1
|
Lubau NSA, Chengebroyen N, Subramaniyan V. Investigation of Uncovering Molecular Mechanisms of Alcohol-Induced Female Infertility-A Rational Approach. Reprod Sci 2024; 31:3660-3672. [PMID: 39485609 PMCID: PMC11611948 DOI: 10.1007/s43032-024-01692-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 09/06/2024] [Indexed: 11/03/2024]
Abstract
This study aimed to investigate the molecular mechanisms by which chronic alcohol consumption impacts female infertility, highlighting significant societal implications. By conducting a comprehensive literature review, we examined existing evidence on the association between long-term alcohol use and female reproductive health. Relevant studies were identified through systematic searches of electronic databases and key journals. We synthesized information on the molecular pathways affected by alcohol consumption, with particular emphasis on oxidative stress, inflammation, and hormonal disruptions. Additionally, we reviewed efforts to address alcohol-related health issues, including public health interventions, regulatory measures, and educational initiatives. Our study found strong evidence linking chronic alcohol consumption to increased mortality rates and a range of preventable diseases globally. Alcohol's effects extend beyond physiological consequences to psychological, social, and economic burdens. Chronic alcohol consumption disrupts hormonal balance and reproductive function, contributing to female infertility. Future research should focus on quantifying mortality risks associated with alcohol consumption, understanding gender-specific patterns in alcohol-related health outcomes, and elucidating the molecular mechanisms underlying female infertility. Addressing these gaps will inform strategies to mitigate the burden of alcohol-induced health issues and promote overall well-being. Collaborative efforts among diverse stakeholders are essential for advancing research agendas and translating findings into effective interventions.
Collapse
Affiliation(s)
- Natasha Sura Anak Lubau
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Malaysia
| | - Neevashini Chengebroyen
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Malaysia
| | - Vetriselvan Subramaniyan
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Malaysia.
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Jalan University, Bandar Sunway, 47500, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
2
|
Kwon AJ, Morales L, Chatagnier L, Quigley J, Pascua J, Pinkowski N, Brasser SM, Hong MY. Effects of moderate ethanol exposure on risk factors for cardiovascular disease and colorectal cancer in adult Wistar rats. Alcohol 2024; 117:55-63. [PMID: 38531501 DOI: 10.1016/j.alcohol.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/14/2024] [Accepted: 03/21/2024] [Indexed: 03/28/2024]
Abstract
While past studies have provided evidence linking excessive alcohol consumption to increased risk for cardiovascular diseases (CVDs) and colorectal cancer (CRC), existing data on the effects of moderate alcohol use on these conditions have produced mixed results. The purpose of this study was to investigate the effects of moderate alcohol consumption on risk factors associated with the development of CVDs and CRC in adult rats. Twenty-four, 14-month-old, non-deprived male Wistar rats were randomly assigned to either an ethanol group, which consisted of voluntary access to a 20% (v/v) ethanol solution on alternate days, or a water control group (n = 12/group) for 13 weeks. Blood samples were collected to analyze levels of albumin, glucose, adiponectin, lipids, oxidized low-density lipoprotein cholesterol, high-density lipoprotein cholesterol (HDL-C), apolipoprotein A1 (apoA1), C-reactive protein (CRP), high-mobility group box 1 protein (HMGB-1), tumor necrosis factor-alpha (TNF-α), thyroxine, thyroid-stimulating hormone, 8-oxo-2'-deoxyguanosine (8-oxo-dG), liver function enzymes, and antioxidant capacity. Colonic gene expression related to colon carcinogenesis was also assessed. Ethanol-treated rats were found to have significantly higher HDL-C and apoA1 levels compared to controls. Moderate alcohol consumption led to significantly lower CRP levels and a trend for decrease in HMGB-1, TNF-α, and 8-oxo-dG levels. In the ethanol-exposed group, colonic gene expression of superoxide dismutase was upregulated while aldehyde dehydrogenase 2 showed a trend for increase compared to the control group. These results indicate that adopting a moderate approach to alcohol consumption could potentially improve health biomarkers related to CVD and CRC by increasing HDL-C levels and antioxidant activity and reducing DNA damage and inflammatory activity.
Collapse
Affiliation(s)
- Anna J Kwon
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, 92182, USA.
| | - Lani Morales
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, 92182, USA.
| | - Louise Chatagnier
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, 92182, USA.
| | - Jacqueline Quigley
- Department of Psychology, San Diego State University, San Diego, CA, 92182, USA.
| | - Jeremy Pascua
- Department of Psychology, San Diego State University, San Diego, CA, 92182, USA.
| | - Natalie Pinkowski
- Department of Psychology, San Diego State University, San Diego, CA, 92182, USA.
| | - Susan M Brasser
- Department of Psychology, San Diego State University, San Diego, CA, 92182, USA.
| | - Mee Young Hong
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, 92182, USA.
| |
Collapse
|
3
|
Quilaqueo ME, Adasme S, Solís-Egaña F, Quintanilla ME, Vásquez D, Morales P, Herrera-Marschitz M, Rivera-Meza M. The administration of Alda-1, an activator of ALDH2, inhibits relapse-like ethanol intake in female alcohol-preferring UChB rats. Life Sci 2023; 328:121876. [PMID: 37348813 DOI: 10.1016/j.lfs.2023.121876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 06/24/2023]
Abstract
AIMS Alcohol relapse is a main limitation for the treatment of alcohol use disorders. Previous studies have shown that Alda-1, a pharmacological activator of ALDH2, inhibits both acquisition and chronic ethanol intake in rats; however, its effects on relapse-like ethanol intake are unknown. The aim of this study was to assess the effect of Alda-1 on post-deprivation and reaccess relapse-like ethanol intake in alcohol-preferring UChB rats. We also aimed to assess the possible mechanisms associated with the effects of Alda-1 by measuring the levels of glutamate transporter (GLT-1), oxidative stress and neuroinflammation markers in different regions of the mesocorticolimbic system. MAIN METHODS In Experiment I, UChB female rats were exposed for 100 days to voluntary ethanol intake followed by 2-weeks of ethanol withdrawal and 1 week of ethanol reaccess. Alda-1 (25 mg/kg, intragastric, i.g) or vehicle was administered daily for 14 days during the withdrawal/re-access period. Experiment II was similar to Experiment I, but after the withdrawal period, ethanol re-access was not allowed, and Alda-1 was administered during the last week of withdrawal. At the end of both experiments, the levels of GLT-1, oxidative stress (GSH, MDA), and neuroinflammation markers (GFAP, Iba-1) were assessed in nucleus accumbens and/or hippocampus. KEY FINDINGS The results showed that Alda-1 administration markedly blocked (90 %, p < 0.001) relapse-like ethanol intake in UChB rats. Alda-1 increased Iba-1 reactivity (microglial marker) in the NAc of ethanol-deprived rats. Alda-1 administration did not influence the levels of GLT-1, oxidative stress markers (MDA, GSH) or GFAP reactivity in the mesocorticolimbic system. SIGNIFICANCE These preclinical findings support the use of activators of ALDH2, such as Alda-1, as a potential pharmacological strategy in the treatment of alcohol relapse.
Collapse
Affiliation(s)
- María Elena Quilaqueo
- Department of Pharmacological and Toxicological Chemistry, Faculty of Chemical Sciences and Pharmacy, University of Chile, Chile
| | - Sofía Adasme
- Department of Pharmacological and Toxicological Chemistry, Faculty of Chemical Sciences and Pharmacy, University of Chile, Chile
| | - Fresia Solís-Egaña
- Department of Pharmacological and Toxicological Chemistry, Faculty of Chemical Sciences and Pharmacy, University of Chile, Chile
| | | | - David Vásquez
- Department of Pharmacological and Toxicological Chemistry, Faculty of Chemical Sciences and Pharmacy, University of Chile, Chile
| | - Paola Morales
- Program of Molecular and Clinical Pharmacology, Chile; Department of Neuroscience, Faculty of Medicine, University of Chile, Chile; Research Center for the Development of Novel Therapeutic Alternatives for Alcohol Use Disorders, Santiago, Chile
| | | | - Mario Rivera-Meza
- Department of Pharmacological and Toxicological Chemistry, Faculty of Chemical Sciences and Pharmacy, University of Chile, Chile; Research Center for the Development of Novel Therapeutic Alternatives for Alcohol Use Disorders, Santiago, Chile.
| |
Collapse
|
4
|
Chen X, Gui S, Deng D, Dong L, Zhang L, Wei D, Jiang J, Ge H, Liu P, Lv M, Li Y. Alcohol flushing syndrome is significantly associated with intracranial aneurysm rupture in the Chinese Han population. Front Neurol 2023; 14:1118980. [PMID: 37006480 PMCID: PMC10065193 DOI: 10.3389/fneur.2023.1118980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/02/2023] [Indexed: 03/19/2023] Open
Abstract
ObjectiveAlthough alcohol flushing syndrome (AFS) has been associated with various diseases, its association with intracranial aneurysm rupture (IAR) is unclear. We aimed to examine this association in the Chinese Han population.MethodsWe retrospectively reviewed Chinese Han patients with intracranial aneurysms who were evaluated and treated at our institution between January 2020 and December 2021. AFS was determined using a semi-structured telephone interview. Clinical data and aneurysm characteristics were assessed. Univariate and multivariate logistic regression were conducted to determine independent factors associated with aneurysmal rupture.ResultsA total of 1,170 patients with 1,059 unruptured and 236 ruptured aneurysms were included. The incidence of aneurysm rupture was significantly higher in patients without AFS (p < 0.001). Meanwhile, there was a significantly difference between the AFS and non-AFS group in habitual alcohol consumption (10.5 vs. 27.2%, p < 0.001). In the univariate analyses, AFS [odds ratio (OR) 0.49; 95% confidence interval (CI), 0.34–0.72] was significantly associated with IAR. In the multivariate analysis, AFS was an independent predictor of IAR (OR 0.50; 95%, CI, 0.35–0.71). Multivariate analysis revealed that AFS was an independent predictor of IAR in both habitual (OR 0.11; 95% CI, 0.03–0.45) and non-habitual drinkers (OR 0.69; 95% CI, 0.49–0.96).ConclusionAlcohol flushing syndrome may be a novel clinical marker to assess the risk of IAR. The association between AFS and IAR exists independently of alcohol consumption. Further single nucleotide polymorphism testing and molecular biology studies are warranted.
Collapse
Affiliation(s)
- Xiheng Chen
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
- Beijing Engineering Research Center for Interventional Neuroradiology, Beijing, China
| | - Siming Gui
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
- Beijing Engineering Research Center for Interventional Neuroradiology, Beijing, China
| | - Dingwei Deng
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
- Beijing Engineering Research Center for Interventional Neuroradiology, Beijing, China
| | - Linggen Dong
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
| | - Longhui Zhang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
| | - Dachao Wei
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
- Beijing Engineering Research Center for Interventional Neuroradiology, Beijing, China
| | - Jia Jiang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
- Beijing Engineering Research Center for Interventional Neuroradiology, Beijing, China
| | - Huijian Ge
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
- Beijing Engineering Research Center for Interventional Neuroradiology, Beijing, China
| | - Peng Liu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
- Beijing Engineering Research Center for Interventional Neuroradiology, Beijing, China
| | - Ming Lv
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
- Beijing Engineering Research Center for Interventional Neuroradiology, Beijing, China
- *Correspondence: Ming Lv,
| | - Youxiang Li
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
- Beijing Engineering Research Center for Interventional Neuroradiology, Beijing, China
- Youxiang Li,
| |
Collapse
|
5
|
Ling M, Huang C, Hua T, Li H, Xiao W, Lu Z, Jia D, Zhou W, Zhang L, Yang M. Acetaldehyde dehydrogenase 2 activation attenuates sepsis-induced brain injury through NLRP3 inflammasome regulation. Brain Res Bull 2023; 194:128-138. [PMID: 36720319 DOI: 10.1016/j.brainresbull.2023.01.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 01/10/2023] [Accepted: 01/27/2023] [Indexed: 01/30/2023]
Abstract
OBJECTIVE Acetaldehyde dehydrogenase 2 (ALDH2) plays an important part in neuroprotection; however, its effect on sepsis-induced brain injury is nuclear. Our aim is to investigate the potential effect and mechanism of ALDH2 in this condition. METHODS We established an animal model using cecal ligation and perforation (CLP). Twenty-four rats were divided into sham group (n = 6), CLP group (n = 6), CLP + Alda-1 group (n = 6) and CLP + Cyanamide (CYA) group (n = 6). Vital signs were monitored, and arterial blood gas analysis, hippocampal histological staining and ALDH2 activity analysis were conducted. Western blot analysis and enzyme-linked immunosorbent assays were also carried out. Lipopolysaccharide (LPS)-treated HT22 cells were employed as an in vitro model of sepsis-induced brain injury, with and without pretreatment with Alda-1 or CYA, to further examine the potential mechanisms. Real-time quantitative polymerase chain reaction and western blot were used to determine the levels of pyrin domain-containing 3 (NLRP3) inflammasome. RESULTS We found hippocampal cell injury in the CLP group (p < 0.05), with decreased ALDH2 activity (p < 0.05) and suspected overexpression of NLRP3/caspase-1 axis (p < 0.05). In the group pretreated with Alda-1, there were increased ALDH2 activity (p < 0.05), decreased hippocampal cell damage (p < 0.05), and reduced protein levels of NLRP3, apoptosis-associated speck like protein containing a caspase recruitment domain (ASC), cleaved caspase-1 and Gasdermin D (GSDMD) (p < 0.05). The levels of interleukin 18 (IL-18) and interleukin 1β (IL-1β) were also reduced (p < 0.05). In the group pretreated with CYA, ALDH2 activity was further declined, the cell injury grade increased, and the elevated levels of pyroptosis-related proteins aggravated (p < 0.05). LPS treatment decreased the cell viability and ALDH2 activity of the HT22 cells (p < 0.05), along with increased mRNA levels of the NLRP3 inflammasome, as well as IL-1β and IL-18 (p < 0.05). Western blot further revealed elevated levels of NLRP3, ASC, cleaved caspase-1 and GSDMD (p < 0.05). In the LPS+Alda-1 group, there were increased cell viability (p < 0.05), elevated ALDH2 activity (p < 0.05), and reduced levels of NLRP3 inflammasome and pyroptosis-related proteins (p < 0.05). In the CYA+LPS group, cell viability and ALDH2 activity were further declined (p < 0.05), while levels of NLRP3 /caspase-1 axis were increased (p < 0.05). CONCLUSIONS The activation of ALDH2 can attenuate sepsis-induced brain injury, hypothetically through regulation of the NLRP3/caspase-1 signaling pathway. Therefore, ALDH2 could potentially be considered as a new therapeutic target for the treatment of sepsis-induced brain injury.
Collapse
Affiliation(s)
- Meng Ling
- The 2nd Department of Intensive Care Unit, the Second Hospital of Anhui Medical University, Hefei, Anhui Province 230601, China; Department of Intensive Care Unit, West Branch of the First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui Province 230031, China; The Laboratory of Cardiopulmonary Resuscitation and Critical Care Medicine, the Second Hospital of Anhui Medical University, Hefei, Anhui Province 230601, China.
| | - Chunxia Huang
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, Anhui Province 230601, China; Department of Anesthesiology and Perioperative Medicine, the Second Hospital of Anhui Medical University, Hefei, Anhui Province 230601, China.
| | - Tianfeng Hua
- The 2nd Department of Intensive Care Unit, the Second Hospital of Anhui Medical University, Hefei, Anhui Province 230601, China; The Laboratory of Cardiopulmonary Resuscitation and Critical Care Medicine, the Second Hospital of Anhui Medical University, Hefei, Anhui Province 230601, China.
| | - Hui Li
- The 2nd Department of Intensive Care Unit, the Second Hospital of Anhui Medical University, Hefei, Anhui Province 230601, China; The Laboratory of Cardiopulmonary Resuscitation and Critical Care Medicine, the Second Hospital of Anhui Medical University, Hefei, Anhui Province 230601, China.
| | - Wenyan Xiao
- The 2nd Department of Intensive Care Unit, the Second Hospital of Anhui Medical University, Hefei, Anhui Province 230601, China; The Laboratory of Cardiopulmonary Resuscitation and Critical Care Medicine, the Second Hospital of Anhui Medical University, Hefei, Anhui Province 230601, China.
| | - Zongqing Lu
- The 2nd Department of Intensive Care Unit, the Second Hospital of Anhui Medical University, Hefei, Anhui Province 230601, China; The Laboratory of Cardiopulmonary Resuscitation and Critical Care Medicine, the Second Hospital of Anhui Medical University, Hefei, Anhui Province 230601, China.
| | - Di Jia
- The 2nd Department of Intensive Care Unit, the Second Hospital of Anhui Medical University, Hefei, Anhui Province 230601, China; The Laboratory of Cardiopulmonary Resuscitation and Critical Care Medicine, the Second Hospital of Anhui Medical University, Hefei, Anhui Province 230601, China.
| | - Wuming Zhou
- The 2nd Department of Intensive Care Unit, the Second Hospital of Anhui Medical University, Hefei, Anhui Province 230601, China; The Laboratory of Cardiopulmonary Resuscitation and Critical Care Medicine, the Second Hospital of Anhui Medical University, Hefei, Anhui Province 230601, China.
| | - Linlin Zhang
- Department of Intensive Care Unit, West Branch of the First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui Province 230031, China.
| | - Min Yang
- The 2nd Department of Intensive Care Unit, the Second Hospital of Anhui Medical University, Hefei, Anhui Province 230601, China; The Laboratory of Cardiopulmonary Resuscitation and Critical Care Medicine, the Second Hospital of Anhui Medical University, Hefei, Anhui Province 230601, China.
| |
Collapse
|
6
|
Tian W, Guo J, Zhang Q, Fang S, Zhou R, Hu J, Wang M, Zhang Y, Guo JM, Chen Z, Zhu J, Zheng C. The discovery of novel small molecule allosteric activators of aldehyde dehydrogenase 2. Eur J Med Chem 2020; 212:113119. [PMID: 33383258 DOI: 10.1016/j.ejmech.2020.113119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/01/2020] [Accepted: 12/17/2020] [Indexed: 11/17/2022]
Abstract
Aldehyde dehydrogenase 2 (ALDH2) plays important role in ethanol metabolism, and also serves as an important shield from the damage occurring under oxidative stress. A special inactive variant was found carried by 35-45% of East Asians. The variant carriers have recently been found at the higher risk for the diseases related to the damage occurring under oxidative stress, such as cardiovascular and cerebrovascular diseases. As a result, ALDH2 activators may potentially serve as a new class of therapeutics. Herein, N-benzylanilines were found as novel allosteric activators of ALDH2 by computational virtual screening using ligand-based and structure-based screening parallel screening strategy. Then a structural optimization was performed and has led to the discovery of the compound C6. It has good activity in vitro and in vivo, which could reduce infarct size by ∼70% in ischemic stroke rat models. This study provided good lead compounds for the further development of ALDH2 activators.
Collapse
Affiliation(s)
- Wei Tian
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China; General Hospital Of Central Theater Commond, Wuhan, Hubei, 430070, China
| | - Jiapeng Guo
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Qingsen Zhang
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Shaoyu Fang
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Ruolan Zhou
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Jian Hu
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Mingping Wang
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Yuefan Zhang
- School of Medicine, Shanghai University, Shanghai, 20444, China
| | - Jin-Min Guo
- 960 Hospital of the Joint Logistics Support Force, Jinan, Shandong, 250031, China
| | - Zhuo Chen
- School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Ju Zhu
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Canhui Zheng
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China.
| |
Collapse
|
7
|
Design, synthesis and the structure-activity relationship of agonists targeting on the ALDH2 catalytic tunnel. Bioorg Chem 2020; 104:104166. [PMID: 32919136 DOI: 10.1016/j.bioorg.2020.104166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/30/2020] [Accepted: 07/30/2020] [Indexed: 12/23/2022]
Abstract
ALDH2, a key enzyme in the alcohol metabolism process, detoxifies several kinds of toxic small molecular aldehydes, which induce severe organ damages. The development of novel Alda-1 type ALDH2 activators was mostly relied on HTS but not rational design so far. To clarify the structure-activity relationship (SAR) of the skeleton of Alda-1 analogs by synthesis of the least number of analogs, we prepared 31 Alda-1 analogs and 3 isoflavone derivatives and evaluated for their ALDH2-activating activity. Among these, the ALDH2-activating activity of mono-halogen-substituted (Cl and Br) N-piperonylbenzamides 3b and 3 k, and non-aromatic amides 8a-8c, were 1.5-2.1 folds higher than that of Alda-1 at 20 μM. The relationship between binding affinity in computer aided molecular docking model and the ALDH2-activating activity assays were clarified as follows: for Alda-1 analogs, with the formation of halogen bonds, the enzyme-activating activity was found to follow a specific regression curve within the range between -5 kcal/mol and -4 kcal/mol. For isoflavone derivatives, the basic moiety on the B ring enhance the activating activity. These results provide a new direction of utilizing computer-aided modeling to design novel ALDH2 agonists in the future.
Collapse
|
8
|
Zhu Z, Jiang Y, Cui M, Wang Y, Li S, Xu K, Zhang K, Zhu C, Xu W, Jin L, Ye W, Suo C, Chen X. ALDH2 rs671 polymorphisms and the risk of cerebral microbleeds in Chinese elderly: the Taizhou Imaging Study. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:229. [PMID: 32309376 PMCID: PMC7154495 DOI: 10.21037/atm.2020.01.01] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Background Cerebral microbleeds (CMBs) are more prevalent in Asian populations, and have been associated with increased risk of stroke, dementia and mortality. So far, risk factors for CMBs other than hypertension were merely known. Previous studies have shown that polymorphisms at aldehyde dehydrogenase 2 (ALDH2) gene were independently associated with the risk of stroke. Its role in CMBs, however, remains unclear. This study aimed to evaluate the associations of ALDH2 gene polymorphisms with CMBs in Chinese elderly. Methods Using bio-specimen and data collected at baseline survey of the population-based Taizhou Imaging Study (TIS) (phase I), we genotyped the single nucleotide polymorphisms (SNPs) at ALDH2 among 549 individuals aged 55–65 years, and rs671 was used as surrogate marker of ALDH2. CMBs were detected on brain magnetic resonance imaging (MRI), and further categorized as strictly lobar or as deep/mixed. Logistic regression models were used to evaluate the associations of the variants at ALDH2 and CMBs. Results CMBs were present in 103 individuals (18.8%). Forty-one point three percent participants were with ALDH2 *2 allele and 5.1% had ALDH2 *2/*2 genotype. Subjects with ALDH2 *1 allele were more likely to be drinker, have hypertension or CMBs than those with *2 allele (all P<0.05). Multivariate logistic regression model showed that the ALDH2 *1/*1 genotype was independently associated with CMBs (P=0.013), particularly for deep/mixed CMBs (P=0.008), and the association was more pronounced in men, non-drinkers or hypertension patients. Conclusions The results suggest that Han Chinese with ALDH2 *1/*1 genotype may be more susceptible to CMBs than those with ALDH2 *2 allele.
Collapse
Affiliation(s)
- Zhen Zhu
- Department of Epidemiology, School of Public Health, and the Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai 200438, China.,State Key Laboratory of Genetic Engineering, Human Phenome Institute, Fudan University, Shanghai 200438, China
| | - Yanfeng Jiang
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Fudan University, Shanghai 200438, China.,Fudan University Taizhou Institute of Health Sciences, Taizhou 225312, China
| | - Mei Cui
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200030, China
| | - Yingzhe Wang
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200030, China
| | - Shuyuan Li
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Kelin Xu
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Fudan University, Shanghai 200438, China.,School of Data Science and Institute for Big Data, and the Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai 200433, China
| | - Kexun Zhang
- Department of Epidemiology, School of Public Health, and the Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai 200438, China.,State Key Laboratory of Genetic Engineering, Human Phenome Institute, Fudan University, Shanghai 200438, China
| | - Chengkai Zhu
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Fudan University, Shanghai 200438, China.,School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Wanghong Xu
- Department of Epidemiology, School of Public Health, and the Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai 200438, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Fudan University, Shanghai 200438, China.,Fudan University Taizhou Institute of Health Sciences, Taizhou 225312, China.,School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Weimin Ye
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Fudan University, Shanghai 200438, China.,Department of Medical Epidemiology and Biostatistics, Karolinska Instituted, Stockholm, Sweden
| | - Chen Suo
- Department of Epidemiology, School of Public Health, and the Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai 200438, China.,State Key Laboratory of Genetic Engineering, Human Phenome Institute, Fudan University, Shanghai 200438, China
| | - Xingdong Chen
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Fudan University, Shanghai 200438, China.,Fudan University Taizhou Institute of Health Sciences, Taizhou 225312, China
| |
Collapse
|
9
|
Zuo G, Zhang T, Huang L, Araujo C, Peng J, Travis Z, Okada T, Ocak U, Zhang G, Tang J, Lu X, Zhang JH. Activation of TGR5 with INT-777 attenuates oxidative stress and neuronal apoptosis via cAMP/PKCε/ALDH2 pathway after subarachnoid hemorrhage in rats. Free Radic Biol Med 2019; 143:441-453. [PMID: 31493504 PMCID: PMC6848789 DOI: 10.1016/j.freeradbiomed.2019.09.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/27/2019] [Accepted: 09/03/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Oxidative stress and neuronal apoptosis play important roles in the pathogenesis of early brain injury (EBI) after subarachnoid hemorrhage (SAH). The activation of TGR5, a novel membrane-bound bile acid receptor, possesses anti-oxidative stress and anti-apoptotic effects in hepatobiliary disease and kidney disease. The present study aimed to explore the neuroprotective effect of TGR5 activation against EBI after SAH and the potential underlying mechanisms. METHODS The endovascular perforation model of SAH was performed on 199 Sprague Dawley rats to investigate the beneficial effects of TGR5 activation after SAH. INT-777, a specific synthetic TGR5 agonist, was administered intranasally at 1 h after SAH induction. TGR5 CRISPR and ALDH2 CRISPR were administered intracerebroventricularly at 48 h before SAH to illuminate potential mechanisms. The SAH grade, short-term and long-term neurobehavioral tests, TUNEL staining, Fluoro-Jade C staining, Nissl staining, immunofluorescence staining, and western blots were performed at 24 h after SAH. RESULTS The expressions of endogenous TGR5 and ALDH2 gradually increased and peaked at 24 h after SAH. TGR5 was expressed primarily in neurons, as well as in astrocytes and microglia. The activation of TGR5 with INT-777 significantly improved the short-term and long-term neurological deficits, accompanied by reduced the oxidative stress and neuronal apoptosis at 24 h after SAH. Moreover, INT-777 treatment significantly increased the expressions of TGR5, cAMP, phosphorylated PKCε, ALDH2, HO-1, and Bcl-2, while downregulated the expressions of 4-HNE, Bax, and Cleaved Caspase-3. TGR5 CRISPR and ALDH2 CRISPR abolished the neuroprotective effects of TGR5 activation after SAH. CONCLUSIONS In summary, the activation of TGR5 with INT-777 attenuated oxidative stress and neuronal apoptosis via the cAMP/PKCε/ALDH2 signaling pathway after SAH in rats. Furthermore, TGR5 may serve as a novel therapeutic target to ameliorate EBI after SAH.
Collapse
Affiliation(s)
- Gang Zuo
- Department of Neurosurgery, The Affiliated Taicang Hospital, Soochow University, Taicang, Suzhou, Jiangsu, 215400, China; Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Tongyu Zhang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, 92350, USA; Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
| | - Lei Huang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, 92350, USA; Department of Neurosurgery, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Camila Araujo
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Jun Peng
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Zachary Travis
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Takeshi Okada
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Umut Ocak
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Guangyu Zhang
- Mass Spectrometry Core Facility, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Jiping Tang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Xiaojun Lu
- Department of Neurosurgery, The Affiliated Taicang Hospital, Soochow University, Taicang, Suzhou, Jiangsu, 215400, China.
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, 92350, USA; Department of Neurosurgery, Loma Linda University, Loma Linda, CA, 92350, USA; Department of Anesthesiology, Loma Linda University, Loma Linda, CA, 92350, USA.
| |
Collapse
|
10
|
Design, synthesis, and biological evaluation of new ALDH2 activators. JOURNAL OF SAUDI CHEMICAL SOCIETY 2019. [DOI: 10.1016/j.jscs.2018.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Xu H, Zhang Y, Ren J. ALDH2 and Stroke: A Systematic Review of the Evidence. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1193:195-210. [PMID: 31368105 DOI: 10.1007/978-981-13-6260-6_11] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cerebral stroke is one of the leading causes of mortality and disability worldwide. The prevalence of cerebral stroke is the result of the synergistic effect of genetic susceptibility and numerous vascular risk factors, including hypertension, diabetes, excessive alcohol intake, obesity, and dyslipidemia. Mitochondrial aldehyde dehydrogenase (ALDH2) is a vital enzyme metabolizing various acetaldehyde and toxic aldehydes. The ALDH2 enzymatic activity is severely decreased in the individuals with ALDH2*2 gene mutation, especially in East Asians. Increasing epidemiological surveys have revealed that ALDH2 genetic polymorphism is closely associated with the increasing incidence of cardiovascular risk factors and cerebral stroke. Evidence from experimental studies has also suggested that ALDH2 facilitates the clearance of reactive aldehydes and reduces the size of cerebral infarct. Therefore, targeting ALDH2 may represent a promising avenue for protection against stroke injury. This review will mainly focus on clinical and epidemiological evidence and the underlying molecular mechanisms involved in the protective effect of ALDH2 in stroke-related injury.
Collapse
Affiliation(s)
- Haixia Xu
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Yingmei Zhang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.,Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY, USA
| | - Jun Ren
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China. .,Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY, USA.
| |
Collapse
|
12
|
Rivera-Meza M, Vásquez D, Quintanilla ME, Lagos D, Rojas B, Herrera-Marschitz M, Israel Y. Activation of mitochondrial aldehyde dehydrogenase (ALDH2) by ALDA-1 reduces both the acquisition and maintenance of ethanol intake in rats: A dual mechanism? Neuropharmacology 2018; 146:175-183. [PMID: 30521820 DOI: 10.1016/j.neuropharm.2018.12.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 11/28/2018] [Accepted: 12/02/2018] [Indexed: 12/31/2022]
Abstract
A number of pre-clinical studies have shown that brain-generated acetaldehyde, the first metabolite of ethanol, exerts reinforcing effects that promote the acquisition of ethanol intake, while chronic intake maintenance appears to be mediated by alcohol-induced brain neuroinflammation/oxidative stress. Recently, it was described that N-(1,3-benzodioxol-5-ylmethyl)-2,6-dichlorobenzamide (ALDA-1) activates aldehyde dehydrogenase-2 (ALDH2), enzyme that catalyzes the oxidation of ethanol-derived acetaldehyde to acetate. The aim of this study was to determine the effects of ALDA-1 on both the acquisition and the maintenance of alcohol intake in alcohol-preferring UChB rats. For ethanol acquisition studies, naïve UChB rats were treated with five daily doses of ALDA-1 (12.5, 25 or 50 mg/kg, i.p.) from one day before the start of ethanol exposure. For chronic intake studies, UChB rats exposed for 98 days to a free access to 10% ethanol and water were treated daily with ALDA-1 (12.5, 25 or 50 mg/kg, i.p.) for five days. The administration of ALDA-1 reduced by 72-90% (p < 0.001) the acquisition of ethanol consumption in naïve rats. At chronic ethanol consumption, ALDA-1 reduced ethanol intake by 61-82% (p < 0.001). ALDA-1 administration increased by 3- and 2.3-fold the activity of ALDH2 in brain and liver, respectively. ALDA-1 did not affect saccharin consumption, nor it modified the rate of ethanol elimination. The study shows that the activation of ALDH2 by ALDA-1 is effective for inhibiting both the acquisition and the maintenance of chronic ethanol intake by alcohol-preferring rats. Thus, the activation of brain ALDH2 may constitute a novel approach in the treatment of alcohol use disorders.
Collapse
Affiliation(s)
- Mario Rivera-Meza
- Department of Pharmacological and Toxicological Chemistry, Faculty of Chemical Sciences and Pharmacy, University of Chile, Santiago, Chile.
| | - David Vásquez
- Department of Pharmacological and Toxicological Chemistry, Faculty of Chemical Sciences and Pharmacy, University of Chile, Santiago, Chile
| | - María Elena Quintanilla
- Program of Molecular and Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Diego Lagos
- Department of Pharmacological and Toxicological Chemistry, Faculty of Chemical Sciences and Pharmacy, University of Chile, Santiago, Chile
| | - Braulio Rojas
- Department of Pharmacological and Toxicological Chemistry, Faculty of Chemical Sciences and Pharmacy, University of Chile, Santiago, Chile
| | - Mario Herrera-Marschitz
- Program of Molecular and Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Yedy Israel
- Program of Molecular and Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile
| |
Collapse
|
13
|
Liu B, Zhang R, Wei S, Yuan Q, Xue M, Hao P, Xu F, Wang J, Chen Y. ALDH2 protects against alcoholic cardiomyopathy through a mechanism involving the p38 MAPK/CREB pathway and local renin-angiotensin system inhibition in cardiomyocytes. Int J Cardiol 2018; 257:150-159. [PMID: 29506687 DOI: 10.1016/j.ijcard.2017.11.094] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Accepted: 11/27/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND Angiotensin II (Ang II) in the local cardiac renin-angiotensin system (RAS) is closely associated with alcoholic cardiomyopathy (ACM). Inhibition of local cardiac RAS has great significance in the treatment of ACM. Although aldehyde dehydrogenase 2 (ALDH2) has been demonstrated to protect against ACM through detoxification of aldehydes, the precise mechanisms are largely unknown. In the present study, we determined whether ALDH2 improved cardiac damage by inhibiting the local RAS in ACM and investigated the related regulatory mechanisms. METHODS AND RESULTS Adult male mice were fed with 5% ethanol or a control diet for 2months, with or without the ALDH2 activator Alda-1. Heavy ethanol consumption induced cardiac damage, increased angiotensinogen (AGT) and Ang II and decreased myocardial ALDH2 activity in hearts. ALDH2 activation improved ethanol-induced cardiac damage and decreased AGT and Ang II in hearts. In vitro, ALDH2 activation or overexpression decreased AGT and Ang II in cultured cardiomyocytes treated with 400mmol/L ethanol for 24h. Furthermore, p38 MAP kinase (p38 MAPK)/cyclic adenosine monophosphate response element-binding protein (CREB) pathway activation by ethanol increased AGT and Ang II in cardiomyocytes. In addition, ALDH2 activation or overexpression inhibited the p38 MAPK/CREB pathway leading to decreased AGT and Ang II in cardiomyocytes. We also found that p38 MAPK activation effectively mitigated Alda-1-decreased AGT and Ang II, the effect of which was reversed by inhibition of CREB. CONCLUSIONS ALDH2 decreased AGT and Ang II in the local cardiac RAS via inhibiting the p38 MAPK/CREB pathway in ACM, thus improving ethanol-induced cardiac damage.
Collapse
MESH Headings
- Adenoviridae/genetics
- Aldehyde Dehydrogenase, Mitochondrial/administration & dosage
- Aldehyde Dehydrogenase, Mitochondrial/genetics
- Aldehyde Dehydrogenase, Mitochondrial/metabolism
- Angiotensin II/metabolism
- Angiotensinogen/antagonists & inhibitors
- Angiotensinogen/metabolism
- Animals
- Animals, Newborn
- Cardiomyopathy, Alcoholic/metabolism
- Cardiomyopathy, Alcoholic/prevention & control
- Cardiotonic Agents/administration & dosage
- Cardiotonic Agents/metabolism
- Cells, Cultured
- Cyclic AMP Response Element-Binding Protein/antagonists & inhibitors
- Cyclic AMP Response Element-Binding Protein/metabolism
- Genetic Vectors/administration & dosage
- Genetic Vectors/genetics
- MAP Kinase Signaling System/drug effects
- MAP Kinase Signaling System/physiology
- Male
- Mice
- Mice, Inbred C57BL
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Rats
- Rats, Wistar
- Renin-Angiotensin System/drug effects
- Renin-Angiotensin System/physiology
Collapse
Affiliation(s)
- Baoshan Liu
- Department of Emergency, Qilu Hospital, Shandong University, Jinan, China; Chest Pain Center, Qilu Hospital, Shandong University, Jinan, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital, Shandong University, Jinan, China; Institute of Emergency and Critical Care Medicine, Qilu Hospital, Shandong University, Jinan, China; Key Laboratory of Cardiovascular Remodeling & Function Research, Chinese Ministry of Education & Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, China
| | - Rui Zhang
- Department of Emergency, Qilu Hospital, Shandong University, Jinan, China; Chest Pain Center, Qilu Hospital, Shandong University, Jinan, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital, Shandong University, Jinan, China; Institute of Emergency and Critical Care Medicine, Qilu Hospital, Shandong University, Jinan, China; Key Laboratory of Cardiovascular Remodeling & Function Research, Chinese Ministry of Education & Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, China
| | - Shujian Wei
- Department of Emergency, Qilu Hospital, Shandong University, Jinan, China; Chest Pain Center, Qilu Hospital, Shandong University, Jinan, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital, Shandong University, Jinan, China; Institute of Emergency and Critical Care Medicine, Qilu Hospital, Shandong University, Jinan, China; Key Laboratory of Cardiovascular Remodeling & Function Research, Chinese Ministry of Education & Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, China
| | - Qiuhuan Yuan
- Department of Emergency, Qilu Hospital, Shandong University, Jinan, China; Chest Pain Center, Qilu Hospital, Shandong University, Jinan, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital, Shandong University, Jinan, China; Institute of Emergency and Critical Care Medicine, Qilu Hospital, Shandong University, Jinan, China; Key Laboratory of Cardiovascular Remodeling & Function Research, Chinese Ministry of Education & Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, China
| | - Mengyang Xue
- Department of Emergency, Qilu Hospital, Shandong University, Jinan, China; Chest Pain Center, Qilu Hospital, Shandong University, Jinan, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital, Shandong University, Jinan, China; Institute of Emergency and Critical Care Medicine, Qilu Hospital, Shandong University, Jinan, China; Key Laboratory of Cardiovascular Remodeling & Function Research, Chinese Ministry of Education & Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, China
| | - Panpan Hao
- Key Laboratory of Cardiovascular Remodeling & Function Research, Chinese Ministry of Education & Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, China
| | - Feng Xu
- Department of Emergency, Qilu Hospital, Shandong University, Jinan, China; Chest Pain Center, Qilu Hospital, Shandong University, Jinan, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital, Shandong University, Jinan, China; Institute of Emergency and Critical Care Medicine, Qilu Hospital, Shandong University, Jinan, China; Key Laboratory of Cardiovascular Remodeling & Function Research, Chinese Ministry of Education & Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, China
| | - Jiali Wang
- Department of Emergency, Qilu Hospital, Shandong University, Jinan, China; Chest Pain Center, Qilu Hospital, Shandong University, Jinan, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital, Shandong University, Jinan, China; Institute of Emergency and Critical Care Medicine, Qilu Hospital, Shandong University, Jinan, China; Key Laboratory of Cardiovascular Remodeling & Function Research, Chinese Ministry of Education & Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, China.
| | - Yuguo Chen
- Department of Emergency, Qilu Hospital, Shandong University, Jinan, China; Chest Pain Center, Qilu Hospital, Shandong University, Jinan, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital, Shandong University, Jinan, China; Institute of Emergency and Critical Care Medicine, Qilu Hospital, Shandong University, Jinan, China; Key Laboratory of Cardiovascular Remodeling & Function Research, Chinese Ministry of Education & Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, China.
| |
Collapse
|
14
|
ALDH2 Protects Against Ischemic Stroke in Rats by Facilitating 4-HNE Clearance and AQP4 Down-Regulation. Neurochem Res 2018; 43:1339-1347. [PMID: 29767275 DOI: 10.1007/s11064-018-2549-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 04/16/2018] [Accepted: 05/12/2018] [Indexed: 01/27/2023]
Abstract
Aldehyde dehydrogenase 2 (ALDH2) is a new therapeutic target in the central nervous system. However, the association between ALDH2 and brain edema following ischemic stroke (IS) remains unclear. The present study was investigated to whether active ALDH2 can attenuate brain edema by using a rat model of IS, with the aim of clarifying the underlying mechanisms involved. Rats were administered the ALDH2 agonist Alda-1, vehicle or the ALDH2 inhibitor cyanamide (CYA) 15 min prior to a 1.5 h middle cerebral artery occlusion (MCAO) surgery. The effects of ALDH2 were subsequently investigated 24 h after reperfusion by evaluating neurological function, infarct sizes, brain edema volumes, 4-hydroxy-2-nonenal (4-HNE) levels, and aquaporin 4 (AQP4) protein expression. The results demonstrated that increasing ALDH2 activity significantly improved neurological deficits, reduced infarct sizes, and attenuated brain edema after MCAO. Alda-1 administration led to decreased 4-HNE levels and inhibited AQP4 protein expression in the peri-infarct section of the brain. Whereas, CYA administration increased 4-HNE levels, AQP4 expression, and simultaneously aggravated brain edema following MCAO. In conclusion, increasing ALDH2 activity can improve brain edema, infarct volumes, and reduce neurological impairment in a rat IS model. The therapeutic benefits of ALDH2 are related to 4-HNE clearance and AQP4 down-regulation.
Collapse
|
15
|
Mol M, Regazzoni L, Altomare A, Degani G, Carini M, Vistoli G, Aldini G. Enzymatic and non-enzymatic detoxification of 4-hydroxynonenal: Methodological aspects and biological consequences. Free Radic Biol Med 2017; 111:328-344. [PMID: 28161307 DOI: 10.1016/j.freeradbiomed.2017.01.036] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 01/26/2017] [Accepted: 01/26/2017] [Indexed: 10/20/2022]
Abstract
4-Hydroxynonenal (HNE), an electrophilic end-product deriving from lipid peroxidation, undergoes a heterogeneous set of biotransformations including enzymatic and non-enzymatic reactions. The former mostly involve red-ox reactions on the HNE oxygenated functions (phase I metabolism) and GSH conjugations (phase II) while the latter are due to the HNE capacity to spontaneously condense with nucleophilic sites within endogenous molecules such as proteins, nucleic acids and phospholipids. The overall metabolic fate of HNE has recently attracted great interest not only because it clearly determines the HNE disposal, but especially because the generated metabolites and adducts are not inactive molecules (as initially believed) but show biological activities even more pronounced than those of the parent compound as exemplified by potent pro-inflammatory stimulus induced by GSH conjugates. Similarly, several studies revealed that the non-enzymatic reactions, initially considered as damaging processes randomly involving all endogenous nucleophilic reactants, are in fact quite selective in terms of both reactivity of the nucleophilic sites and stability of the generated adducts. Even though many formed adducts retain the expected toxic consequences, some adducts exhibit well-defined beneficial roles as documented by the protective effects of sublethal concentrations of HNE against toxic concentrations of HNE. Clearly, future investigations are required to gain a more detailed understanding of the metabolic fate of HNE as well as to identify novel targets involved in the biological activity of the HNE metabolites. These studies are and will be permitted by the continuous progress in the analytical methods for the identification and quantitation of novel HNE metabolites as well as for proteomic analyses able to offer a comprehensive picture of the HNE-induced adducted targets. On these grounds, the present review will focus on the major enzymatic and non-enzymatic HNE biotransformations discussing both the molecular mechanisms involved and the biological effects elicited. The review will also describe the most important analytical enhancements that have permitted the here discussed advancements in our understanding of the HNE metabolic fate and which will permit in a near future an even better knowledge of this enigmatic molecule.
Collapse
Affiliation(s)
- Marco Mol
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milan, Italy
| | - Luca Regazzoni
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milan, Italy
| | - Alessandra Altomare
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milan, Italy
| | - Genny Degani
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milan, Italy
| | - Marina Carini
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milan, Italy
| | - Giulio Vistoli
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milan, Italy
| | - Giancarlo Aldini
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milan, Italy.
| |
Collapse
|
16
|
Yu Q, Wang B, Zhao T, Zhang X, Tao L, Shi J, Sun X, Ding Q. NaHS Protects against the Impairments Induced by Oxygen-Glucose Deprivation in Different Ages of Primary Hippocampal Neurons. Front Cell Neurosci 2017; 11:67. [PMID: 28326019 PMCID: PMC5339257 DOI: 10.3389/fncel.2017.00067] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 02/24/2017] [Indexed: 01/16/2023] Open
Abstract
Brain ischemia leads to poor oxygen supply, and is one of the leading causes of brain damage and/or death. Neuroprotective agents are thus in great need for treatment purpose. Using both young and aged primary cultured hippocampal neurons as in vitro models, we investigated the effect of sodium hydrosulfide (NaHS), an exogenous donor of hydrogen sulfide, on oxygen-glucose deprivation (OGD) damaged neurons that mimick focal cerebral ischemia/reperfusion (I/R) induced brain injury. NaHS treatment (250 μM) protected both young and aged hippocampal neurons, as indicated by restoring number of primary dendrites by 43.9 and 68.7%, number of dendritic end tips by 59.8 and 101.1%, neurite length by 36.8 and 66.7%, and spine density by 38.0 and 58.5% in the OGD-damaged young and aged neurons, respectively. NaHS treatment inhibited growth-associated protein 43 downregulation, oxidative stress in both young and aged hippocampal neurons following OGD damage. Further studies revealed that NaHS treatment could restore ERK1/2 activation, which was inhibited by OGD-induced protein phosphatase 2 (PP2A) upregulation. Our results demonstrated that NaHS has potent protective effects against neuron injury induced by OGD in both young and aged hippocampal neurons.
Collapse
Affiliation(s)
- Qian Yu
- Department of Anesthesiology, Tangdu Hospital, Fourth Military Medical University Xi'an, China
| | - Binrong Wang
- Department of Anesthesiology, Tangdu Hospital, Fourth Military Medical University Xi'an, China
| | - Tianzhi Zhao
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University Xi'an, China
| | - Xiangnan Zhang
- Division of Scientific Research, Tangdu Hospital, Fourth Military Medical University Xi'an, China
| | - Lei Tao
- Department of Anesthesiology, Tangdu Hospital, Fourth Military Medical University Xi'an, China
| | - Jinshan Shi
- Department of Anesthesiology, Guizhou Provincial People's Hospital Guiyang, China
| | - Xude Sun
- Department of Anesthesiology, Tangdu Hospital, Fourth Military Medical University Xi'an, China
| | - Qian Ding
- Department of Anesthesiology, Tangdu Hospital, Fourth Military Medical University Xi'an, China
| |
Collapse
|
17
|
Akbar M, Essa MM, Daradkeh G, Abdelmegeed MA, Choi Y, Mahmood L, Song BJ. Mitochondrial dysfunction and cell death in neurodegenerative diseases through nitroxidative stress. Brain Res 2016; 1637:34-55. [PMID: 26883165 PMCID: PMC4821765 DOI: 10.1016/j.brainres.2016.02.016] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 02/02/2016] [Accepted: 02/05/2016] [Indexed: 12/12/2022]
Abstract
Mitochondria are important for providing cellular energy ATP through the oxidative phosphorylation pathway. They are also critical in regulating many cellular functions including the fatty acid oxidation, the metabolism of glutamate and urea, the anti-oxidant defense, and the apoptosis pathway. Mitochondria are an important source of reactive oxygen species leaked from the electron transport chain while they are susceptible to oxidative damage, leading to mitochondrial dysfunction and tissue injury. In fact, impaired mitochondrial function is commonly observed in many types of neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease, alcoholic dementia, brain ischemia-reperfusion related injury, and others, although many of these neurological disorders have unique etiological factors. Mitochondrial dysfunction under many pathological conditions is likely to be promoted by increased nitroxidative stress, which can stimulate post-translational modifications (PTMs) of mitochondrial proteins and/or oxidative damage to mitochondrial DNA and lipids. Furthermore, recent studies have demonstrated that various antioxidants, including naturally occurring flavonoids and polyphenols as well as synthetic compounds, can block the formation of reactive oxygen and/or nitrogen species, and thus ultimately prevent the PTMs of many proteins with improved disease conditions. Therefore, the present review is aimed to describe the recent research developments in the molecular mechanisms for mitochondrial dysfunction and tissue injury in neurodegenerative diseases and discuss translational research opportunities.
Collapse
Affiliation(s)
- Mohammed Akbar
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Musthafa Mohamed Essa
- Department of Food Science and Nutrition, College of Agriculture and Marine Sciences, Sultan Qaboos University, Oman; Ageing and Dementia Research Group, Sultan Qaboos University, Oman
| | - Ghazi Daradkeh
- Department of Food Science and Nutrition, College of Agriculture and Marine Sciences, Sultan Qaboos University, Oman
| | - Mohamed A Abdelmegeed
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Youngshim Choi
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Lubna Mahmood
- Department of Nutritional Sciences, Qatar University, Qatar
| | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|