo Mourão, PR, Brasil
| | - L L M Marques
- Universidade Tecnológica Federal do Paraná - UTFPR, Department of Food and Chemical Engineering, Campo Mourão, PR, Brasil
| | - R H B Fuchs
- Universidade Tecnológica Federal do Paraná - UTFPR, Post-graduation Program of Food Technology - PPGTA, Campo Mourão, PR, Brasil
| | - F A R Cardoso
- Universidade Tecnológica Federal do Paraná - UTFPR, Post-Graduation Program of in Technological Innovations - PPGIT, Campo Mourão, PR, Brasil
| |
Collapse
|
8
|
Aquaponics-Derived Tilapia Skin Collagen for Biomaterials Development. Polymers (Basel) 2022; 14:polym14091865. [PMID: 35567034 PMCID: PMC9103308 DOI: 10.3390/polym14091865] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 11/16/2022] Open
Abstract
Collagen is one of the most widely used biomaterials in health-related sectors. The industrial production of collagen mostly relies on its extraction from mammals, but several issues limited its use. In the last two decades, marine organisms attracted interest as safe, abundant, and alternative source for collagen extraction. In particular, the possibility to valorize the huge quantity of fish industry waste and byproducts as collagen source reinforced perception of fish collagen as eco-friendlier and particularly attractive in terms of profitability and cost-effectiveness. Especially fish byproducts from eco-sustainable aquaponics production allow for fish biomass with additional added value and controlled properties over time. Among fish species, Oreochromis niloticus is one of the most widely bred fish in large-scale aquaculture and aquaponics systems. In this work, type I collagen was extracted from aquaponics-raised Tilapia skin and characterized from a chemical, physical, mechanical, and biological point of view in comparison with a commercially available analog. Performed analysis confirmed that the proprietary process optimized for type I collagen extraction allowed to isolate pure native collagen and to preserve its native conformational structure. Preliminary cellular studies performed with mouse fibroblasts indicated its optimal biocompatibility. All data confirmed the eligibility of the extracted Tilapia-derived native type I collagen as a biomaterial for healthcare applications.
Collapse
|
9
|
Tang C, Zhou K, Zhu Y, Zhang W, Xie Y, Wang Z, Zhou H, Yang T, Zhang Q, Xu B. Collagen and its derivatives: From structure and properties to their applications in food industry. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107748] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
10
|
Yan M, An X, Jiang Z, Duan S, Wang A, Zhao X, Li Y. Effects of cross-linking with EDC/NHS and genipin on characterizations of self-assembled fibrillar gel prepared from tilapia collagen and alginate. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.109929] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
11
|
Yan M, Jiang X, Wang G, Wang A, Wang X, Wang X, Zhao X, Xu H, An X, Li Y. Preparation of self-assembled collagen fibrillar gel from tilapia skin and its formation in presence of acidic polysaccharides. Carbohydr Polym 2020; 233:115831. [PMID: 32059884 DOI: 10.1016/j.carbpol.2020.115831] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 01/02/2020] [Accepted: 01/03/2020] [Indexed: 12/20/2022]
Abstract
Fibrillar gel of pepsin-solubilized collagen from tilapia skin was prepared by self-assembly in neutral phosphate buffer at 28 °C. Then effects of acidic polysaccharides, such as sodium alginate (SA), chondroitin sulfate (CS), and hyaluronic acid (HA), on the formation and properties of self-assembled fibrillar gel were investigated. SA and CS prolonged gelling time, whereas HA had no obvious effect. SA made fibril network denser, while CS and HA induced the presence of larger ordered structures. All the acidic polysaccharides broadened the D-periodicity of fibrils. SA and HA increased the maximum mechanical strength of gel to 39.64 and 34.49 kN/m2, respectively, significantly higher than that of pure collagen gel (14.53 kN/m2), while that only 17.20 kN/m2 after CS introduced. HA had no evident effect on enzymatic resistance, while SA and CS decreased. Therefore, tilapia skin collagen with HA has a higher potential as a biomaterial than that with CS or SA.
Collapse
Affiliation(s)
- Mingyan Yan
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Xiujie Jiang
- State Key Laboratory of Marine Coatings, Marine Chemical Research Institute Co. Ltd., Qingdao 266071, PR China
| | - Gaochao Wang
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Ailing Wang
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Xinxin Wang
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Xinyu Wang
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Xiaochen Zhao
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Hao Xu
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Xiangsheng An
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Yinping Li
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| |
Collapse
|
12
|
He L, Lan W, Wang Y, Ahmed S, Liu Y. Extraction and Characterization of Self-Assembled Collagen Isolated from Grass Carp and Crucian Carp. Foods 2019; 8:foods8090396. [PMID: 31500209 PMCID: PMC6769988 DOI: 10.3390/foods8090396] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/03/2019] [Accepted: 09/05/2019] [Indexed: 11/16/2022] Open
Abstract
Collagens were extracted from grass carp skin (GCC), grass carp scales (GSC), and crucian carp skin (CCC) using an acid-enzyme combination method, and their characteristics and self-assembly properties were analyzed. Electrophoretic patterns characterized all three as type I collagens. An ultraviolet analysis identified the optimal wavelengths for collagen detection, while a Fourier transform infrared spectroscopy analysis confirmed the triple-helical structure of the collagens. The GCC, GSC, and CCC had denaturation temperatures of 39.75, 34.49, and 39.05 °C, respectively. All three were shown to self-assemble into fibrils at 30 °C in the presence of NaCl, but the fibril formation rate of CCC (40%) was slightly higher than those of GCC (28%) and GSC (27%). The GSC were shown to form a more strongly intertwined fibril network with a characteristic D-periodicity. The fish collagens extracted in this study have potential applications in the development of functionalized materials.
Collapse
Affiliation(s)
- Li He
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China.
| | - Wenting Lan
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China.
| | - Yue Wang
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China.
| | - Saeed Ahmed
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China.
| | - Yaowen Liu
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China.
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
13
|
Wang SS, Yu Y, Sun Y, Liu N, Zhou DQ. Comparison of Physicochemical Characteristics and Fibril Formation Ability of Collagens Extracted from the Skin of Farmed River Puffer ( Takifugu obscurus) and Tiger Puffer ( Takifugu rubripes). Mar Drugs 2019; 17:E462. [PMID: 31394862 PMCID: PMC6723254 DOI: 10.3390/md17080462] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/03/2019] [Accepted: 08/05/2019] [Indexed: 12/18/2022] Open
Abstract
Acid-soluble collagen (ASC) and pepsin-soluble collagen (PSC) from the skin of river puffer (ASC-RP and PSC-RP) and tiger puffer (ASC-TP and PSC-TP) were extracted and physicochemically examined. Denaturation temperature (Td) for all the collagens was found to be 25.5-29.5 °C, which was lower than that of calf skin collagen (35.9 °C). Electrophoretic patterns indicated all four samples were type I collagen with molecular form of (α1)2α2. FTIR spectra confirmed the extracted collagens had a triple-helical structure, and that the degree of hydrogen bonding in ASC was higher than PSC. All the extracted collagens could aggregate into fibrils with D-periodicity. The fibril formation rate of ASC-RP and PSC-RP was slightly higher than ASC-TP and PSC-TP. Turbidity analysis revealed an increase in fibril formation rate when adding a low concentration of NaCl (less than 300 mM). The fibril formation ability was suppressed with further increasing of NaCl concentration, as illustrated by a reduction in the turbidity and formation degree. SEM analysis confirmed the well-formed interwoven structure of collagen fibrils after 24 h of incubation. Summarizing the experimental results suggested that the extracted collagens from the skin of river puffer and tiger puffer could be considered a viable substitute to mammalian-derived collagens for further use in biomaterial applications.
Collapse
Affiliation(s)
- Shan-Shan Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Ying Yu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Yong Sun
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Nan Liu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - De-Qing Zhou
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China.
| |
Collapse
|
14
|
Shi C, Bi C, Ding M, Xie J, Xu C, Qiao R, Wang X, Zhong J. Polymorphism and stability of nanostructures of three types of collagens from bovine flexor tendon, rat tail, and tilapia skin. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.02.035] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
15
|
Wei B, Wang L, Zhong H, Zhang J, Xu C, Xu Y, He L, Li S, Wang H. Telopeptide-dependent xenogeneic collagen co-assembly. NEW J CHEM 2019. [DOI: 10.1039/c9nj01169b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The function of telopeptide in xenogeneic collagen co-assembly was shown.
Collapse
Affiliation(s)
- Benmei Wei
- School of Chemical and Environmental Engineering
- Wuhan Polytechnic University
- Wuhan
- P. R. China
| | - Linjie Wang
- School of Chemical and Environmental Engineering
- Wuhan Polytechnic University
- Wuhan
- P. R. China
| | - Huaying Zhong
- School of Chemical and Environmental Engineering
- Wuhan Polytechnic University
- Wuhan
- P. R. China
| | - Juntao Zhang
- School of Chemical and Environmental Engineering
- Wuhan Polytechnic University
- Wuhan
- P. R. China
| | - Chengzhi Xu
- School of Chemical and Environmental Engineering
- Wuhan Polytechnic University
- Wuhan
- P. R. China
| | - Yuling Xu
- School of Chemical and Environmental Engineering
- Wuhan Polytechnic University
- Wuhan
- P. R. China
| | - Lang He
- School of Chemical and Environmental Engineering
- Wuhan Polytechnic University
- Wuhan
- P. R. China
| | - Sheng Li
- School of Chemical and Environmental Engineering
- Wuhan Polytechnic University
- Wuhan
- P. R. China
| | - Haibo Wang
- School of Chemical and Environmental Engineering
- Wuhan Polytechnic University
- Wuhan
- P. R. China
| |
Collapse
|
16
|
Yan M, Wang X. Study on the kinetic self-assembly of type I collagen from tilapia (Oreochromis niloticus) skin using the fluorescence probe thioflavin T. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 203:342-347. [PMID: 29883960 DOI: 10.1016/j.saa.2018.05.083] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 05/18/2018] [Accepted: 05/26/2018] [Indexed: 06/08/2023]
Abstract
The kinetic self-assembly of type I collagen from tilapia (Oreochromis niloticus) skin was characterized by the fluorescence method based on thioflavin T (ThT). The fluorescence probe could bind to the active monomeric collagen with a higher ordered degree of molecule, which displayed the pH and ionic strength dependence, the binding constant higher at neutral pH and proportional to the NaCl concentration. Compared to the turbidity method, ThT was more suitable to characterize the nucleation phase of collagen self-assembly. The nucleus size was determined through the ThT fluorescence and linear-polymerization model. At various pH and ionic strength, the nucleus size was nearly identical, either one or two monomers, demonstrating that one or two active monomeric collagen formed into the nucleus and different pH and ionic strength didn't alter the self-assembly mechanism of collagen. This approach was beneficial to advance the understanding of the kinetic self-assembly of the fish-sourced collagen in vitro.
Collapse
Affiliation(s)
- Mingyan Yan
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| | - Xinping Wang
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| |
Collapse
|
17
|
Van Duong H, Chau TTL, Dang NTT, Nguyen DV, Le SL, Ho TS, Vu TP, Tran TTV, Nguyen TD. Self-aggregation of water-dispersible nanocollagen helices. Biomater Sci 2018; 6:651-660. [DOI: 10.1039/c7bm01141e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The self-aggregation of water-dispersible native collagen nanofibrils has been investigated to generate hierarchical networks with structural variation from helicity to layering.
Collapse
Affiliation(s)
- Hau Van Duong
- Department of Chemistry
- Hue University of Agriculture and Forestry
- Hue University
- Hue 530000
- Vietnam
| | - Trang The Lieu Chau
- Department of Chemistry
- Hue University of Sciences
- Hue University
- Hue 530000
- Vietnam
| | - Nhan Thi Thanh Dang
- Department of Chemistry
- Hue University of Education
- Hue University
- Hue 530000
- Vietnam
| | - Duc Van Nguyen
- Faculty of Agronomy
- Hue University of Agriculture and Forestry
- Hue 530000
- Vietnam
| | - Son Lam Le
- Department of Chemistry
- Hue University of Sciences
- Hue University
- Hue 530000
- Vietnam
| | - Thang Sy Ho
- Department of Natural Resource and Environment
- Dong Thap University
- Dong Thap 870000
- Vietnam
| | - Tuyen Phi Vu
- Institute of Research and Development
- Duy Tan University
- Da Nang 550000
- Vietnam
- National Institute of Information and Communications Strategy
| | - Thi Thi Van Tran
- Department of Chemistry
- Hue University of Sciences
- Hue University
- Hue 530000
- Vietnam
| | - Thanh-Dinh Nguyen
- Department of Chemistry
- University of British Columbia
- Vancouver
- Canada
| |
Collapse
|
18
|
Kumar B, Rani S. Technical note on the isolation and characterization of collagen from fish waste material. Journal of Food Science and Technology 2017; 54:276-278. [PMID: 28242926 DOI: 10.1007/s13197-016-2443-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 12/08/2016] [Accepted: 12/13/2016] [Indexed: 11/30/2022]
Abstract
The aim of this manuscript was to evaluate the major technical problems on the isolation and characterization of the collagen from fish waste materials that were usually faced by the growing researchers. Although the original research article published by authors contributed new information to the literature, some of them were failed to provide sufficient details in order to reproduce the study as well as could not adequately interpret/compared the results with other publications. Therefore, it is required to research the technical problems during the isolation and characterization of the collagen. This technical note provides the information which is crucial for the reader's and growing researchers for understanding as an essential part of the published research studies about the collagen extraction and characterization. Hence, this technical note may be helpful to those working on the collagen extraction and characterization from fish/marine waste materials.
Collapse
Affiliation(s)
- Brijesh Kumar
- Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, Haryana 132001 India
| | - Sapna Rani
- Department of Biotechnology, GITAM University, Visakhapatnam, 530045 India.,Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, Haryana 132001 India
| |
Collapse
|