1
|
Agbozo WK, Solomon W, Lekpor CE, Erskine IJ, Oguljahan B, Bashi A, Harbuzariu A, Driss A, Adjei S, Paemka L, Ofori-Acquah SF, Stiles JK. Hydroxyurea Mitigates Heme-Induced Inflammation and Kidney Injury in Humanized Sickle Cell Mice. Int J Mol Sci 2025; 26:3214. [PMID: 40244015 PMCID: PMC11989777 DOI: 10.3390/ijms26073214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/18/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
Kidney disorders significantly contribute to morbidity and mortality in sickle cell disease (SCD). Acute kidney injury (AKI), a major risk factor for chronic kidney disease (CKD), often arises from intravascular hemolysis, where plasma cell-free heme drives AKI through inflammatory and oxidative stress mechanisms. Hydroxyurea (HU), a well-established SCD-modifying therapy, improves clinical outcomes, but its effects on systemic heme and inflammatory mediators of kidney injury remain underexplored. This study evaluated HU's impact on plasma heme, pro-inflammatory mediators, kidney injury, and renal histopathology in a sickle cell mouse model. Townes humanized sickle cell mice (HbSS) and non-sickle (HbAA) controls were treated with HU or vehicle for two weeks. HU significantly reduced total plasma heme, lactate dehydrogenase, and pro-inflammatory cytokines (CXCL10, VEGF-A, IFN-γ) in HbSS mice. HU reduced renal injury biomarkers (cystatin C, NGAL) and improved renal histopathology, evidenced by reduced vascular congestion, glomerulosclerosis, and tubular damage. Interestingly, HU did not alter the levels of kidney repair biomarkers (clusterin and EGF). These findings suggest that HU mitigates kidney injury by reducing the deleterious effects of circulating heme and inflammation, supporting its potential to slow or prevent progressive kidney injury in SCD.
Collapse
Affiliation(s)
- William Kwaku Agbozo
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (W.K.A.)
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, P.O. Box LG 25 Legon-Accra, Ghana
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, P.O. Box LG 25 Legon-Accra, Ghana
| | - Wesley Solomon
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (W.K.A.)
| | - Cecilia Elorm Lekpor
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (W.K.A.)
| | - Isaac Joe Erskine
- Department of Pathology, Korle-Bu Teaching Hospital, P.O. Box 77 Korle Bu-Accra, Ghana
| | - Babayewa Oguljahan
- Center for Laboratory Animal Resources, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Alaijah Bashi
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (W.K.A.)
| | | | - Adel Driss
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (W.K.A.)
| | - Samuel Adjei
- Department of Animal Experimentation, Noguchi Memorial Institute for Medical Research, University of Ghana, P.O. Box LG 581 Legon-Accra, Ghana
| | - Lily Paemka
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, P.O. Box LG 25 Legon-Accra, Ghana
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, P.O. Box LG 25 Legon-Accra, Ghana
| | - Solomon Fifii Ofori-Acquah
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (W.K.A.)
- West African Genetic Medicine Center (WAGMC), University of Ghana, P.O. Box LG 25 Legon-Accra, Ghana
| | - Jonathan K. Stiles
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (W.K.A.)
| |
Collapse
|
2
|
Ávila G, Bonnet M, Viala D, Dejean S, Agazzi A, Lecchi C, Ceciliani F. Porcine milk small extracellular vesicles modulate peripheral blood mononuclear cell proteome in vitro. Sci Rep 2025; 15:8069. [PMID: 40055486 PMCID: PMC11889182 DOI: 10.1038/s41598-025-92550-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 02/28/2025] [Indexed: 05/13/2025] Open
Abstract
Small extracellular vesicles (EVs) are a subtype of nano-sized extracellular vesicles that mediate intercellular communication. EVs can be found in different body fluids, including milk. Monocytes internalize porcine milk EVs and modulate immune functions in vitro by decreasing their phagocytosis and chemotaxis while increasing their oxidative burst. This study aimed to assess the impact of porcine milk EVs on the porcine peripheral blood mononuclear cells (PBMC) proteome. Porcine PBMC were incubated with porcine milk EVs or medium as a control. Extracted proteins were then analyzed using nano-LC-MS/MS. A total of 1584 proteins were identified. The supervised multivariate statistical analysis, sparse variant partial least squares - discriminant analysis (sPLS-DA) for paired data identified discriminant proteins (DP) that contributed to a clear separation between the porcine milk EVs treated cells and control groups. A total of 384 DP from both components were selected. Gene Ontology (GO) enrichment analysis with ProteINSIDE provided the evidence that the DP with a higher abundance in porcine milk EVs, like TLR2, APOE, CD36, MFGE8, were mainly involved in innate immunity and the process of EVs uptake processes. These results provide a proteomics background to the immunomodulatory activity of porcine milk EVs and to the potential mechanisms used by immune cells to internalize them.
Collapse
Affiliation(s)
- Gabriela Ávila
- Department of Veterinary and Animal Sciences, Università Degli Studi di Milano, Via dell'Università 6, 26900, Lodi, Italy
| | - Muriel Bonnet
- INRAE, University of Clermont Auvergne, Vetagro Sup, UMRH, 63122, Saint-Genès-Champanelle, France
| | - Didier Viala
- INRAE, University of Clermont Auvergne, Vetagro Sup, UMRH, 63122, Saint-Genès-Champanelle, France
- INRAE, Metabolomic and Proteomic Exploration Facility, Proteomic Component, (PFEMcp), 63122, Saint-Genès-Champanelle, France
| | - Sebastian Dejean
- Institute of Mathematics of Toulouse, University of Toulouse, CNRS, UPS, UMR 5219, 31062, Toulouse, France
| | - Alessandro Agazzi
- Department of Veterinary and Animal Sciences, Università Degli Studi di Milano, Via dell'Università 6, 26900, Lodi, Italy
| | - Cristina Lecchi
- Department of Veterinary and Animal Sciences, Università Degli Studi di Milano, Via dell'Università 6, 26900, Lodi, Italy
| | - Fabrizio Ceciliani
- Department of Veterinary and Animal Sciences, Università Degli Studi di Milano, Via dell'Università 6, 26900, Lodi, Italy.
| |
Collapse
|
3
|
Wijaya LS, Kunnen SJ, Trairatphisan P, Fisher CP, Crosby ME, Schaefer K, Bodié K, Vaughan EE, Breidenbach L, Reich T, Clausznitzer D, Bonnet S, Zheng S, Pont C, Stevens JL, Le Dévédec SE, van de Water B. Spatio-temporal transcriptomic analysis reveals distinct nephrotoxicity, DNA damage, and regeneration response after cisplatin. Cell Biol Toxicol 2025; 41:49. [PMID: 39982567 PMCID: PMC11845422 DOI: 10.1007/s10565-025-10003-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 02/12/2025] [Indexed: 02/22/2025]
Abstract
Nephrotoxicity caused by drug or chemical exposure involves complex mechanisms as well as a temporal integration of injury and repair responses in different nephron segments. Distinct cellular transcriptional programs regulate the time-dependent tissue injury and regeneration responses. Whole kidney transcriptome analysis cannot dissect the complex spatio-temporal injury and regeneration responses in the different nephron segments. Here, we used laser capture microdissection of formalin-fixed paraffin embedded sections followed by whole genome targeted RNA-sequencing-TempO-Seq and co-expression gene-network (module) analysis to determine the spatial-temporal responses in rat kidney glomeruli (GM), cortical proximal tubules (CPT) and outer-medulla proximal tubules (OMPT) comparison with whole kidney, after a single dose of the nephrotoxicant cisplatin. We demonstrate that cisplatin induced early onset of DNA damage in both CPT and OMPT, but not GM. Sustained DNA damage response was strongest in OMPT coinciding with OMPT specific inflammatory signaling, actin cytoskeletal remodeling and increased glycolytic metabolism with suppression of mitochondrial activity. Later responses reflected regeneration-related cell cycle pathway activation and ribosomal biogenesis in the injured OMPT regions. Activation of modules containing kidney injury biomarkers was strongest in OMPT, with OMPT Clu expression highly correlating with urinary clusterin biomarker measurements compared the correlation of Kim1. Our findings also showed that whole kidney responses were less sensitive than OMPT. In conclusion, our LCM-TempO-Seq method reveals a detailed spatial mechanistic understanding of renal injury/regeneration after nephrotoxicant exposure and identifies the most representative mechanism-based nephron segment specific renal injury biomarkers.
Collapse
Affiliation(s)
- Lukas S Wijaya
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Steven J Kunnen
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Panuwat Trairatphisan
- Abbvie Deutschland, GmbH & Co KG, Ludwigshafen, Germany
- , Sanofi, Frankfurt, Hesse, Germany
| | | | - Meredith E Crosby
- Global Pharmaceutical Research and Development, AbbVie, North Chicago, IL, USA
- Drug Safety and Pharmacometrics, Regeneron Pharmaceuticals Inc, Tarrytown, NY, USA
| | - Kai Schaefer
- Abbvie Deutschland, GmbH & Co KG, Ludwigshafen, Germany
| | - Karen Bodié
- Abbvie Deutschland, GmbH & Co KG, Ludwigshafen, Germany
| | - Erin E Vaughan
- Global Pharmaceutical Research and Development, AbbVie, North Chicago, IL, USA
| | | | - Thomas Reich
- Abbvie Deutschland, GmbH & Co KG, Ludwigshafen, Germany
| | | | - Sylvestre Bonnet
- Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Sipeng Zheng
- Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Chantal Pont
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - James L Stevens
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Sylvia E Le Dévédec
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Bob van de Water
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands.
| |
Collapse
|
4
|
Beiter RM, Raghavan TP, Suchocki O, Ennerfelt HE, Rivet-Noor CR, Merchak AR, Phillips JL, Bathe T, Lukens JR, Prokop S, Dupree JL, Gaultier A. Clusterin induced by OPC phagocytosis blocks IL-9 secretion to inhibit myelination in a model of Alzheimer's disease. Heliyon 2025; 11:e41635. [PMID: 39866464 PMCID: PMC11761289 DOI: 10.1016/j.heliyon.2025.e41635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 01/01/2025] [Accepted: 01/01/2025] [Indexed: 01/28/2025] Open
Abstract
Background Variants in the CLUSTERIN gene have been identified as a risk factor for late-onset Alzheimer's disease and are linked to decreased white matter integrity in healthy adults. However, the specific role for clusterin in myelin maintenance in the context of Alzheimer's disease remains unclear. Methods We employed a combination of immunofluorescence and transmission electron microscopy techniques, primary culture of OPCs, and an animal model of Alzheimer's disease. Results We found that phagocytosis of debris such as amyloid beta, myelin, and apoptotic cells, increases clusterin expression in oligodendrocyte progenitors. We further discovered that exposure to clusterin inhibits differentiation of oligodendrocyte progenitors. Mechanistically, clusterin blunts production of IL-9 and addition of exogenous IL-9 can rescue clusterin-inhibited myelination. Lastly, we demonstrate that clusterin deletion in mice prevents myelin loss in the 5XFAD model. Discussion Our data suggest that clusterin could play a key role in Alzheimer's disease myelin pathology.
Collapse
Affiliation(s)
- Rebecca M. Beiter
- Center for Brain Immunology and Glia, Department of Neuroscience, Charlottesville, VA 22908, USA
- Graduate Program in Neuroscience, Charlottesville, VA 22908, USA
- Department of Neurobiology, UMass Chan Medical School, Worcester, MA 01655, USA
| | - Tula P. Raghavan
- Center for Brain Immunology and Glia, Department of Neuroscience, Charlottesville, VA 22908, USA
- Graduate Program in Neuroscience, Charlottesville, VA 22908, USA
- Medical Scientist Training Program, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Olivia Suchocki
- Center for Brain Immunology and Glia, Department of Neuroscience, Charlottesville, VA 22908, USA
- Graduate Program in Neuroscience, Charlottesville, VA 22908, USA
| | - Hannah E. Ennerfelt
- Center for Brain Immunology and Glia, Department of Neuroscience, Charlottesville, VA 22908, USA
- Graduate Program in Neuroscience, Charlottesville, VA 22908, USA
| | - Courtney R. Rivet-Noor
- Center for Brain Immunology and Glia, Department of Neuroscience, Charlottesville, VA 22908, USA
- Graduate Program in Neuroscience, Charlottesville, VA 22908, USA
| | - Andrea R. Merchak
- Center for Brain Immunology and Glia, Department of Neuroscience, Charlottesville, VA 22908, USA
- Graduate Program in Neuroscience, Charlottesville, VA 22908, USA
| | - Jennifer L. Phillips
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
- Department of Pathology, College of Medicine, University of Florida, Gainesville, 32610, USA
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Tim Bathe
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
- Department of Pathology, College of Medicine, University of Florida, Gainesville, 32610, USA
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - John R. Lukens
- Center for Brain Immunology and Glia, Department of Neuroscience, Charlottesville, VA 22908, USA
- Graduate Program in Neuroscience, Charlottesville, VA 22908, USA
| | - Stefan Prokop
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
- Department of Pathology, College of Medicine, University of Florida, Gainesville, 32610, USA
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Jeffrey L. Dupree
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Alban Gaultier
- Center for Brain Immunology and Glia, Department of Neuroscience, Charlottesville, VA 22908, USA
- Graduate Program in Neuroscience, Charlottesville, VA 22908, USA
| |
Collapse
|
5
|
Bright R, Visalakshan RM, Simon J, Rokstad AM, Ghazaryan A, Morsbach S, Hayles A, Mailänder V, Landfester K, Vasilev K. Manipulation of Serum Protein Adsorption by Nanoengineered Biomaterials Influences Subsequent Immune Responses. ACS Biomater Sci Eng 2024; 10:6230-6240. [PMID: 39213601 DOI: 10.1021/acsbiomaterials.4c01103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The adsorption of serum proteins on biomaterial surfaces is a critical determinant for the outcome of medical procedures and therapies, which involve inserting materials and devices into the body. In this study, we aimed to understand how surface topography at the nanoscale influences the composition of the protein corona that forms on the (bio)material surface when placed in contact with serum proteins. To achieve that, we developed nanoengineered model surfaces with finely tuned topography of 16, 40, and 70 nm, overcoated with methyl oxazoline to ensure uniform outermost chemistry across all surfaces. Our findings revealed that within the studied height range, surface nanotopography had no major influence on the overall quantity of adsorbed proteins. However, significant alterations were observed in the composition of the adsorbed protein corona. For instance, clusterin adsorption decreased on all the nanotopography-modified surfaces. Conversely, there was a notable increase in the adsorption of ApoB and IgG gamma on the 70 nm nanotopography. In comparison, the adsorption of albumin was greater on surfaces that had a topography scale of 40 nm. Analysis of the gene enrichment data revealed a reduction in protein adsorption across all immune response-related biological pathways on nanotopography-modified surfaces. This reduction became more pronounced for larger surface nanoprotrusions. Macrophages were used as representative immune cells to assess the influence of the protein corona composition on inflammatory outcomes. Gene expression analysis demonstrated reduced inflammatory responses on the nanotopographically modified surface, a trend further corroborated by cytokine analysis. These findings underscore the potential of precisely engineered nanotopography-coated surfaces for augmenting biomaterial functionality.
Collapse
Affiliation(s)
- Richard Bright
- Biomedical Nanoengineering Laboratory, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Rahul M Visalakshan
- Academic Unit of STEM, University of South Australia, Mawson Lakes, Adelaide, South Australia 5095, Australia
| | - Johanna Simon
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Anne Mari Rokstad
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, 7034 Trondheim, Norway
| | - Arthur Ghazaryan
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Svenja Morsbach
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Andrew Hayles
- Biomedical Nanoengineering Laboratory, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Volker Mailänder
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Dermatology Department, University Medicine Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Katharina Landfester
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Krasimir Vasilev
- Biomedical Nanoengineering Laboratory, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia 5042, Australia
| |
Collapse
|
6
|
Gujarati NA, Frimpong BO, Zaidi M, Bronstein R, Revelo MP, Haley JD, Kravets I, Guo Y, Mallipattu SK. Podocyte-specific KLF6 primes proximal tubule CaMK1D signaling to attenuate diabetic kidney disease. Nat Commun 2024; 15:8038. [PMID: 39271683 PMCID: PMC11399446 DOI: 10.1038/s41467-024-52306-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
Diabetic kidney disease (DKD) is the main cause of chronic kidney disease worldwide. While injury to the podocytes, visceral epithelial cells that comprise the glomerular filtration barrier, drives albuminuria, proximal tubule (PT) dysfunction is the critical mediator of DKD progression. Here, we report that the podocyte-specific induction of human KLF6, a zinc-finger binding transcription factor, attenuates podocyte loss, PT dysfunction, and eventual interstitial fibrosis in a male murine model of DKD. Utilizing combination of snRNA-seq, snATAC-seq, and tandem mass spectrometry, we demonstrate that podocyte-specific KLF6 triggers the release of secretory ApoJ to activate calcium/calmodulin dependent protein kinase 1D (CaMK1D) signaling in neighboring PT cells. CaMK1D is enriched in the first segment of the PT, proximal to the podocytes, and is critical to attenuating mitochondrial fission and restoring mitochondrial function under diabetic conditions. Targeting podocyte-PT signaling by enhancing ApoJ-CaMK1D might be a key therapeutic strategy in attenuating the progression of DKD.
Collapse
Affiliation(s)
- Nehaben A Gujarati
- Division of Nephrology and Hypertension, Department of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Bismark O Frimpong
- Division of Nephrology and Hypertension, Department of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Malaika Zaidi
- Division of Nephrology and Hypertension, Department of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Robert Bronstein
- Division of Nephrology and Hypertension, Department of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Monica P Revelo
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - John D Haley
- Department of Pharmacology, Stony Brook University, Stony Brook, NY, USA
| | - Igor Kravets
- Division of Endocrinology, Department of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Yiqing Guo
- Division of Nephrology and Hypertension, Department of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Sandeep K Mallipattu
- Division of Nephrology and Hypertension, Department of Medicine, Stony Brook University, Stony Brook, NY, USA.
- Renal Section, Northport VA Medical Center, Northport, NY, USA.
| |
Collapse
|
7
|
Mamun M, Zheng YC, Wang N, Wang B, Zhang Y, Pang JR, Shen DD, Liu HM, Gao Y. Decoding CLU (Clusterin): Conquering cancer treatment resistance and immunological barriers. Int Immunopharmacol 2024; 137:112355. [PMID: 38851158 DOI: 10.1016/j.intimp.2024.112355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/10/2024]
Abstract
One major obstacle in the treatment of cancer is the presence of proteins resistant to cancer therapy, which can impede the effectiveness of traditional approaches such as radiation and chemotherapy. This resistance can lead to disease progression and cause treatment failure. Extensive research is currently focused on studying these proteins to create tailored treatments that can circumvent resistance mechanisms. CLU (Clusterin), a chaperone protein, has gained notoriety for its role in promoting resistance to a wide range of cancer treatments, including chemotherapy, radiation therapy, and targeted therapy. The protein has also been discovered to have a role in regulating the immunosuppressive environment within tumors. Its ability to influence oncogenic signaling and inhibit cell death bolster cancer cells resistant against treatments, which poses a significant challenge in the field of oncology. Researchers are actively investigating to the mechanisms by which CLU exerts its resistance-promoting effects, with the ultimate goal of developing strategies to circumvent its impact and enhance the effectiveness of cancer therapies. By exploring CLU's impact on cancer, resistance mechanisms, tumor microenvironment (TME), and therapeutic strategies, this review aims to contribute to the ongoing efforts to improve cancer treatment outcomes.
Collapse
Affiliation(s)
- Maa Mamun
- State Key Laboratory of Esophageal Cancer Prevention & Treatment Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Yi-Chao Zheng
- State Key Laboratory of Esophageal Cancer Prevention & Treatment Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Ning Wang
- The School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Bo Wang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Yu Zhang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Jing-Ru Pang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Dan-Dan Shen
- Key Laboratory of Endometrial Disease Prevention and Treatment, Zhengzhou China, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Hong-Min Liu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Ya Gao
- State Key Laboratory of Esophageal Cancer Prevention & Treatment Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China.
| |
Collapse
|
8
|
Beiter RM, Raghavan TP, Suchocki O, Ennerfelt HE, Rivet-Noor CR, Merchak AR, Phillips JL, Bathe T, Lukens JR, Prokop S, Dupree JL, Gaultier A. Oligomeric amyloid beta prevents myelination in a clusterin-dependent manner. RESEARCH SQUARE 2024:rs.3.rs-4415143. [PMID: 38853911 PMCID: PMC11160922 DOI: 10.21203/rs.3.rs-4415143/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Background White matter loss is a well-documented phenomenon in Alzheimer's disease (AD) patients that has been recognized for decades. However, the underlying reasons for the failure of oligodendrocyte progenitor cells (OPCs) to repair myelin deficits in these patients remain elusive. A single nucleotide polymorphism (SNP) in Clusterin has been identified as a risk factor for late-onset Alzheimer's disease and linked to a decrease in white matter integrity in healthy adults, but its specific role in oligodendrocyte function and myelin maintenance in Alzheimer's disease pathology remains unclear. Methods To investigate the impact of Clusterin on OPCs in the context of Alzheimer's disease, we employed a combination of immunofluorescence and transmission electron microscopy techniques, primary culture of OPCs, and an animal model of Alzheimer's disease. Results Our findings demonstrate that Clusterin, a risk factor for late-onset AD, is produced by OPCs and inhibits their differentiation into oligodendrocytes. Specifically, we observed upregulation of Clusterin in OPCs in the 5xFAD mouse model of AD. We also found that the phagocytosis of debris, including amyloid beta (Aβ), myelin, and apoptotic cells leads to the upregulation of Clusterin in OPCs. In vivo experiments confirmed that Aβ oligomers stimulate Clusterin upregulation and that OPCs are capable of phagocytosing Aβ. Furthermore, we discovered that Clusterin significantly inhibits OPC differentiation and hinders the production of myelin proteins. Finally, we demonstrate that Clusterin inhibits OPC differentiation by reducing the production of IL-9 by OPCs. Conclusion Our data suggest that Clusterin may play a key role in the impaired myelin repair observed in AD and could serve as a promising therapeutic target for addressing AD-associated cognitive decline.
Collapse
|
9
|
Elchaninov A, Vishnyakova P, Kuznetsova M, Lokhonina A, Soboleva A, Trofimov D, Fatkhudinov T, Sukhikh G. Mimicking the cellular environment does not cause monocyte-derived macrophages to become phenotypically similar to Kupffer cells. Immunol Cell Biol 2024; 102:381-395. [PMID: 38629182 DOI: 10.1111/imcb.12746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/24/2024] [Accepted: 03/19/2024] [Indexed: 05/12/2024]
Abstract
Resident macrophages of various mammalian organs are characterized by several distinctive features in their gene expression profile and phenotype, including involvement in the regulation of organ functions, as well as reduced sensitivity to proinflammatory activation factors. The reasons for the formation of such a specific phenotype remain the subject of intensive research. Some papers emphasize the role of the origin of organ macrophages. Other studies indicate that monocytes that develop in the red bone marrow are also able to form resident macrophages with a phenotype characteristic of a particular organ, but this requires appropriate microenvironmental conditions. In this article, we studied the possibility of differentiation of monocyte-derived macrophages into cells with a Kupffer-like phenotype under the influence of the main stromal components of Kupffer cells macrophage niche: Ito cells, liver sinusoid endotheliocytes and hepatocyte growth factor (HGF). It was found that Kupffer cells are characterized by several features, including increased expression of transcription factors Spic and Id3, as well as MUP family genes, Clusterin and Ngp genes. In addition, Kupffer cells were characterized by a higher proliferative activity. The expression of marker genes of Kupffer cells (i.e. Id3, Spic, Marco and Timd4) increased in monocyte-derived macrophages during coculture with Ito cells, liver sinusoid endothelial cells, macrophage colony-stimulating factor and HGF cells only by 3 days. However, the expression level of these genes was always higher in Kupffer cells. In addition, a complete coincidence of the expressed gene profile in monocyte-derived macrophages and Kupffer cells did not occur even after 3 days of culturing.
Collapse
Affiliation(s)
- Andrey Elchaninov
- Laboratory of Growth and Development, Avtsyn Research Institute of Human Morphology of FSBI, Petrovsky National Research Centre of Surgery, Moscow, Russia
- Histology Department, Pirogov Russian National Research Medical University, Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - Polina Vishnyakova
- Laboratory of Regenerative Medicine, Institute of Translational Medicine, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
- Histology Department, Medical Institute, Peoples' Friendship University of Russia (RUDN University), Moscow, Russia
| | - Maria Kuznetsova
- Laboratory of molecular research methods, Institute of Reproductive Genetics, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Anastasiya Lokhonina
- Laboratory of Regenerative Medicine, Institute of Translational Medicine, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
- Histology Department, Medical Institute, Peoples' Friendship University of Russia (RUDN University), Moscow, Russia
| | - Anna Soboleva
- Laboratory of Growth and Development, Avtsyn Research Institute of Human Morphology of FSBI, Petrovsky National Research Centre of Surgery, Moscow, Russia
| | - Dmitry Trofimov
- Laboratory of molecular research methods, Institute of Reproductive Genetics, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Timur Fatkhudinov
- Laboratory of Growth and Development, Avtsyn Research Institute of Human Morphology of FSBI, Petrovsky National Research Centre of Surgery, Moscow, Russia
- Histology Department, Medical Institute, Peoples' Friendship University of Russia (RUDN University), Moscow, Russia
| | - Gennady Sukhikh
- Laboratory of Regenerative Medicine, Institute of Translational Medicine, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
| |
Collapse
|
10
|
Wang Z, Liu T, Wang Z, Mi Z, Zhang Y, Wang C, Sun L, Ma S, Xue X, Liu H, Zhang F. CYBB-Mediated Ferroptosis Associated with Immunosuppression in Mycobacterium leprae-Infected Monocyte-Derived Macrophages. J Invest Dermatol 2024; 144:874-887.e2. [PMID: 37925067 DOI: 10.1016/j.jid.2023.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 11/06/2023]
Abstract
Mycobacterium leprae-infected macrophages preferentially exhibit the regulatory M2 phenotype in vitro, which helps the immune escape unabated growth of M leprae in host cells. The mechanism that triggers macrophage polarization is still unknown. In this study, we performed single-cell RNA sequencing to determine the initial responses of human monocyte-derived macrophages against M leprae infection of 4 healthy individuals and found an increase in a major alternative-activated macrophage type that overexpressed NEAT1, CCL2, and CD163. Importantly, further functional analysis showed that ferroptosis was positively correlated with M2 polarization of macrophages, and in vitro experiments have shown that inhibition of ferroptosis promotes the survival of M leprae within macrophages. In addition, further joint analysis of our results with mutisequencing data from patients with leprosy and in vitro validation identified that CYBB was the pivotal molecule for ferroptosis that could promote the M2 polarization of M leprae-infected macrophages, resulting in the immune escape and unabated growth of pathogenic bacteria. Overall, our results suggest that M leprae facilitated its survival by inducing CYBB-mediated macrophage ferroptosis leading to its alternative activation and might reveal the potential for a new therapeutic strategy of leprosy.
Collapse
Affiliation(s)
- Zhe Wang
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Tingting Liu
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Zhenzhen Wang
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Zihao Mi
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Yuan Zhang
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Chuan Wang
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Lele Sun
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Shanshan Ma
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Xiaotong Xue
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Hong Liu
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China.
| | - Furen Zhang
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China.
| |
Collapse
|
11
|
Brown GC, Heneka MT. The endotoxin hypothesis of Alzheimer's disease. Mol Neurodegener 2024; 19:30. [PMID: 38561809 PMCID: PMC10983749 DOI: 10.1186/s13024-024-00722-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/18/2024] [Indexed: 04/04/2024] Open
Abstract
Lipopolysaccharide (LPS) constitutes much of the surface of Gram-negative bacteria, and if LPS enters the human body or brain can induce inflammation and act as an endotoxin. We outline the hypothesis here that LPS may contribute to the pathophysiology of Alzheimer's disease (AD) via peripheral infections or gut dysfunction elevating LPS levels in blood and brain, which promotes: amyloid pathology, tau pathology and microglial activation, contributing to the neurodegeneration of AD. The evidence supporting this hypothesis includes: i) blood and brain levels of LPS are elevated in AD patients, ii) AD risk factors increase LPS levels or response, iii) LPS induces Aβ expression, aggregation, inflammation and neurotoxicity, iv) LPS induces TAU phosphorylation, aggregation and spreading, v) LPS induces microglial priming, activation and neurotoxicity, and vi) blood LPS induces loss of synapses, neurons and memory in AD mouse models, and cognitive dysfunction in humans. However, to test the hypothesis, it is necessary to test whether reducing blood LPS reduces AD risk or progression. If the LPS endotoxin hypothesis is correct, then treatments might include: reducing infections, changing gut microbiome, reducing leaky gut, decreasing blood LPS, or blocking LPS response.
Collapse
Affiliation(s)
- Guy C Brown
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom.
| | - Michael T Heneka
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| |
Collapse
|
12
|
Guo G, Wang Y, Kou W, Gan H. Identifying the molecular mechanisms of sepsis-associated acute kidney injury and predicting potential drugs. Front Genet 2022; 13:1062293. [PMID: 36579331 PMCID: PMC9792148 DOI: 10.3389/fgene.2022.1062293] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 11/22/2022] [Indexed: 12/14/2022] Open
Abstract
Objective: To provide insights into the diagnosis and therapy of SA-AKI via ferroptosis genes. Methods: Based on three datasets (GSE57065, GSE30718, and GSE53771), we used weighted co-expression network analysis to identify the key regulators of SA-AKI, its potential biological functions, and constructed miRNA‒mRNA complex regulatory relationships. We also performed machine learning and in vitro cell experiments to identify ferroptosis genes that are significantly related to SA-AKI in the two datasets. The CIBERSORT algorithm evaluates the degree of infiltration of 22 types of immune cell. We compared the correlation between ferroptosis and immune cells by Pearson's correlation analysis and verified the key genes related to the immune response to reveal potential diagnostic markers. Finally, we predicted the effects of drugs and the potential therapeutic targets for septic kidney injury by pRRophetic. Results: We found 264 coDEGs involving 1800 miRNA molecules that corresponded to 210 coDEGs. The miRNA‒mRNA ceRNA interaction network was constructed to obtain the top-10 hub nodes. We obtained the top-20 ferroptosis genes, 11 of which were in the intersection. We also identified a relationship between ferroptosis genes and the immune cells in the AKI dataset, which showed that neutrophils were activated and that regulatory T cells were surpassed. Finally, we identified EHT1864 and salubrinal as potential therapeutic agents. Conclusion: This study demonstrated the roles of miR-650 and miR-296-3p genes in SA-AKI. Furthermore, we identified OLFM4, CLU, RRM2, SLC2A3, CCL5, ADAMTS1, and EPHX2 as potential biomarkers. The irregular immune response mediated by neutrophils and Treg cells is involved in the development of AKI and shows a correlation with ferroptosis genes. EHT 1864 and salubrinal have potential as drug candidates in patients with septic acute kidney injury.
Collapse
|
13
|
Kumar P, Yang Z, Lever JM, Chávez MD, Fatima H, Crossman DK, Maynard CL, George JF, Mitchell T. Hydroxyproline stimulates inflammation and reprograms macrophage signaling in a rat kidney stone model. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166442. [PMID: 35562038 PMCID: PMC10101222 DOI: 10.1016/j.bbadis.2022.166442] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 11/17/2022]
Abstract
Meals rich in oxalate are associated with calcium oxalate (CaOx) kidney stone disease. Hydroxy-L-proline (HLP) is an oxalate precursor found in milk and collagen-containing foods. HLP has been shown to induce CaOx crystal formation in rodents. The purpose of this study was to evaluate the effect of HLP induced oxalate levels on inflammation and renal leukocytes during crystal formation. Male Sprague-Dawley rats (6-8 weeks old) were fed a control diet containing no oxalate for 3 days before being randomized to continue the control diet or 5% HLP for up to 28 days. Blood, 24 h urine, and kidneys were collected on Days 0, 7, 14, or 28. Urinary oxalate levels, crystal deposition, and renal macrophage markers were evaluated using ion chromatography-mass spectrometry, immunohistochemistry, and qRT-PCR. Renal leukocytes were assessed using flow cytometry and RNA-sequencing. HLP feeding increased urinary oxalate levels and renal crystal formation in animals within 7 days. HLP also increased renal macrophage populations on Days 14 and 28. Transcriptome analysis revealed that renal macrophages from animals fed HLP for 7 days were involved in inflammatory response and disease, stress response to LPS, oxidative stress, and immune cell trafficking. Renal macrophages isolated on Day 14 were involved in cell-mediated immunological pathways, ion homeostasis, and inflammatory response. Collectively, these findings suggest that HLP-mediated oxalate levels induce markers of inflammation, leukocyte populations, and reprograms signaling pathways in macrophages in a time-dependent manner. Additional studies investigating the significance of oxalate on renal macrophages could aid in our understanding of kidney stone formation.
Collapse
Affiliation(s)
- Parveen Kumar
- Department of Urology, University of Alabama Birmingham, Birmingham, AL, USA
| | - Zhengqin Yang
- Department of Nephrology, University of Alabama Birmingham, Birmingham, AL, USA
| | - Jeremie M Lever
- Department of Nephrology, University of Alabama Birmingham, Birmingham, AL, USA
| | - Miranda D Chávez
- Department of Urology, University of Alabama Birmingham, Birmingham, AL, USA
| | - Huma Fatima
- Department of Pathology, University of Alabama Birmingham, Birmingham, AL, USA
| | - David K Crossman
- Department of Medicine, University of Alabama Birmingham, Birmingham, AL, USA
| | - Craig L Maynard
- Department of Pathology, University of Alabama Birmingham, Birmingham, AL, USA
| | - James F George
- Department of Nephrology, University of Alabama Birmingham, Birmingham, AL, USA
| | - Tanecia Mitchell
- Department of Urology, University of Alabama Birmingham, Birmingham, AL, USA.
| |
Collapse
|
14
|
Kim H, Kim DE, Han G, Lim NR, Kim EH, Jang Y, Cho H, Jang H, Kim KH, Kim SH, Yang Y. Harnessing the Natural Healing Power of Colostrum: Bovine Milk-Derived Extracellular Vesicles from Colostrum Facilitating the Transition from Inflammation to Tissue Regeneration for Accelerating Cutaneous Wound Healing. Adv Healthc Mater 2022; 11:e2102027. [PMID: 34865307 PMCID: PMC11468066 DOI: 10.1002/adhm.202102027] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/11/2021] [Indexed: 12/17/2022]
Abstract
As wound healing is an extremely complicated process, consisting of a cascade of interlocking biological events, successful wound healing requires a multifaceted approach to support appropriate and rapid transitions from the inflammatory to proliferative and remodeling phases. In this regard, here the potential use of bovine milk extracellular vesicles (EVs) to enhance wound healing is investigated. The results show that milk EVs promote fibroblast proliferation, migration, and endothelial tube formation. In particular, milk EVs derived from colostrum (Colos EVs) contain various anti-inflammatory factors facilitating the transition from inflammation to proliferation phase, as well as factors for tissue remodeling and angiogenesis. In an excisional wound mouse model, Colos EVs promote re-epithelialization, activate angiogenesis, and enhance extracellular matrix maturation. Interestingly, Colos EVs are further found to be quite resistant to freeze-drying procedures, maintaining their original characteristics and efficacy for wound repair after lyophilization. These findings on the superior stability and excellent activity of milk Colos EVs indicate that they hold great promise to be developed as anti-inflammatory therapeutics, especially for the treatment of cutaneous wounds.
Collapse
Affiliation(s)
- Hyosuk Kim
- Center for TheragnosisBiomedical Research InstituteKorea Institute of Science and TechnologySeoul02792Republic of Korea
| | - Da Eun Kim
- Center for TheragnosisBiomedical Research InstituteKorea Institute of Science and TechnologySeoul02792Republic of Korea
- Division of Bio‐Medical Science and TechnologyKIST SchoolKorea University of Science and TechnologySeoul02792Republic of Korea
| | - Geonhee Han
- Center for TheragnosisBiomedical Research InstituteKorea Institute of Science and TechnologySeoul02792Republic of Korea
- KU‐KIST Graduate School of Converging Science and TechnologyKorea UniversitySeoul02841Republic of Korea
| | - Nu Ri Lim
- Doping Control CenterKorea Institute of Science and TechnologySeoul02792Republic of Korea
| | - Eun Hye Kim
- Center for TheragnosisBiomedical Research InstituteKorea Institute of Science and TechnologySeoul02792Republic of Korea
- Department of Life ScienceKorea UniversitySeoul02841Republic of Korea
| | - Yeongji Jang
- Center for TheragnosisBiomedical Research InstituteKorea Institute of Science and TechnologySeoul02792Republic of Korea
- Department of Life ScienceKorea UniversitySeoul02841Republic of Korea
| | - Haeun Cho
- Center for TheragnosisBiomedical Research InstituteKorea Institute of Science and TechnologySeoul02792Republic of Korea
- Department of BiotechnologyKorea UniversitySeoul02841Republic of Korea
| | - Hochung Jang
- Center for TheragnosisBiomedical Research InstituteKorea Institute of Science and TechnologySeoul02792Republic of Korea
- Division of Bio‐Medical Science and TechnologyKIST SchoolKorea University of Science and TechnologySeoul02792Republic of Korea
| | - Ki Hun Kim
- Doping Control CenterKorea Institute of Science and TechnologySeoul02792Republic of Korea
| | - Sun Hwa Kim
- Center for TheragnosisBiomedical Research InstituteKorea Institute of Science and TechnologySeoul02792Republic of Korea
| | - Yoosoo Yang
- Center for TheragnosisBiomedical Research InstituteKorea Institute of Science and TechnologySeoul02792Republic of Korea
- Division of Bio‐Medical Science and TechnologyKIST SchoolKorea University of Science and TechnologySeoul02792Republic of Korea
| |
Collapse
|
15
|
Weng X, Li J, Guan Q, Zhao H, Wang Z, Gleave ME, Nguan CY, Du C. The functions of clusterin in renal mesenchymal stromal cells: Promotion of cell growth and regulation of macrophage activation. Exp Cell Res 2022; 413:113081. [PMID: 35218723 DOI: 10.1016/j.yexcr.2022.113081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/31/2022] [Accepted: 02/15/2022] [Indexed: 12/24/2022]
Abstract
Clusterin (CLU) increases resistance to renal ischemia-reperfusion injury and promotes renal tissue repair. However, the mechanisms underlying of the renal protection of CLU remain unknown. Mesenchymal stromal cells (MSCs) may contribute to kidney cell turnover and injury repair. This study investigated the in vitro functions of CLU in kidney mesenchymal stromal cells (KMSCs). KMSCs were grown in plastic culture plates. Cell surface markers, apoptosis and phagocytosis were determined by flow cytometry, and CLU protein by Western blot. There were no differences in the expression of MSC markers (positive: CD133, Sca-1, CD44, CD117 and NG2, and negative: CD34, CD45, CD163, CD41, CD276, CD138, CD79a, CD146 and CD140b) and in the trilineage differentiation to chondrocytes, adipocytes and osteocytes between wild type (WT) and CLU knockout (KO) KMSCs. CLU was expressed intracellularly and secreted by WT KMSCs, and it was up-regulated by hypoxia. CLU did not prevent hypoxia-induced cell apoptosis but promoted cell growth in KMSC cultures. Furthermore, incubation with CLU-containing culture medium from WT KMSCs increased CD206 expression and phagocytic capacity of macrophages. In conclusion, our data for the first time demonstrate the function of CLU in the promotion of KMSCs proliferation, and it may be required for KMSCs-regulated macrophage M2 polarization and phagocytic activity.
Collapse
Affiliation(s)
- Xiaodong Weng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China; Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Jing Li
- Department of Ophthamology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430060, China
| | - Qiunong Guan
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Haimei Zhao
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada; College of Traditional Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi Province, China
| | - Zihuan Wang
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada; First Clinical Medical School, Southern Medical University, Guangzhou, 510000, China
| | - Martin E Gleave
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Christopher Yc Nguan
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Caigan Du
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
16
|
Yoon T, Ahn SS, Pyo JY, Song JJ, Park YB, Lee SW. Serum Clusterin Level Could Reflect the Current Activity of Antineutrophil Cytoplasmic Antibody-Associated Vasculitis. Yonsei Med J 2021; 62:1016-1022. [PMID: 34672135 PMCID: PMC8542470 DOI: 10.3349/ymj.2021.62.11.1016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/26/2021] [Accepted: 09/27/2021] [Indexed: 12/21/2022] Open
Abstract
PURPOSE We investigated whether serum clusterin levels could reflect the current antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV)-specific indices. MATERIALS AND METHODS Fifty-seven patients with AAV and 40 healthy controls were included in this study. AAV-specific indices included the Short-Form 36-Item Health Survey Physical and Mental Component Summaries (SF-36 PCS and MCS) scores, Birmingham vasculitis activity score (BVAS), five-factor score (FFS), and vasculitis damage index. Clinical and laboratory data and AAV-specific indices were obtained at blood collection. The highest tertile of BVAS (≥16) was defined as high activity of AAV. RESULTS The median age of AAV patients was 64.0 years and 19 patients were male. SF-36 PCS score (r=0.328), SF-36 MCS score (r=0.289), BVAS (r=-0.404), erythrocyte sedimentation rate (r=-0.336), and C-reactive protein levels (r=-0.421) were significantly correlated with serum clusterin levels. In the multivariable linear regression analysis using AAV-specific indices and serum clusterin levels, both FFS (β=0.412) and serum clusterin levels (β=-0.250) were significantly associated with BVAS. When the optimal serum clusterin cut-off level for high activity of AAV was identified as 130.45 µg/mL, patients with serum clusterin level ≤130.45 µg/mL had a significantly higher risk for high activity of AAV than did those without (relative risk 7.194). Patients with AAV exhibited significantly lower serum clusterin levels than did healthy controls (168.2 µg/mL vs. 230.5 µg/mL). CONCLUSION Serum clusterin levels could reflect the current disease activity in patients with AAV.
Collapse
Affiliation(s)
- Taejun Yoon
- Department of Medical Science, BK21 Plus Project, Yonsei University College of Medicine, Seoul, Korea
| | - Sung Soo Ahn
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Jung Yoon Pyo
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Jason Jungsik Song
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Korea
| | - Yong-Beom Park
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Korea
| | - Sang-Won Lee
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
17
|
Ji WH, Li DD, Wei DP, Gu AQ, Yang Y, Peng JP. Cytochrome P450 26A1 Modulates the Polarization of Uterine Macrophages During the Peri-Implantation Period. Front Immunol 2021; 12:763067. [PMID: 34712245 PMCID: PMC8546204 DOI: 10.3389/fimmu.2021.763067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 09/27/2021] [Indexed: 02/02/2023] Open
Abstract
Uterine M1/M2 macrophages activation states undergo dynamic changes throughout pregnancy, and inappropriate macrophages polarization can cause adverse pregnancy outcomes, especially during the peri-implantation period. Our previous studies have confirmed that Cytochrome P450 26A1 (CYP26A1) can affect embryo implantation by regulating uterine NK cells and DCs. The aim of this study was to investigate whether CYP26A1 regulates the polarization of uterine macrophages in early pregnancy. Here, we observed that Cyp26a1 was significantly upregulated in M1 as compared with M2 of uterine macrophages, Raw264.7 and iBMDM. Knockdown of CYP26A1 in mice uterine significantly decreased the number of embryo implantation sites and the proportion of CD45+F4/80+CD206− M1-like uterine macrophages. Primary uterine macrophages treated with anti-CYP26A1 antibody expressed significantly lower levels of M1 markers Nos2, Il1b, Il6 and Tnf-a. In CYP26A1 knockout Raw264.7 cells, the protein levels of M1 markers TNF-α, IL-6 and CD86 were significantly decreased as compared with the wild type cells. Moreover, CYP26A1 deficiency decreased the ability to produce nitric oxide and increased the phagocytosis capacity of Raw264.7 cells under M1 stimulation state. The re-introduction of CYP26A1 partially reversed the polarization levels of M1 in CYP26A1 knockout Raw264.7 cells. CYP26A1 may regulate the polarization of uterine macrophages to M1 through Stap1 and Slc7a2. In summary, these results indicate that CYP26A1 plays a significant role in macrophage polarization, and knockdown of CYP26A1 can cause insufficient M1 polarization during the peri-implantation period, which has adverse effects on blastocyst implantation.
Collapse
Affiliation(s)
- Wen-Heng Ji
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Dan-Dan Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Dan-Ping Wei
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ai-Qin Gu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ying Yang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jing-Pian Peng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
18
|
Gono T, Okazaki Y, Kuwana M. Antiviral proinflammatory phenotype of monocytes in anti-MDA5 antibody-associated interstitial lung disease. Rheumatology (Oxford) 2021; 61:806-814. [PMID: 33890985 DOI: 10.1093/rheumatology/keab371] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/17/2021] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVE To evaluate upstream and downstream regulators leading to macrophage activation and subsequent cytokine storm in patients with anti-melanoma differentiation-associated gene 5 (MDA5) antibody-associated interstitial lung disease (ILD). METHODS We conducted an integrated miRNA-mRNA association analysis using circulating monocytes from 3 patients with anti-MDA5-associated ILD and 3 healthy controls and identified disease pathways and a regulator effect network by Ingenuity Pathway Analysis (IPA). The expression of relevant genes and proteins was verified using an independent validation cohort, including 6 patients with anti-MDA5-associated ILD, 5 with anti-aminoacyl tRNA synthetase antibody-associated ILD, and 6 healthy controls. RESULTS IPA identified 26 matched pairs of downregulated miRNA and upregulated mRNAs and revealed that canonical pathways mediated by type I IFN signaling and C-C motif ligand 2 (CCL2) were responsible for the pathogenic process (P < 0.05 for all pathways). The regulatory network model identified IFN-β; Toll-like receptors 3, 7, and 9; and PU.1 as upstream regulators, while the downstream effect of this network converged at the inhibition of viral infection. mRNA and protein expression analysis using validation cohort showed a trend towards the increased expression of relevant molecules identified by IPA in patients with anti-MDA5-associated ILD compared with those with anti-aminoacyl tRNA synthetase antibody-associated ILD or healthy controls. The expression of all relevant genes in monocytes and serum levels of CCL2 and IFN-β declined after treatment in survivors with anti-MDA5-associated ILD. CONCLUSION An antiviral proinflammatory network orchestrated primarily by activated monocytes/macrophages might be responsible for cytokine storm in anti-MDA5-associated ILD.
Collapse
Affiliation(s)
- Takahisa Gono
- Department of Allergy and Rheumatology, Nippon Medical School Graduate School of Medicine, Tokyo, Japan
| | - Yuka Okazaki
- Department of Allergy and Rheumatology, Nippon Medical School Graduate School of Medicine, Tokyo, Japan
| | - Masataka Kuwana
- Department of Allergy and Rheumatology, Nippon Medical School Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
19
|
Shouman K, Benarroch EE. Peripheral neuroimmune interactions: selected review and some clinical implications. Clin Auton Res 2021; 31:477-489. [PMID: 33641054 PMCID: PMC7914391 DOI: 10.1007/s10286-021-00787-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/09/2021] [Indexed: 02/06/2023]
Abstract
Purpose To provide a brief and focused review on peripheral neuroimmune interactions and their implications for some clinical disorders. Methods Narrative review of the literature including of English-language articles published between 1985 and 2021 using PubMed and MEDLINE. Results Many studies on experimental models and in vitro indicate that there are close interactions between the neural and immune systems. Processes from sensory afferents and autonomic efferents co-localize with immune cells and interact at discrete anatomical sites forming neuroimmune units. These neuroimmune interactions are bidirectional and mediated by a wide range of soluble factors including neuropeptides, classical neurotransmitters, cytokines, and other molecules that mediate complex cross-talk among nerves and immune cells. Small-diameter sensory afferents express a wide range of receptors that respond directly to tissue damage or pathogen signals and to chemokines, cytokines, or other molecules released from immune cells. Reciprocally, immune cells respond to neurotransmitters released from nociceptive and autonomic fibers. Neuroimmune interactions operate both at peripheral tissues and at the level of the central nervous system. Both centrally and peripherally, glial cells have a major active role in this bidirectional communication. Conclusions Peripheral neuroimmune interactions are complex and importantly contribute to the pathophysiology of several disorders, including skin, respiratory, and intestinal inflammatory disorders typically associated with pain and altered barrier function. These interactions may be relevant for persistence of symptoms in disorders associated with intense immune activation.
Collapse
Affiliation(s)
- Kamal Shouman
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Eduardo E Benarroch
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
20
|
Udomsinprasert W, Poovorawan Y, Chongsrisawat V, Vejchapipat P, Honsawek S. Decreased circulating clusterin reflects severe liver complications after hepatoportoenterostomy of biliary atresia. Sci Rep 2020; 10:19736. [PMID: 33184463 PMCID: PMC7665004 DOI: 10.1038/s41598-020-76875-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/23/2020] [Indexed: 12/18/2022] Open
Abstract
This study aimed to determine whether circulating levels of clusterin (CLU), an extracellular chaperone implicated in cholestatic and fibrotic processes, are associated with clinical parameters of post-operative BA patients and could serve as a BA biomarker. Ninety-six BA patients and 56 healthy controls were recruited. Circulating CLU levels were measured using enzyme-linked immunosorbent assay. Circulating CLU levels were significantly reduced in BA patients - especially those with worse outcomes including jaundice, severe liver fibrosis, and late-stage of hepatic dysfunction. Multivariate linear regression analysis revealed that circulating CLU levels were negatively associated with outcome parameters indicating jaundice status, degree of fibrosis, and liver dysfunction, but positively correlated with serum albumin and platelet number of BA patients. Lower circulating CLU levels were considerably associated with poor survival of post-operative BA patients. Receiver-operating characteristic curve analysis demonstrated a diagnostic value of circulating CLU as a non-invasive indicator for poor outcomes of BA patients (AUC = 0.85), with a sensitivity of 81.5% and a specificity of 73.5%. All findings indicate that reduced circulating CLU might reflect poor outcomes of BA patients and have potential as a novel biomarker for the disease severity following Kasai-operation.
Collapse
Affiliation(s)
- Wanvisa Udomsinprasert
- Department of Biochemistry, Faculty of Pharmacy, Mahidol University, 447 Sri-Ayudthaya Road, Rajathevi, Bangkok, 10400, Thailand.
| | - Yong Poovorawan
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Voranush Chongsrisawat
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Paisarn Vejchapipat
- Department of Surgery, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Sittisak Honsawek
- Osteoarthritis and Musculoskeleton Research Unit, Department of Biochemistry, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|