1
|
Sülzen H, Klima M, Duchoslav V, Boura E. SPR is a fast and straightforward method to estimate the binding constants of cyclic dinucleotides to their binding partners, such as STING or poxin. Biophys Chem 2025; 319:107392. [PMID: 39847823 DOI: 10.1016/j.bpc.2025.107392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 01/19/2025] [Indexed: 01/25/2025]
Abstract
The development of small molecule drugs that target protein binders is the central goal in medicinal chemistry. During the lead compound development process, hundreds or even thousands of compounds are synthesized, with the primary focus on their binding affinity to protein targets. Typically, IC50 or EC50 values are used to rank these compounds. While thermodynamic values, such as the dissociation constant (KD), would be more informative, they are experimentally less accessible. In this study, we compare isothermal calorimetry (ITC) with surface plasmon resonance (SPR) using human STING, a key protein of innate immunity, and several cyclic dinucleotides (CDNs) that serve as its ligands. We demonstrate that SPR, with recent technological advancements, provides KDs that are sufficiently accurate for drug development purposes. To illustrate the versatility of our approach, we also used SPR to estimate the KD of poxin binding to cyclic GMP-AMP (cGAMP) that serves as a second messenger in the innate immune system. In conclusion, SPR offers a high benefit-to-cost ratio, making it an effective tool in the drug design process.
Collapse
Affiliation(s)
- Hagen Sülzen
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Martin Klima
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Vojtech Duchoslav
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Evzen Boura
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic.
| |
Collapse
|
2
|
Wang B, Guo X, Qin L, He L, Li J, Jin X, Chen D, Ge G. Pharmacological modulation of mitochondrial function as novel strategies for treating intestinal inflammatory diseases and colorectal cancer. J Pharm Anal 2025; 15:101074. [PMID: 40242218 PMCID: PMC11999614 DOI: 10.1016/j.jpha.2024.101074] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/01/2024] [Accepted: 08/16/2024] [Indexed: 04/18/2025] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic and recurrent intestinal disease, and has become a major global health issue. Individuals with IBD face an elevated risk of developing colorectal cancer (CRC), and recent studies have indicated that mitochondrial dysfunction plays a pivotal role in the pathogenesis of both IBD and CRC. This review covers the pathogenesis of IBD and CRC, focusing on mitochondrial dysfunction, and explores pharmacological targets and strategies for addressing both conditions by modulating mitochondrial function. Additionally, recent advancements in the pharmacological modulation of mitochondrial dysfunction for treating IBD and CRC, encompassing mitochondrial damage, release of mitochondrial DNA (mtDNA), and impairment of mitophagy, are thoroughly summarized. The review also provides a systematic overview of natural compounds (such as flavonoids, alkaloids, and diterpenoids), Chinese medicines, and intestinal microbiota, which can alleviate IBD and attenuate the progression of CRC by modulating mitochondrial function. In the future, it will be imperative to develop more practical methodologies for real-time monitoring and accurate detection of mitochondrial function, which will greatly aid scientists in identifying more effective agents for treating IBD and CRC through modulation of mitochondrial function.
Collapse
Affiliation(s)
- Boya Wang
- Department of Comparative Medicine, Dalian Medical University, Dalian, Liaoning, 116044, China
| | - Xinrui Guo
- Department of Comparative Medicine, Dalian Medical University, Dalian, Liaoning, 116044, China
| | - Lanhui Qin
- Department of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Liheng He
- Department of Comparative Medicine, Dalian Medical University, Dalian, Liaoning, 116044, China
| | - Jingnan Li
- Department of Comparative Medicine, Dalian Medical University, Dalian, Liaoning, 116044, China
| | - Xudong Jin
- St. Hilda's College, Oxford University, Oxford, OX4 1DY, UK
| | - Dapeng Chen
- Department of Comparative Medicine, Dalian Medical University, Dalian, Liaoning, 116044, China
| | - Guangbo Ge
- Department of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| |
Collapse
|
3
|
Landau LM, Kagan JC. ARIES domains: functional signaling units of type I interferon responses. FEBS J 2025. [PMID: 39964808 DOI: 10.1111/febs.70023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/18/2024] [Accepted: 02/03/2025] [Indexed: 02/20/2025]
Abstract
The innate immune system relies on a network of signaling proteins classified by shared domains, which serve as functional units that orchestrate inflammatory and host defensive activities. Within type I interferon (IFN) responses, the stimulator of interferon genes protein (STING), mitochondrial antiviral-signaling protein (MAVS), Toll-IL-1 receptor-resistance protein domain-containing adapter-inducing interferon-β (TRIF), Toll-like receptor adapter interacting with SLC15A4 on the lysosome (TASL), insulin receptor tyrosine kinase substrate protein of 53 kDa (IRSp53), and GEM interacting protein (GMIP) utilize a conserved pLxIS motif to recruit IRF family transcription factors. Notably, the pLxIS motif functions within a larger signaling unit, which is referred to here as an Activator of Interferon Expression via a pLxIS motif (ARIES) domain. ARIES domains consist of the pLxIS motif and adjacent kinase activation motifs that together drive IFN responses. This review explores how ARIES domains promote immune responses via shared and distinct signaling mechanisms, protein localization, and regulation of metabolic shifts, underscoring their evolutionary conservation and critical role in host defense.
Collapse
Affiliation(s)
- Lauren M Landau
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, MA, USA
| | - Jonathan C Kagan
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, MA, USA
| |
Collapse
|
4
|
Xing B, Lan H, Li H. TBPH-induced lung injury is induced by mitochondrial-derived ds-DNA-mediated inflammatory response. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117200. [PMID: 39490104 DOI: 10.1016/j.ecoenv.2024.117200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 11/05/2024]
Abstract
Due to the ban on the use of traditional brominated flame retardants, new brominated flame retardants, such as Bis (2-ethylhexyl)-2,3,4,5-tetrabromophthalate (TBPH), have been developed as alternatives to traditional brominated flame retardants to replace the old ones, and TBPH has been widely used. Therefore, we need to systematically evaluate the toxicological effects of TBPH. In the current work, we analyzed the effects of TBPH on lung. In vivo model, we found that TBPH treatment caused damage to lung tissues through H&E staining, immunohistochemistry, and western-blot analysis. Furthermore, in vitro model, our study found that TBPH treatment led to a decrease in the proliferative capacity of lung cells. Furthermore, TBPH treatment led to inflammatory responses and oxidative stress in lung cells. Molecular mechanism studies showed that under exposure to TBPH, the biological function of mitochondria was disrupted, leading to the release of endogenous ds-DNA from mitochondria into the cytosol. This released ds-DNA acts as a danger signal molecule, effectively activating the cGAS-STING signaling pathway and subsequent inflammatory responses. Further research showed that the disruption of mitochondrial homeostasis by TBPH is closely related to lung injury. The current research findings not only enrich our understanding of the potential toxicological effects of new brominated flame retardants as environmental pollutants, but also provide a research foundation for further understanding TBPH toxicology.
Collapse
Affiliation(s)
- Baopeng Xing
- Department of Emergency Medicine, The First Hospital of Jilin University, Changchun 130031, China
| | - Hainan Lan
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130031, China
| | - Haifeng Li
- Department of Emergency Medicine, The First Hospital of Jilin University, Changchun 130031, China.
| |
Collapse
|
5
|
Islam S, Islam MM, Akhand MRN, Park BY, Akanda MR. Recent advancements in cGAS-STING activation, tumor immune evasion, and therapeutic implications. Med Oncol 2024; 41:291. [PMID: 39419913 DOI: 10.1007/s12032-024-02539-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024]
Abstract
The cGAS-STING signaling pathway is indeed a pivotal component of the immune system and serve as a crucial link between innate and adaptive immune responses. STING is involved in the cellular response to pathogen invasion and DNA damage, and which has important consequences for host defense mechanisms and cancer regulation. Ongoing research aiming to modulate the cGAS-STING pathway for improved clinical outcomes in cancer and autoimmune diseases is underway. Indeed, the interaction between the cGAS-STING pathway and immune evasion mechanisms is a complex and critical aspect of cancer biology. Pathogens and various host factors can exploit this pathway to reduce the effectiveness of cancer therapies, particularly immunotherapies. Thus, immunotherapies or combination therapies may assist in overcoming the immune suppression and improving clinical outcomes. This review explores recent advancements in understanding the cGAS-STING signaling pathway, with particular emphasis on its activation mechanisms and role in tumor immune evasion. The dual role of the pathway in boosting immune responses while simultaneously enabling tumors to evade the immune system makes it a crucial target for innovative cancer treatment approaches.Please confirm if the author names are presented accurately and in the correct sequence (given name, middle name/initial, family name). Author 2 Given name: [Md Mazedul] Last name [Islam], Author 3 Given name: [Mst Rubaiat Nazneen] Last name [Akhand] and Author 5 Given name: [Md Rashedunnabi] Last name [Akanda]. Also, kindly confirm the details in the metadata are correct.AQ1: Here Author 4 given name: [Byung-Yong] Last name [Park] is missing. Metadata are correct.
Collapse
Affiliation(s)
- Saiful Islam
- Department of Physiology, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Md Mazedul Islam
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | | | - Byung-Yong Park
- Institute of Animal Transplantation, College of Veterinary Medicine, Jeonbuk National University, Iksan, 54596, South Korea
| | - Md Rashedunnabi Akanda
- Department of Pharmacology and Toxicology, Sylhet Agricultural University, Sylhet, 3100, Bangladesh.
| |
Collapse
|
6
|
Miao Z, Song X, Xu A, Yao C, Li P, Li Y, Yang T, Shen G. Targeted Delivery of STING Agonist via Albumin Nanoreactor Boosts Immunotherapeutic Efficacy against Aggressive Cancers. Pharmaceutics 2024; 16:1216. [PMID: 39339252 PMCID: PMC11434985 DOI: 10.3390/pharmaceutics16091216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/31/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
Background: Activating the cytosolic innate immune sensor, the cGAS-STING pathway, holds great promise for enhancing antitumor immunity, particularly in combination with immune checkpoint inhibitors (ICIs). However, the clinical application of STING agonists is often hindered by poor tumor accumulation, limited cellular uptake, and rapid clearance. To address these challenges, we developed a human serum albumin (HSA)-based nanoreactor system for the efficient delivery of the STING agonist SR-717, aiming to improve its antitumor efficacy. Methods: Using a biomineralization technique, we encapsulated SR-717 within HSA nanocages to form SH-NPs. These nanoparticles were characterized in terms of size, stability, and cellular uptake, and their ability to activate the STING pathway was assessed in both in vitro and in vivo models, including freshly isolated human renal tumor tissues. In vivo antitumor efficacy was evaluated in a murine renal tumor model, and immune responses were measured. Results: SH-NPs exhibited enhanced stability, efficient cellular uptake, and superior tumor accumulation compared to free SR-717. They robustly activated the STING pathway, as evidenced by increased phosphorylation of TBK1 and IRF3, along with elevated IFN-β production. Additionally, SH-NPs reshaped the immunosuppressive tumor microenvironment, promoting T-cell-mediated immunity and improving the therapeutic efficacy of checkpoint blockade in murine models. The validation in human renal tumor tissues further highlighted their potential for clinical translation. Importantly, SH-NPs were well tolerated with minimal systemic toxicity. Conclusions: This study underscores the potential of HSA-based nanoparticles for the targeted delivery of STING agonists, effectively enhancing antitumor immunity and improving cancer immunotherapy outcomes. SH-NPs offer a promising solution to the limitations of current STING agonists in clinical settings.
Collapse
Affiliation(s)
- Zhijun Miao
- Department of Urology, The Fourth Affiliated Hospital of Soochow University, Suzhou 215000, China; (Z.M.); (C.Y.); (P.L.)
| | - Xue Song
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; (X.S.); (A.X.); (Y.L.)
| | - Anan Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; (X.S.); (A.X.); (Y.L.)
| | - Chang Yao
- Department of Urology, The Fourth Affiliated Hospital of Soochow University, Suzhou 215000, China; (Z.M.); (C.Y.); (P.L.)
| | - Peng Li
- Department of Urology, The Fourth Affiliated Hospital of Soochow University, Suzhou 215000, China; (Z.M.); (C.Y.); (P.L.)
| | - Yanan Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; (X.S.); (A.X.); (Y.L.)
| | - Tao Yang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; (X.S.); (A.X.); (Y.L.)
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Gang Shen
- Department of Urology, The Fourth Affiliated Hospital of Soochow University, Suzhou 215000, China; (Z.M.); (C.Y.); (P.L.)
| |
Collapse
|
7
|
Zannini L, Cardano M, Liberi G, Buscemi G. R-loops and impaired autophagy trigger cGAS-dependent inflammation via micronuclei formation in Senataxin-deficient cells. Cell Mol Life Sci 2024; 81:339. [PMID: 39120648 PMCID: PMC11335261 DOI: 10.1007/s00018-024-05380-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/17/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024]
Abstract
Senataxin is an evolutionarily conserved DNA/RNA helicase, whose dysfunctions are linked to neurodegeneration and cancer. A main activity of this protein is the removal of R-loops, which are nucleic acid structures capable to promote DNA damage and replication stress. Here we found that Senataxin deficiency causes the release of damaged DNA into extranuclear bodies, called micronuclei, triggering the massive recruitment of cGAS, the apical sensor of the innate immunity pathway, and the downstream stimulation of interferon genes. Such cGAS-positive micronuclei are characterized by defective membrane envelope and are particularly abundant in cycling cells lacking Senataxin, but not after exposure to a DNA breaking agent or in absence of the tumor suppressor BRCA1 protein, a partner of Senataxin in R-loop removal. Micronuclei with a discontinuous membrane are normally cleared by autophagy, a process that we show is impaired in Senataxin-deficient cells. The formation of Senataxin-dependent inflamed micronuclei is promoted by the persistence of nuclear R-loops stimulated by the DSIF transcription elongation complex and the engagement of EXO1 nuclease activity on nuclear DNA. Coherently, high levels of EXO1 result in poor prognosis in a subset of tumors lacking Senataxin expression. Hence, R-loop homeostasis impairment, together with autophagy failure and unscheduled EXO1 activity, elicits innate immune response through micronuclei formation in cells lacking Senataxin.
Collapse
Affiliation(s)
- Laura Zannini
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", CNR, Pavia, 27100, Italy
| | - Miriana Cardano
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", CNR, Pavia, 27100, Italy
| | - Giordano Liberi
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", CNR, Pavia, 27100, Italy.
| | - Giacomo Buscemi
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", CNR, Pavia, 27100, Italy.
| |
Collapse
|
8
|
Tian X, Ai J, Tian X, Wei X. cGAS-STING pathway agonists are promising vaccine adjuvants. Med Res Rev 2024; 44:1768-1799. [PMID: 38323921 DOI: 10.1002/med.22016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/10/2023] [Accepted: 01/09/2024] [Indexed: 02/08/2024]
Abstract
Adjuvants are of critical value in vaccine development as they act on enhancing immunogenicity of antigen and inducing long-lasting immunity. However, there are only a few adjuvants that have been approved for clinical use, which highlights the need for exploring and developing new adjuvants to meet the growing demand for vaccination. Recently, emerging evidence demonstrates that the cGAS-STING pathway orchestrates innate and adaptive immunity by generating type I interferon responses. Many cGAS-STING pathway agonists have been developed and tested in preclinical research for the treatment of cancer or infectious diseases with promising results. As adjuvants, cGAS-STING agonists have demonstrated their potential to activate robust defense immunity in various diseases, including COVID-19 infection. This review summarized the current developments in the field of cGAS-STING agonists with a special focus on the latest applications of cGAS-STING agonists as adjuvants in vaccination. Potential challenges were also discussed in the hope of sparking future research interests to further the development of cGAS-STING as vaccine adjuvants.
Collapse
Affiliation(s)
- Xinyu Tian
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Centre for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Jiayuan Ai
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Centre for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Xiaohe Tian
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Centre for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Centre for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| |
Collapse
|
9
|
Albright ER, Kalejta RF. cGAS-STING-TBK1 Signaling Promotes Valproic Acid-Responsive Human Cytomegalovirus Immediate-Early Transcription during Infection of Incompletely Differentiated Myeloid Cells. Viruses 2024; 16:877. [PMID: 38932169 PMCID: PMC11209474 DOI: 10.3390/v16060877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Repression of human cytomegalovirus (HCMV) immediate-early (IE) gene expression is a key regulatory step in the establishment and maintenance of latent reservoirs. Viral IE transcription and protein accumulation can be elevated during latency by treatment with histone deacetylase inhibitors such as valproic acid (VPA), rendering infected cells visible to adaptive immune responses. However, the latency-associated viral protein UL138 inhibits the ability of VPA to enhance IE gene expression during infection of incompletely differentiated myeloid cells that support latency. UL138 also limits the accumulation of IFNβ transcripts by inhibiting the cGAS-STING-TBK1 DNA-sensing pathway. Here, we show that, in the absence of UL138, the cGAS-STING-TBK1 pathway promotes both IFNβ accumulation and VPA-responsive IE gene expression in incompletely differentiated myeloid cells. Inactivation of this pathway by either genetic or pharmacological inhibition phenocopied UL138 expression and reduced VPA-responsive IE transcript and protein accumulation. This work reveals a link between cytoplasmic pathogen sensing and epigenetic control of viral lytic phase transcription and suggests that manipulation of pattern recognition receptor signaling pathways could aid in the refinement of MIEP regulatory strategies to target latent viral reservoirs.
Collapse
Affiliation(s)
- Emily R. Albright
- Institute for Molecular Virology and McArdle Laboratory for Cancer Research, University of Wisconsin—Madison, Madison, WI 53706, USA;
| | | |
Collapse
|
10
|
Matboli M, Al-Amodi HS, Khaled A, Khaled R, Roushdy MMS, Ali M, Diab GI, Elnagar MF, Elmansy RA, TAhmed HH, Ahmed EME, Elzoghby DMA, M.Kamel HF, Farag MF, ELsawi HA, Farid LM, Abouelkhair MB, Habib EK, Fikry H, Saleh LA, Aboughaleb IH. Comprehensive machine learning models for predicting therapeutic targets in type 2 diabetes utilizing molecular and biochemical features in rats. Front Endocrinol (Lausanne) 2024; 15:1384984. [PMID: 38854687 PMCID: PMC11157016 DOI: 10.3389/fendo.2024.1384984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 05/03/2024] [Indexed: 06/11/2024] Open
Abstract
Introduction With the increasing prevalence of type 2 diabetes mellitus (T2DM), there is an urgent need to discover effective therapeutic targets for this complex condition. Coding and non-coding RNAs, with traditional biochemical parameters, have shown promise as viable targets for therapy. Machine learning (ML) techniques have emerged as powerful tools for predicting drug responses. Method In this study, we developed an ML-based model to identify the most influential features for drug response in the treatment of type 2 diabetes using three medicinal plant-based drugs (Rosavin, Caffeic acid, and Isorhamnetin), and a probiotics drug (Z-biotic), at different doses. A hundred rats were randomly assigned to ten groups, including a normal group, a streptozotocin-induced diabetic group, and eight treated groups. Serum samples were collected for biochemical analysis, while liver tissues (L) and adipose tissues (A) underwent histopathological examination and molecular biomarker extraction using quantitative PCR. Utilizing five machine learning algorithms, we integrated 32 molecular features and 12 biochemical features to select the most predictive targets for each model and the combined model. Results and discussion Our results indicated that high doses of the selected drugs effectively mitigated liver inflammation, reduced insulin resistance, and improved lipid profiles and renal function biomarkers. The machine learning model identified 13 molecular features, 10 biochemical features, and 20 combined features with an accuracy of 80% and AUC (0.894, 0.93, and 0.896), respectively. This study presents an ML model that accurately identifies effective therapeutic targets implicated in the molecular pathways associated with T2DM pathogenesis.
Collapse
Affiliation(s)
- Marwa Matboli
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Hiba S. Al-Amodi
- Biochemistry Department, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Abdelrahman Khaled
- Bioinformatics Group, Center of Informatics Sciences (CIS), School of Information Technology and Computer Sciences, Nile University, Giza, Egypt
| | - Radwa Khaled
- Biotechnology/Biomolecular Chemistry Department, Faculty of Science, Cairo University, Cairo, Egypt
- Medicinal Biochemistry and Molecular Biology Department, Modern University for Technology and Information, Cairo, Egypt
| | - Marian M. S. Roushdy
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Marwa Ali
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | | | | - Rasha A. Elmansy
- Anatomy Unit, Department of Basic Medical Sciences, College of Medicine and Medical Sciences, Qassim University, Buraydah, Saudi Arabia
- Department of Anatomy and Cell Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Hagir H. TAhmed
- Anatomy Unit, Department of Basic Medical Sciences, College of Medicine and Medical Sciences, AlNeelain University, Khartoum, Sudan
| | - Enshrah M. E. Ahmed
- Pathology Unit, Department of Basic Medical Sciences, College of Medicine and Medical Sciences, Gassim University, Buraydah, Saudi Arabia
| | | | - Hala F. M.Kamel
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
- Biochemistry Department, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mohamed F. Farag
- Medical Physiology Department, Armed Forces College of Medicine, Cairo, Egypt
| | - Hind A. ELsawi
- Department of Internal Medicine, Badr University in Cairo, Badr, Egypt
| | - Laila M. Farid
- Pathology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | | - Eman K. Habib
- Department of Anatomy and Cell Biology, Faculty of Medicine, Galala University, Attaka, Suez Governorate, Egypt
| | - Heba Fikry
- Department of Histology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Lobna A. Saleh
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | |
Collapse
|
11
|
Shinde O, Li P. The molecular mechanism of dsDNA sensing through the cGAS-STING pathway. Adv Immunol 2024; 162:1-21. [PMID: 38866436 DOI: 10.1016/bs.ai.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Double stranded DNA (dsDNA) in the cytoplasm triggers the cGAS-STING innate immune pathway to defend against pathogenic infections, tissue damage and malignant cells. Extensive structural and functional studies over the last couple of years have enabled the molecular understanding of dsDNA induced activation of the cGAS-STING signaling pathway. This review highlights recent advances in the structural characterization of key molecules in the cGAS-STING signaling axis by focusing on the mechanism of cGAS activation by dsDNA, the regulation of cGAS activity, the mechanism of STING activation by cGAMP, the molecular basis of TBK1 recruitment and activation by STING, the structural basis of IRF3 recruitment by STING, and the mechanism of IRF3 activation upon phosphorylation by TBK1. These comprehensive structural studies provide a detailed picture of the mechanism of the cGAS-STING signaling pathway, establishing a molecular framework for the development of novel therapeutic strategies targeting this pathway.
Collapse
Affiliation(s)
- Omkar Shinde
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
| | - Pingwei Li
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States.
| |
Collapse
|
12
|
Piacentini J, Allen DS, Ganser-Pornillos BK, Chanda SK, Yoh SM, Pornillos O. Molecular Determinants of PQBP1 Binding to the HIV-1 Capsid Lattice. J Mol Biol 2024; 436:168409. [PMID: 38128824 PMCID: PMC10885737 DOI: 10.1016/j.jmb.2023.168409] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/12/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
Human immunodeficiency virus type 1 (HIV-1) stimulates innate immune responses upon infection, including cyclic GMP-AMP synthase (cGAS) signaling that results in type I interferon production. HIV-1-induced activation of cGAS requires the host cell factor polyglutamine binding protein 1 (PQBP1), an intrinsically disordered protein that bridges capsid recognition and cGAS recruitment. However, the molecular details of PQBP1 interactions with the HIV-1 capsid and their functional implications remain poorly understood. Here, we show that PQBP1 binds to HIV-1 capsids through charge complementing contacts between acidic residues in the N-terminal region of PQBP1 and an arginine ring in the central channel of the HIV-1 CA hexamer that makes up the viral capsid. These studies reveal the molecular details of PQBP1's primary interaction with the HIV-1 capsid and suggest that additional elements are likely to contribute to stable capsid binding.
Collapse
Affiliation(s)
- Juliana Piacentini
- University of Virginia, Department of Molecular Physiology & Biological Physics, Charlottesville, VA, USA
| | - Dale S Allen
- The Scripps Research Institute, Department of Immunology and Microbiology, La Jolla, CA, USA
| | - Barbie K Ganser-Pornillos
- University of Virginia, Department of Molecular Physiology & Biological Physics, Charlottesville, VA, USA; University of Utah, Department of Biochemistry, Salt Lake City, UT, USA
| | - Sumit K Chanda
- The Scripps Research Institute, Department of Immunology and Microbiology, La Jolla, CA, USA
| | - Sunnie M Yoh
- The Scripps Research Institute, Department of Immunology and Microbiology, La Jolla, CA, USA.
| | - Owen Pornillos
- University of Virginia, Department of Molecular Physiology & Biological Physics, Charlottesville, VA, USA; University of Utah, Department of Biochemistry, Salt Lake City, UT, USA.
| |
Collapse
|
13
|
Liu Q, Chen S, Tian R, Xue B, Li H, Guo M, Liu S, Yan M, You R, Wang L, Yang D, Wan M, Zhu H. 3β-hydroxysteroid-Δ24 reductase dampens anti-viral innate immune responses by targeting K27 ubiquitination of MAVS and STING. J Virol 2023; 97:e0151323. [PMID: 38032198 PMCID: PMC10734464 DOI: 10.1128/jvi.01513-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/02/2023] [Indexed: 12/01/2023] Open
Abstract
IMPORTANCE The precise regulation of the innate immune response is essential for the maintenance of homeostasis. MAVS and STING play key roles in immune signaling pathways activated by RNA and DNA viruses, respectively. Here, we showed that DHCR24 impaired the antiviral response by targeting MAVS and STING. Notably, DHCR24 interacts with MAVS and STING and inhibits TRIM21-triggered K27-linked ubiquitination of MAVS and AMFR-triggered K27-linked ubiquitination of STING, restraining the activation of MAVS and STING, respectively. Together, this study elucidates how one cholesterol key enzyme orchestrates two antiviral signal transduction pathways.
Collapse
Affiliation(s)
- Qian Liu
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
| | - Shengwen Chen
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
| | - Renyun Tian
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
| | - Binbin Xue
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
| | - Huiyi Li
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
| | - Mengmeng Guo
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
| | - Shun Liu
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
| | - Ming Yan
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
| | - Ruina You
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
| | - Luoling Wang
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
| | - Di Yang
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
| | - Mengyu Wan
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
| | - Haizhen Zhu
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
- />Department of Pathogen Biology and Immunology, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Institute of Pathogen Biology and Immunology, School of Basic Medicine and Life Science, The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Hainan, China
- Department of Clinical Laboratory of the Second Affiliated Hospital of Hainan Medical University, Hainan Medical University, Hainan, China
| |
Collapse
|
14
|
Zhivaki D, Gosselin EA, Sengupta D, Concepcion H, Arinze C, Chow J, Nikiforov A, Komoroski V, MacFarlane C, Sullivan C, Kagan JC. mRNAs encoding self-DNA reactive cGAS enhance the immunogenicity of lipid nanoparticle vaccines. mBio 2023; 14:e0250623. [PMID: 37937842 PMCID: PMC10746235 DOI: 10.1128/mbio.02506-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 09/26/2023] [Indexed: 11/09/2023] Open
Abstract
IMPORTANCE Nucleic acid-based vaccines hold promise in preventing infections and treating cancer. The most common use of this technology is to encode antigenic proteins on mRNAs that are delivered to cells via lipid nanoparticle (LNP) formulations. In this study, we discovered that immunostimulatory proteins can also be encoded on mRNAs in LNPs. We found that an active mutant of the enzyme cGAS, referred to as cGAS∆N, acts as a catalytic adjuvant in LNP-encapsulated mRNA vaccines. The delivery of cGAS∆N mRNA via LNPs in combination with antigen mRNA-LNPs led to durable antigen-specific IFNγ-producing T cells that exceeded the efficiency of antigen-LNPs similar to those currently used in the clinic. This strategy did not compromise B cell responses; rather it induced Th1-biased antibody isotypes. This work unveils new vaccine design strategies using mRNA-encoded catalytic adjuvants that could be ideal for generating CD8+ T cell and B cell responses for immunotherapies.
Collapse
|
15
|
Seebach E, Sonnenmoser G, Kubatzky KF. Staphylococcus aureus planktonic but not biofilm environment induces an IFN-β macrophage immune response via the STING/IRF3 pathway. Virulence 2023; 14:2254599. [PMID: 37655977 PMCID: PMC10496530 DOI: 10.1080/21505594.2023.2254599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/05/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023] Open
Abstract
Chronic implant-related bone infections are a severe complication in orthopaedic surgery. Biofilm formation on the implant impairs the immune response, leading to bacterial persistence. In a previous study, we found that Staphylococcus aureus (SA) induced interferon regulatory factor 3 (IRF3) activation and Ifnb expression only in its planktonic form but not in the biofilm. The aim of this study was to clarify the role of the stimulator of interferon genes (STING) in this process. We treated RAW 264.7 macrophages with conditioned media (CM) generated from planktonic or biofilm cultured SA in combination with agonists or inhibitors of the cyclic GMP-AMP synthase (cGAS)/STING pathway. We further evaluated bacterial gene expression of planktonic and biofilm SA to identify potential mediators. STING inhibition resulted in the loss of IRF3 activation and Ifnb induction in SA planktonic CM, whereas STING activation induced an IRF3 dependent IFN-β response in SA biofilm CM. The expression levels of virulence-associated genes decreased during biofilm formation, but genes associated with cyclic dinucleotide (CDN) synthesis did not correlate with Ifnb induction. We further observed that cGAS contributed to Ifnb induction by SA planktonic CM, although cGAS activation was not sufficient to induce Ifnb expression in SA biofilm CM. Our data indicate that the different degrees of virulence associated with SA planktonic and biofilm environments result in an altered induction of the IRF3 mediated IFN-β response via the STING pathway. This finding suggests that the STING/IRF3/IFN-β axis is a potential candidate as an immunotherapeutic target for implant-related bone infections.
Collapse
Affiliation(s)
- Elisabeth Seebach
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University, Heidelberg, Germany
| | - Gabriele Sonnenmoser
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University, Heidelberg, Germany
| | - Katharina F. Kubatzky
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
16
|
Petcharat K, Munkong N, Thongboontho R, Chartarrayawadee W, Thim-Uam A. Synergistic Effects of Azithromycin and STING Agonist Promote IFN-I Production by Enhancing the Activation of STING-TBK1 Signaling. J Exp Pharmacol 2023; 15:407-421. [PMID: 37933302 PMCID: PMC10625772 DOI: 10.2147/jep.s433181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/28/2023] [Indexed: 11/08/2023] Open
Abstract
Background Azithromycin (AZM) is a macrolide antibiotic that exhibits anti-inflammatory and anti-viral infection properties by enhancing type-I interferon (IFN-I) responses. The stimulator of interferon genes (STING) can directly induce IFN-I production. However, elevated IFN-I induces auto-immune phenotypes such as systemic lupus erythematosus (SLE). The effects of AZM and STING on the production of IFN-I are unclear. Objective Therefore, this study aims to evaluate the role of AZM and STING on IFN-I responses in macrophages. Methods RAW 264.7 macrophages were treated with AZM with and without a STING-agonist (DMXAA), and the maturation of macrophages was determined using flow cytometry. Gene expression and pro-inflammatory cytokines were analyzed using qPCR and ELISA, respectively. Moreover, protein expression was investigated using Western blot assays and immunofluorescence. Results Our results show that AZM significantly induced M1 phenotypes, promoting surface molecule expansion of CD80 and MHC-II and production of IL-6 and TNF-α cytokines on DMXAA-stimulated macrophages. Furthermore, we found that AZM-increased mRNA levels of interferon-stimulated genes (ISGs) could be due to the high expression of STNG-TBK1 signaling in the presence of DMXAA. Conclusion Our data suggest that AZM enhancement of IFN-I responses was STING dependent in DMXAA-stimulated macrophages. These data underline a novel approach to AZM action-mediated STING-TBK1 signaling for regulating IFN-I responses and may further augment the scientific basis and potential use of AZM in clinical applications.
Collapse
Affiliation(s)
- Kanoktip Petcharat
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao, 56000, Thailand
| | - Narongsuk Munkong
- Department of Pathology, School of Medicine, University of Phayao, Phayao, 56000, Thailand
| | - Rungthip Thongboontho
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao, 56000, Thailand
| | | | - Arthid Thim-Uam
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao, 56000, Thailand
| |
Collapse
|
17
|
Lewicky JD, Martel AL, Gupta MR, Roy R, Rodriguez GM, Vanderhyden BC, Le HT. Conventional DNA-Damaging Cancer Therapies and Emerging cGAS-STING Activation: A Review and Perspectives Regarding Immunotherapeutic Potential. Cancers (Basel) 2023; 15:4127. [PMID: 37627155 PMCID: PMC10453198 DOI: 10.3390/cancers15164127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Many traditional cancer treatments such as radiation and chemotherapy are known to induce cellular DNA damage as part of their cytotoxic activity. The cGAS-STING signaling axis, a key member of the DNA damage response that acts as a sensor of foreign or aberrant cytosolic DNA, is helping to rationalize the DNA-damaging activity of these treatments and their emerging immunostimulatory capacity. Moreover, cGAS-STING, which is attracting considerable attention for its ability to promote antitumor immune responses, may fundamentally be able to address many of the barriers limiting the success of cancer immunotherapy strategies, including the immunosuppressive tumor microenvironment. Herein, we review the traditional cancer therapies that have been linked with cGAS-STING activation, highlighting their targets with respect to their role and function in the DNA damage response. As part of the review, an emerging "chemoimmunotherapy" concept whereby DNA-damaging agents are used for the indirect activation of STING is discussed as an alternative to the direct molecular agonism strategies that are in development, but have yet to achieve clinical approval. The potential of this approach to address some of the inherent and emerging limitations of cGAS-STING signaling in cancer immunotherapy is also discussed. Ultimately, it is becoming clear that in order to successfully employ the immunotherapeutic potential of the cGAS-STING axis, a balance between its contrasting antitumor and protumor/inflammatory activities will need to be achieved.
Collapse
Affiliation(s)
- Jordan D. Lewicky
- Health Sciences North Research Institute, 56 Walford Road, Sudbury, ON P3E 2H2, Canada; (J.D.L.); (A.L.M.)
| | - Alexandrine L. Martel
- Health Sciences North Research Institute, 56 Walford Road, Sudbury, ON P3E 2H2, Canada; (J.D.L.); (A.L.M.)
| | - Mukul Raj Gupta
- Glycosciences and Nanomaterial Laboratory, Université du Québec à Montréal, Succ. Centre-Ville, Montréal, QC H3C 3P8, Canada; (M.R.G.); (R.R.)
| | - René Roy
- Glycosciences and Nanomaterial Laboratory, Université du Québec à Montréal, Succ. Centre-Ville, Montréal, QC H3C 3P8, Canada; (M.R.G.); (R.R.)
| | - Galaxia M. Rodriguez
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Rd., Ottawa, ON K1H 8L6, Canada; (G.M.R.); (B.C.V.)
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Rd., Ottawa, ON K1H 8M5, Canada
| | - Barbara C. Vanderhyden
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Rd., Ottawa, ON K1H 8L6, Canada; (G.M.R.); (B.C.V.)
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Rd., Ottawa, ON K1H 8M5, Canada
| | - Hoang-Thanh Le
- Health Sciences North Research Institute, 56 Walford Road, Sudbury, ON P3E 2H2, Canada; (J.D.L.); (A.L.M.)
- Medicinal Sciences Division, NOSM University, 935 Ramsey Lake Road, Sudbury, ON P3E 2C6, Canada
- School of Natural Sciences, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON P3E 2C6, Canada
| |
Collapse
|
18
|
Bastidas RJ, Valdivia RH. The emerging complexity of Chlamydia trachomatis interactions with host cells as revealed by molecular genetic approaches. Curr Opin Microbiol 2023; 74:102330. [PMID: 37247566 PMCID: PMC10988583 DOI: 10.1016/j.mib.2023.102330] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/31/2023]
Abstract
Chlamydia trachomatis (Ct) is an intracellular bacterial pathogen that relies on the activity of secreted proteins known as effectors to promote replication and avoidance of immune clearance. Understanding the contribution of Ct effectors to pathogenesis has proven to be challenging, given that these proteins often perform multiple functions during intracellular infection. Recent advances in molecular genetic analysis of Ct have provided valuable insights into the multifaceted nature of secreted effector proteins and their impact on the interaction between Ct and host cells and tissues. This review highlights significant findings from genetic analysis of Ct effector functions, shedding light on their diverse roles. We also discuss the challenges faced in this field of study and explore potential opportunities for further research.
Collapse
Affiliation(s)
- Robert J Bastidas
- Department of Integrative Immunobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Raphael H Valdivia
- Department of Integrative Immunobiology, Duke University Medical Center, Durham, NC 27710, USA; Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
19
|
Zhao J, Huh Y, Bortsov A, Diatchenko L, Ji RR. Immunotherapies in chronic pain through modulation of neuroimmune interactions. Pharmacol Ther 2023; 248:108476. [PMID: 37307899 PMCID: PMC10527194 DOI: 10.1016/j.pharmthera.2023.108476] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/18/2023] [Accepted: 06/06/2023] [Indexed: 06/14/2023]
Abstract
It is generally believed that immune activation can elicit pain through production of inflammatory mediators that can activate nociceptive sensory neurons. Emerging evidence suggests that immune activation may also contribute to the resolution of pain by producing distinct pro-resolution/anti-inflammatory mediators. Recent research into the connection between the immune and nervous systems has opened new avenues for immunotherapy in pain management. This review provides an overview of the most utilized forms of immunotherapies (e.g., biologics) and highlight their potential for immune and neuronal modulation in chronic pain. Specifically, we discuss pain-related immunotherapy mechanisms that target inflammatory cytokine pathways, the PD-L1/PD-1 pathway, and the cGAS/STING pathway. This review also highlights cell-based immunotherapies targeting macrophages, T cells, neutrophils and mesenchymal stromal cells for chronic pain management.
Collapse
Affiliation(s)
- Junli Zhao
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Yul Huh
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA; Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Andrey Bortsov
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Luda Diatchenko
- Alan Edwards Centre for Research on Pain, McGill University, Montréal, QC H3A 0G4, Canada; Faculty of Dental Medicine and Oral Health Sciences, Department of Anesthesia, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC H3A 0G4, Canada
| | - Ru-Rong Ji
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA; Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA; Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
20
|
Martin-Gayo E, Gao C, Calvet-Mirabent M, Ouyang Z, Lichterfeld M, Yu XG. Cooperation between cGAS and RIG-I sensing pathways enables improved innate recognition of HIV-1 by myeloid dendritic cells in elite controllers. Front Immunol 2022; 13:1017164. [PMID: 36569826 PMCID: PMC9768436 DOI: 10.3389/fimmu.2022.1017164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/11/2022] [Indexed: 12/12/2022] Open
Abstract
Introduction Spontaneous control of HIV-1 replication in the absence of anti-retroviral therapy (ART) naturally occurs in a small proportion of HIV-1-infected individuals known as elite controllers (EC), likely as a result of improved innate and adaptive immune mechanisms. Previous studies suggest that enhanced cytosolic immune recognition of HIV-1 reverse transcripts in conventional dendritic cells (mDC) from EC enables effective induction of antiviral effector T cell responses. However, the specific molecular circuits responsible for such improved innate recognition of HIV-1 in mDC from these individuals remain unknown. Results and methods Here, we identified a subpopulation of EC whose mDC displayed higher baseline abilities to respond to intracellular HIV-1 dsDNA stimulation. A computational analysis of transcriptional signatures from such high responder EC, combined with functional studies, suggested cytosolic recognition of HIV-1 dsDNA by cGAS, combined with sensing of viral mRNA by RIG-I after polymerase III-mediated HIV-1 DNA transcription. Discussion Together, our work identifies collaborative networks of innate sensing pathways that enhance cell-intrinsic abilities of mDC to induce antiviral innate responses against HIV-1; these observations might be useful for the therapeutic induction of effective antiviral immune responses.
Collapse
Affiliation(s)
- Enrique Martin-Gayo
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT) and Harvard, Massachusetts General Hospital, Cambridge, MA, United States
- Universidad Autónoma de Madrid, Immunology Unit, Hospital Universitario de la Princesa, Madrid, Spain
| | - Ce Gao
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT) and Harvard, Massachusetts General Hospital, Cambridge, MA, United States
- Infectious Disease Divisions, Brigham and Women’s Hospital and Massachusetts General Hospital, Boston, MA, United States
| | - Marta Calvet-Mirabent
- Universidad Autónoma de Madrid, Immunology Unit, Hospital Universitario de la Princesa, Madrid, Spain
| | - Zhengyu Ouyang
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT) and Harvard, Massachusetts General Hospital, Cambridge, MA, United States
- Infectious Disease Divisions, Brigham and Women’s Hospital and Massachusetts General Hospital, Boston, MA, United States
| | - Mathias Lichterfeld
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT) and Harvard, Massachusetts General Hospital, Cambridge, MA, United States
- Infectious Disease Divisions, Brigham and Women’s Hospital and Massachusetts General Hospital, Boston, MA, United States
| | - Xu G. Yu
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT) and Harvard, Massachusetts General Hospital, Cambridge, MA, United States
- Infectious Disease Divisions, Brigham and Women’s Hospital and Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|