1
|
Hushmandi K, Imani Fooladi AA, Reiter RJ, Farahani N, Liang L, Aref AR, Nabavi N, Alimohammadi M, Liu L, Sethi G. Next-generation immunotherapeutic approaches for blood cancers: Exploring the efficacy of CAR-T and cancer vaccines. Exp Hematol Oncol 2025; 14:75. [PMID: 40382583 DOI: 10.1186/s40164-025-00662-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 04/25/2025] [Indexed: 05/20/2025] Open
Abstract
Recent advancements in immunotherapy, particularly Chimeric antigen receptor (CAR)-T cell therapy and cancer vaccines, have significantly transformed the treatment landscape for leukemia. CAR-T cell therapy, initially promising in hematologic cancers, faces notable obstacles in solid tumors due to the complex and immunosuppressive tumor microenvironment. Challenges include the heterogeneous immune profiles of tumors, variability in antigen expression, difficulties in therapeutic delivery, T cell exhaustion, and reduced cytotoxic activity at the tumor site. Additionally, the physical barriers within tumors and the immunological camouflage used by cancer cells further complicate treatment efficacy. To overcome these hurdles, ongoing research explores the synergistic potential of combining CAR-T cell therapy with cancer vaccines and other therapeutic strategies such as checkpoint inhibitors and cytokine therapy. This review describes the various immunotherapeutic approaches targeting leukemia, emphasizing the roles and interplay of cancer vaccines and CAR-T cell therapy. In addition, by discussing how these therapies individually and collectively contribute to tumor regression, this article aims to highlight innovative treatment paradigms that could enhance clinical outcomes for leukemia patients. This integrative approach promises to pave the way for more effective and durable treatment strategies in the oncology field. These combined immunotherapeutic strategies hold great promise for achieving more complete and lasting remissions in leukemia patients. Future research should prioritize optimizing treatment sequencing, personalizing therapeutic combinations based on individual patient and tumor characteristics, and developing novel strategies to enhance T cell persistence and function within the tumor microenvironment. Ultimately, these efforts will advance the development of more effective and less toxic immunotherapeutic interventions, offering new hope for patients battling this challenging disease.
Collapse
Affiliation(s)
- Kiavash Hushmandi
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Islamic Republic of Iran.
| | - Abbas Ali Imani Fooladi
- Applied Microbiology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, 78229, USA
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Liping Liang
- Guangzhou Key Laboratory of Digestive Diseases, Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
| | - Amir Reza Aref
- Department of Vitro Vision, DeepkinetiX, Inc, Boston, MA, USA
| | | | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Le Liu
- Integrated Clinical Microecology Center, Shenzhen Hospital, Southern Medical University, Shenzhen, 518000, China.
- Department of Gastroenterology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
| | - Gautam Sethi
- Department of Pharmacology and NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
| |
Collapse
|
2
|
Abbaszadeh M, Naseri B, Masoumi J, Baghbani E, Baradaran B, Sadeghi MR. Thalidomide augments maturation and T helper 1-inducing capacity of monocyte-derived dendritic cells in vitro. BIOIMPACTS : BI 2024; 15:30588. [PMID: 40256218 PMCID: PMC12008494 DOI: 10.34172/bi.30588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/17/2024] [Accepted: 08/20/2024] [Indexed: 04/22/2025]
Abstract
Introduction Dendritic cells (DCs) possess specialized abilities to present antigens and stimulate T cells, making them essential in triggering adaptive immune responses. Thalidomide and its derivatives are classified as a group of medications that possess immunomodulatory properties. Numerous studies have demonstrated the contentious impact of these drugs on DCs. Therefore, the objective of the present study was to assess the influence of Thalidomide therapy on the maturation and stimulation of monocyte-derived DCs, and subsequently examine the consequences of these treated DCs on the immune responses of autologous T cells. Methods The immature DCs derived from monocytes were subjected to exposure to Thalidomide and Lipopolysaccharides (LPS) on the fifth day of differentiation, followed by a 24-hour incubation period. On the sixth day, the phenotypic features of the DCs in both the control and treatment groups were assessed using flow cytometry. Subsequently, the gene expression in both the DCs and autologous T cells co-cultured with the DCs was evaluated using the real-time PCR method. Results Thalidomide-treated DCs exhibited a significant augmentation in the expression of maturation and stimulatory surface markers CD11c, HLA-DR, and CD86 (P ≤ 0.01), as well as gene expression of TNF-α and IL-12 (P ≤ 0.01) when compared to the control group. Furthermore, co-culture of Thalidomide-treated DCs with T cells increased T-bet and IFN-γ (P ≤ 0.01) expression, while diminished FOXP3 and TGF-β (P ≤ 0.01) expression compared to T cells co-cultured with untreated DCs. Conclusion Our findings indicate that in vitro Thalidomide treatment shifts DCs towards an immunogenic state and elevates their T helper 1 inducing capacity, which may be efficient in immunotherapy of various cancers.
Collapse
Affiliation(s)
- Mohsen Abbaszadeh
- Molecular Medicine Department, Faculty of Modern Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahar Naseri
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Masoumi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Baghbani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Sadeghi
- Molecular Medicine Department, Faculty of Modern Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
3
|
LeBlanc R, Thiant S, Terra R, Ahmad I, Claveau JS, Bambace N, Bernard L, Cohen S, Delisle JS, Lachance S, Kiss T, Roy DC, Sauvageau G, Roy J. A Phase II, Open-Label Study of Lenalidomide and Dexamethasone Followed by Donor Lymphocyte Infusions in Relapsed Multiple Myeloma Following Upfront Allogeneic Stem Cell Transplant. Curr Oncol 2024; 31:7258-7274. [PMID: 39590165 PMCID: PMC11592425 DOI: 10.3390/curroncol31110535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/22/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND To date, the only potential curative treatment for multiple myeloma (MM) remains allogeneic (allo) hematopoietic cell transplant (HCT), although, most patients will eventually relapse. In relapsed patients, donor lymphocyte infusions (DLIs) have been reported to control disease, but the optimal strategy prior to and doses of DLIs remain unclear. With this study (NCT03413800), we aimed to investigate the efficacy and toxicity of lenalidomide and dexamethasome (Len/Dex) followed by escalating pre-determined doses of DLIs in MM patients who relapsed after allo HCT. METHODS Patients aged 18-65 years with relapsed MM following upfront tandem autologous (auto)/allo HCT were eligible. Treatment consisted of six cycles of Len/Dex followed by three standardized doses of DLIs: 5 × 106 CD3+/kg, 1 × 107/kg and 5 × 107/kg every 6 weeks. Bone marrow minimal measurable disease (MRD) using flow cytometry (10-5) was performed at enrolment, then every 3 months for 2 years or until disease progression, in a subset of patients. The primary endpoint was efficacy as measured by progression-free survival (PFS) at 2 years following Len/Dex/DLIs. Secondary objectives were safety including GVHD, response including MRD status and overall survival (OS). RESULTS A total of 22 patients participated in this study, including 62% with high-risk cytogenetics. With a median follow-up of 5.3 years (range: 4.1-6.1), PFS and OS were 26.5% (95% CI: 10.4-45.9%) and 69.2% (95% CI: 43.3-85.1%), respectively. Overall, the best responses achieved post-Len/Dex + DLIs were complete remission in 9.1%, very good partial response in 50%, and progressive disease in 40.9%. Among the nine patients tested for MRD, only two achieved a negative status after receiving DLIs. Six patients died, all due to disease progression. No acute GVHD was observed after DLIs. We report a very low incidence of moderate/severe chronic GVHD of 18.2% with no need for systemic immunosuppressants one year after diagnosis. No unexpected adverse events were observed. Interestingly, a positive correlation between response to Len/Dex re-induction and response to DLIs was found (p = 0.0032). CONCLUSIONS Our findings suggest that Len/Dex/DLIs in second line treatment after upfront tandem auto/allo HCT in relapsed MM patients remains feasible and safe. With a potential correlation between induction chemotherapy and DLI responses, more potent induction regimens together with higher doses of DLIs should be considered in the future.
Collapse
Affiliation(s)
- Richard LeBlanc
- Division of Hematology, Oncology and Transplantation, Department of Medicine, Maisonneuve-Rosemont Hospital, Montréal, QC H1T 2M4, Canada; (R.L.); (R.T.); (I.A.); (J.-S.D.); (S.L.); (T.K.); (D.-C.R.); (G.S.)
- Centre de Recherche, Hôpital Maisonneuve-Rosemont, Montréal, QC H1T 2M4, Canada
- Faculty of Medicine, Université de Montréal, Montréal, QC H2V 0B3, Canada
| | - Stéphanie Thiant
- Centre de Recherche, Hôpital Maisonneuve-Rosemont, Montréal, QC H1T 2M4, Canada
| | - Rafik Terra
- Division of Hematology, Oncology and Transplantation, Department of Medicine, Maisonneuve-Rosemont Hospital, Montréal, QC H1T 2M4, Canada; (R.L.); (R.T.); (I.A.); (J.-S.D.); (S.L.); (T.K.); (D.-C.R.); (G.S.)
- Faculty of Medicine, Université de Montréal, Montréal, QC H2V 0B3, Canada
| | - Imran Ahmad
- Division of Hematology, Oncology and Transplantation, Department of Medicine, Maisonneuve-Rosemont Hospital, Montréal, QC H1T 2M4, Canada; (R.L.); (R.T.); (I.A.); (J.-S.D.); (S.L.); (T.K.); (D.-C.R.); (G.S.)
- Centre de Recherche, Hôpital Maisonneuve-Rosemont, Montréal, QC H1T 2M4, Canada
- Faculty of Medicine, Université de Montréal, Montréal, QC H2V 0B3, Canada
| | - Jean-Sébastien Claveau
- Division of Hematology, Oncology and Transplantation, Department of Medicine, Maisonneuve-Rosemont Hospital, Montréal, QC H1T 2M4, Canada; (R.L.); (R.T.); (I.A.); (J.-S.D.); (S.L.); (T.K.); (D.-C.R.); (G.S.)
- Centre de Recherche, Hôpital Maisonneuve-Rosemont, Montréal, QC H1T 2M4, Canada
- Faculty of Medicine, Université de Montréal, Montréal, QC H2V 0B3, Canada
| | - Nadia Bambace
- Division of Hematology, Oncology and Transplantation, Department of Medicine, Maisonneuve-Rosemont Hospital, Montréal, QC H1T 2M4, Canada; (R.L.); (R.T.); (I.A.); (J.-S.D.); (S.L.); (T.K.); (D.-C.R.); (G.S.)
- Centre de Recherche, Hôpital Maisonneuve-Rosemont, Montréal, QC H1T 2M4, Canada
- Faculty of Medicine, Université de Montréal, Montréal, QC H2V 0B3, Canada
| | - Léa Bernard
- Division of Hematology, Oncology and Transplantation, Department of Medicine, Maisonneuve-Rosemont Hospital, Montréal, QC H1T 2M4, Canada; (R.L.); (R.T.); (I.A.); (J.-S.D.); (S.L.); (T.K.); (D.-C.R.); (G.S.)
- Centre de Recherche, Hôpital Maisonneuve-Rosemont, Montréal, QC H1T 2M4, Canada
- Faculty of Medicine, Université de Montréal, Montréal, QC H2V 0B3, Canada
| | - Sandra Cohen
- Division of Hematology, Oncology and Transplantation, Department of Medicine, Maisonneuve-Rosemont Hospital, Montréal, QC H1T 2M4, Canada; (R.L.); (R.T.); (I.A.); (J.-S.D.); (S.L.); (T.K.); (D.-C.R.); (G.S.)
- Centre de Recherche, Hôpital Maisonneuve-Rosemont, Montréal, QC H1T 2M4, Canada
- Faculty of Medicine, Université de Montréal, Montréal, QC H2V 0B3, Canada
| | - Jean-Sébastien Delisle
- Division of Hematology, Oncology and Transplantation, Department of Medicine, Maisonneuve-Rosemont Hospital, Montréal, QC H1T 2M4, Canada; (R.L.); (R.T.); (I.A.); (J.-S.D.); (S.L.); (T.K.); (D.-C.R.); (G.S.)
- Centre de Recherche, Hôpital Maisonneuve-Rosemont, Montréal, QC H1T 2M4, Canada
- Faculty of Medicine, Université de Montréal, Montréal, QC H2V 0B3, Canada
| | - Silvy Lachance
- Division of Hematology, Oncology and Transplantation, Department of Medicine, Maisonneuve-Rosemont Hospital, Montréal, QC H1T 2M4, Canada; (R.L.); (R.T.); (I.A.); (J.-S.D.); (S.L.); (T.K.); (D.-C.R.); (G.S.)
- Centre de Recherche, Hôpital Maisonneuve-Rosemont, Montréal, QC H1T 2M4, Canada
- Faculty of Medicine, Université de Montréal, Montréal, QC H2V 0B3, Canada
| | - Thomas Kiss
- Division of Hematology, Oncology and Transplantation, Department of Medicine, Maisonneuve-Rosemont Hospital, Montréal, QC H1T 2M4, Canada; (R.L.); (R.T.); (I.A.); (J.-S.D.); (S.L.); (T.K.); (D.-C.R.); (G.S.)
- Centre de Recherche, Hôpital Maisonneuve-Rosemont, Montréal, QC H1T 2M4, Canada
- Faculty of Medicine, Université de Montréal, Montréal, QC H2V 0B3, Canada
| | - Denis-Claude Roy
- Division of Hematology, Oncology and Transplantation, Department of Medicine, Maisonneuve-Rosemont Hospital, Montréal, QC H1T 2M4, Canada; (R.L.); (R.T.); (I.A.); (J.-S.D.); (S.L.); (T.K.); (D.-C.R.); (G.S.)
- Centre de Recherche, Hôpital Maisonneuve-Rosemont, Montréal, QC H1T 2M4, Canada
- Faculty of Medicine, Université de Montréal, Montréal, QC H2V 0B3, Canada
| | - Guy Sauvageau
- Division of Hematology, Oncology and Transplantation, Department of Medicine, Maisonneuve-Rosemont Hospital, Montréal, QC H1T 2M4, Canada; (R.L.); (R.T.); (I.A.); (J.-S.D.); (S.L.); (T.K.); (D.-C.R.); (G.S.)
- Faculty of Medicine, Université de Montréal, Montréal, QC H2V 0B3, Canada
| | - Jean Roy
- Division of Hematology, Oncology and Transplantation, Department of Medicine, Maisonneuve-Rosemont Hospital, Montréal, QC H1T 2M4, Canada; (R.L.); (R.T.); (I.A.); (J.-S.D.); (S.L.); (T.K.); (D.-C.R.); (G.S.)
- Centre de Recherche, Hôpital Maisonneuve-Rosemont, Montréal, QC H1T 2M4, Canada
- Faculty of Medicine, Université de Montréal, Montréal, QC H2V 0B3, Canada
| |
Collapse
|
4
|
García Ramírez P, Callejas Charavia M, Oliva Martin R, Gómez La Hoz AM, Ortega MÁ, García Suárez J, Álvarez-Mon M, Monserrat Sanz J. SARS-CoV-2-Specific T Lymphocytes Analysis in mRNA-Vaccinated Patients with B-Cell Lymphoid Malignancies on Active Treatment. Vaccines (Basel) 2024; 12:961. [PMID: 39339993 PMCID: PMC11435597 DOI: 10.3390/vaccines12090961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/21/2024] [Accepted: 08/24/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Patients with B-lymphocyte malignancies (BCMs) receiving B-lymphocyte-targeted therapies have increased risk of severe COVID-19 outcomes and impaired antibody response to SARS-CoV-2 mRNA vaccination in comparison to non-hematologic oncologic patients or general population. Consequently, it is vital to explore vaccine-induced T-lymphocyte responses in patients referred for the understanding of immune protection against SARS-CoV2 infections. The objective of the present study was to analyze the recall immune responses carried out by T lymphocytes after two COVID-19 mRNA vaccine doses. METHODS We enrolled 40 patients with BCMs and 10 healthy controls (HCs) after 4 weeks from the second mRNA vaccine dose. Spike (S)-specific T-lymphocyte responses were assessed in peripheral blood mononuclear lymphocytes (PBMCs) by intracellular IFN-γ staining combined with flow cytometry. Furthermore, the humoral response was assessed with the measurement of anti-spike antibodies. RESULTS From March to July 2021, 40 patients (median age 68) received mRNA vaccines. The overall antibody response for BCMs was 52.5% versus 100% for the healthy controls (p = 0.008). The antibody response was different across BCMs: 18.75% for non-Hodgkin lymphoma, 54.5% for chronic lymphocytic leukemia, and 92.3% for multiple myeloma. Responses varied by malignancy type and treatment, with anti-CD20 therapies showing the lowest response (6.7%). T-lymphocyte analysis revealed reduced numbers and altered differentiation stages in patients compared to the controls. However, the vaccine-induced T response was generally robust, with variations in specific T subpopulations. CONCLUSIONS mRNA vaccines induced significant humoral and cellular immune responses in B-cell lymphoid malignancy patients, although responses varied by treatment type and malignancy. Further research is needed to optimize vaccination strategies in this population.
Collapse
Affiliation(s)
- Patricia García Ramírez
- Hematology Department, University Hospital “Príncipe de Asturias”, Alcalá de Henares, 28805 Madrid, Spain;
| | - Marta Callejas Charavia
- Hematology Department, University Hospital “Príncipe de Asturias”, Alcalá de Henares, 28805 Madrid, Spain;
| | - Raquel Oliva Martin
- Department of Medicine, University of Alcalá, Alcalá de Henares, 28871 Madrid, Spain; (R.O.M.); (A.M.G.L.H.); (M.Á.O.); (M.Á.-M.); (J.M.S.)
- IRYCIS Unit (Instituto Ramón y Cajal de Investigación Sanitaria), 28034 Madrid, Spain
| | - Ana María Gómez La Hoz
- Department of Medicine, University of Alcalá, Alcalá de Henares, 28871 Madrid, Spain; (R.O.M.); (A.M.G.L.H.); (M.Á.O.); (M.Á.-M.); (J.M.S.)
- IRYCIS Unit (Instituto Ramón y Cajal de Investigación Sanitaria), 28034 Madrid, Spain
| | - Miguel Ángel Ortega
- Department of Medicine, University of Alcalá, Alcalá de Henares, 28871 Madrid, Spain; (R.O.M.); (A.M.G.L.H.); (M.Á.O.); (M.Á.-M.); (J.M.S.)
- IRYCIS Unit (Instituto Ramón y Cajal de Investigación Sanitaria), 28034 Madrid, Spain
| | - Julio García Suárez
- Hematology Department, University Hospital “Príncipe de Asturias”, Alcalá de Henares, 28805 Madrid, Spain;
| | - Melchor Álvarez-Mon
- Department of Medicine, University of Alcalá, Alcalá de Henares, 28871 Madrid, Spain; (R.O.M.); (A.M.G.L.H.); (M.Á.O.); (M.Á.-M.); (J.M.S.)
- IRYCIS Unit (Instituto Ramón y Cajal de Investigación Sanitaria), 28034 Madrid, Spain
| | - Jorge Monserrat Sanz
- Department of Medicine, University of Alcalá, Alcalá de Henares, 28871 Madrid, Spain; (R.O.M.); (A.M.G.L.H.); (M.Á.O.); (M.Á.-M.); (J.M.S.)
- IRYCIS Unit (Instituto Ramón y Cajal de Investigación Sanitaria), 28034 Madrid, Spain
| |
Collapse
|
5
|
Onyshchenko K, Luo R, Rao X, Zhang X, Gaedicke S, Grosu AL, Firat E, Niedermann G. Hypofractionated radiotherapy combined with lenalidomide improves systemic antitumor activity in mouse solid tumor models. Theranostics 2024; 14:2573-2588. [PMID: 38646638 PMCID: PMC11024858 DOI: 10.7150/thno.88864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 03/02/2024] [Indexed: 04/23/2024] Open
Abstract
Background: Hypofractionated radiotherapy (hRT) can induce a T cell-mediated abscopal effect on non-irradiated tumor lesions, especially in combination with immune checkpoint blockade (ICB). However, clinically, this effect is still rare, and ICB-mediated adverse events are common. Lenalidomide (lena) is an anti-angiogenic and immunomodulatory drug used in the treatment of hematologic malignancies. We here investigated in solid tumor models whether lena can enhance the abscopal effect in double combination with hRT. Methods: In two syngeneic bilateral tumor models (B16-CD133 melanoma and MC38 colon carcinoma), the primary tumor was treated with hRT. Lena was given daily for 3 weeks. Besides tumor size and survival, the dependence of the antitumor effects on CD8+ cells, type-I IFN signaling, and T cell costimulation was determined with depleting or blocking antibodies. Tumor-specific CD8+ T cells were quantified, and their differentiation and effector status were characterized by multicolor flow cytometry using MHC-I tetramers and various antibodies. In addition, dendritic cell (DC)-mediated tumor antigen cross-presentation in vitro and directly ex vivo and the composition of tumor-associated vascular endothelial cells were investigated. Results: In both tumor models, the hRT/lena double combination induced a significant abscopal effect. Control of the non-irradiated secondary tumor and survival were considerably better than with the respective monotherapies. The abscopal effect was strongly dependent on CD8+ cells and associated with an increase in tumor-specific CD8+ T cells in the non-irradiated tumor and its draining lymph nodes. Additionally, we found more tumor-specific T cells with a stem-like (TCF1+ TIM3- PD1+) and a transitory (TCF1- TIM3+ CD101- PD1+) exhausted phenotype and more expressing effector molecules such as GzmB, IFNγ, and TNFα. Moreover, in the non-irradiated tumor, hRT/lena treatment also increased DCs cross-presenting a tumor model antigen. Blocking type-I IFN signaling, which is essential for cross-presentation, completely abrogated the abscopal effect. A gene expression analysis of bone marrow-derived DCs revealed that lena augmented the expression of IFN response genes and genes associated with differentiation, maturation (including CD70, CD83, and CD86), migration to lymph nodes, and T cell activation. Flow cytometry confirmed an increase in CD70+ CD83+ CD86+ DCs in both irradiated and abscopal tumors. Moreover, the hRT/lena-induced abscopal effect was diminished when these costimulatory molecules were blocked simultaneously using antibodies. In line with the enhanced infiltration by DCs and tumor-specific CD8+ T cells, including more stem-like cells, hRT/lena also increased tumor-associated high endothelial cells (TA-HECs) in the non-irradiated tumor. Conclusions: We demonstrate that lena can augment the hRT-induced abscopal effect in mouse solid tumor models in a CD8 T cell- and IFN-I-dependent manner, correlating with enhanced anti-tumor CD8 T cell immunity, DC cross-presentation, and TA-HEC numbers. Our findings may be helpful for the planning of clinical trials in (oligo)metastatic patients.
Collapse
Affiliation(s)
- Kateryna Onyshchenko
- Department of Radiation Oncology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Laboratory of Biosynthesis of Nucleic Acids, Institute of Molecular Biology and Genetics of NASU, Kyiv, Ukraine
- German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ren Luo
- Department of Radiation Oncology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xi Rao
- Department of Radiation Oncology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Xuanwei Zhang
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Simone Gaedicke
- Department of Radiation Oncology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Anca-Ligia Grosu
- Department of Radiation Oncology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Elke Firat
- Department of Radiation Oncology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Gabriele Niedermann
- Department of Radiation Oncology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
6
|
Zhao J, Yang H, Ge J, Li L, Yao Q, He S, Zhu Q, Ren R, Li C, Ma L, Tian W, Wei J. Pomalidomide improves the effectiveness of CAR-T treatment in the relapsed and refractory multiple myeloma or B-cell leukemia/lymphoma with extramedullary disease. BLOOD SCIENCE 2024; 6:e00184. [PMID: 38433987 PMCID: PMC10906647 DOI: 10.1097/bs9.0000000000000184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 01/10/2024] [Indexed: 03/05/2024] Open
Abstract
Relapsed and refractory multiple myeloma (RRMM) and B-cell leukemia/lymphoma with extramedullary disease (EMD) have poor prognosis and high mortality, lack of effective therapeutic approaches. We reported for the first time that 6 patients with malignant hematological diseases with EMD received chimeric antigen receptor (CAR)-T treatment combined with pomalidomide, and CAR-T cells were treated with pomalidomide in vitro to determine its killing activity and cytokine secretion. Three patients with RRMM were given B cell maturation antigen (BCMA)-CAR-T therapy. All 3 patients with B-cell leukemia/lymphoma received CD19/22-CAR-T sequential infusion. There were no treatment-related deaths. The maximum overall response rate (ORR) was 100%. Median follow-up was 211.5 days (75-407 days). Three patients (50%) experienced cytokine release syndrome, all of which were grade 1, and no neurotoxicity was observed. In vitro experiments showed that the killing activity did not differ significantly between BCMA-CAR-T cells with and without pomalidomide (10, 25, or 50 μg/mL) in 8226/U266 cell cocultures (P > .05). Tumor necrosis factor (TNF)-α and interferon (IFN)-γ secretion was significantly higher from 8226 and Raji cells cocultured with BCMA-CAR-T and cluster of differentiation (CD)19-CAR-T cells (P < .05). Based on the cocultures, adding pomalidomide significantly promoted IFN-γ and TNF-α secretion (P < .05). Based on the above clinical and in vitro studies demonstrating the co-administration of pomalidomide with CAR-T cell treatment demonstrated favorable tolerability and therapeutic effectiveness in RRMM or B-cell leukemia/lymphoma.
Collapse
Affiliation(s)
- Jie Zhao
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hui Yang
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Junnan Ge
- Hebei Taihe Chunyu Biotechnology Co. Ltd., Shijiazhuang, Hebei 050000, China
| | - Linyu Li
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Qiong Yao
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Shaolong He
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qiujuan Zhu
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Ruiui Ren
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Chunrui Li
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Liangming Ma
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Weiwei Tian
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Sino-German Joint Oncological Research Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, Shanxi 030032, China
| | - Jia Wei
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Sino-German Joint Oncological Research Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, Shanxi 030032, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei 430000, China
| |
Collapse
|
7
|
de Jong MME, Chen L, Raaijmakers MHGP, Cupedo T. Bone marrow inflammation in haematological malignancies. Nat Rev Immunol 2024:10.1038/s41577-024-01003-x. [PMID: 38491073 DOI: 10.1038/s41577-024-01003-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2024] [Indexed: 03/18/2024]
Abstract
Tissue inflammation is a hallmark of tumour microenvironments. In the bone marrow, tumour-associated inflammation impacts normal niches for haematopoietic progenitor cells and mature immune cells and supports the outgrowth and survival of malignant cells residing in these niche compartments. This Review provides an overview of our current understanding of inflammatory changes in the bone marrow microenvironment of myeloid and lymphoid malignancies, using acute myeloid leukaemia and multiple myeloma as examples and highlights unique and shared features of inflammation in niches for progenitor cells and plasma cells. Importantly, inflammation exerts profoundly different effects on normal bone marrow niches in these malignancies, and we provide context for possible drivers of these divergent effects. We explore the role of tumour cells in inflammatory changes, as well as the role of cellular constituents of normal bone marrow niches, including myeloid cells and stromal cells. Integrating knowledge of disease-specific dynamics of malignancy-associated bone marrow inflammation will provide a necessary framework for future targeting of these processes to improve patient outcome.
Collapse
Affiliation(s)
- Madelon M E de Jong
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Lanpeng Chen
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | | | - Tom Cupedo
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands.
| |
Collapse
|
8
|
Zhuang Y, Li C, Jiang H, Li L, Zhang Y, Yu W, Fu W. Multi-omics investigation of the resistance mechanisms of pomalidomide in multiple myeloma. Front Oncol 2023; 13:1264422. [PMID: 37799465 PMCID: PMC10549987 DOI: 10.3389/fonc.2023.1264422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/31/2023] [Indexed: 10/07/2023] Open
Abstract
Background Despite significant therapeutic advances over the last decade, multiple myeloma remains an incurable disease. Pomalidomide is the third Immunomodulatory drug that is commonly used to treat patients with relapsed/refractory multiple myeloma. However, approximately half of the patients exhibit resistance to pomalidomide treatment. While previous studies have identified Cereblon as a primary target of Immunomodulatory drugs' anti-myeloma activity, it is crucial to explore additional mechanisms that are currently less understood. Methods To comprehensively investigate the mechanisms of drug resistance, we conducted integrated proteomic and metabonomic analyses of 12 plasma samples from multiple myeloma patients who had varying responses to pomalidomide. Differentially expressed proteins and metabolites were screened, and were further analyzed using pathway analysis and functional correlation analysis. Also, we estimated the cellular proportions based on ssGSEA algorithm. To investigate the potential role of glycine in modulating the response of MM cells to pomalidomide, cell viability and apoptosis were analyzed. Results Our findings revealed a consistent decrease in the levels of complement components in the pomalidomide-resistant group. Additionally, there were significant differences in the proportion of T follicular helper cell and B cells in the resistant group. Furthermore, glycine levels were significantly decreased in pomalidomide-resistant patients, and exogenous glycine administration increased the sensitivity of MM cell lines to pomalidomide. Conclusion These results demonstrate distinct molecular changes in the plasma of resistant patients that could be used as potential biomarkers for identifying resistance mechanisms for pomalidomide in multiple myeloma and developing immune-related therapeutic strategies.
Collapse
Affiliation(s)
- Yan Zhuang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Department of Hematology, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chenyu Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Hua Jiang
- Department of Hematology, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lu Li
- Department of Hematology, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yuanteng Zhang
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - WeiJun Fu
- Department of Hematology, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
9
|
Liu Z, Yang C, Liu X, Xu X, Zhao X, Fu R. Therapeutic strategies to enhance immune response induced by multiple myeloma cells. Front Immunol 2023; 14:1169541. [PMID: 37275861 PMCID: PMC10232766 DOI: 10.3389/fimmu.2023.1169541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 05/08/2023] [Indexed: 06/07/2023] Open
Abstract
Multiple myeloma (MM)as a haematological malignancy is still incurable. In addition to the presence of somatic genetic mutations in myeloma patients, the presence of immunosuppressive microenvironment greatly affects the outcome of treatment. Although the discovery of immunotherapy makes it possible to break the risk of high toxicity and side effects of traditional chemotherapeutic drugs, there are still obstacles of ineffective treatment or disease recurrence. In this review, we discuss therapeutic strategies to further enhance the specific anti-tumor immune response by activating the immunogenicity of MM cells themselves. New ideas for future myeloma therapeutic approaches are provided.
Collapse
|
10
|
Liu Z, Xu X, Liu K, Zhang J, Ding D, Fu R. Immunogenic Cell Death in Hematological Malignancy Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207475. [PMID: 36815385 PMCID: PMC10161053 DOI: 10.1002/advs.202207475] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/09/2023] [Indexed: 05/06/2023]
Abstract
Although the curative effect of hematological malignancies has been improved in recent years, relapse or drug resistance of hematological malignancies will eventually recur. Furthermore, the microenvironment disorder is an important mechanism in the pathogenesis of hematological malignancies. Immunogenic cell death (ICD) is a unique mechanism of regulated cell death (RCD) that triggers an intact antigen-specific adaptive immune response by firing a set of danger signals or damage-associated molecular patterns (DAMPs), which is an immunotherapeutic modality with the potential for the treatment of hematological malignancies. This review summarizes the existing knowledge about the induction of ICD in hematological malignancies and the current research on combining ICD inducers with other treatment strategies for hematological malignancies.
Collapse
Affiliation(s)
- Zhaoyun Liu
- Department of HematologyTianjin Medical University General HospitalTianjin300052P. R. China
| | - Xintong Xu
- Department of HematologyTianjin Medical University General HospitalTianjin300052P. R. China
| | - Kaining Liu
- State Key Laboratory of Medicinal Chemical BiologyKey Laboratory of Bioactive, Materials, Ministry of Education and College of Life SciencesNankai UniversityTianjin300071P. R. China
| | - Jingtian Zhang
- State Key Laboratory of Medicinal Chemical BiologyKey Laboratory of Bioactive, Materials, Ministry of Education and College of Life SciencesNankai UniversityTianjin300071P. R. China
| | - Dan Ding
- State Key Laboratory of Medicinal Chemical BiologyKey Laboratory of Bioactive, Materials, Ministry of Education and College of Life SciencesNankai UniversityTianjin300071P. R. China
| | - Rong Fu
- Department of HematologyTianjin Medical University General HospitalTianjin300052P. R. China
| |
Collapse
|
11
|
Pfannes R, Pierzchalski A, Maddalon A, Simion A, Zouboulis CC, Behre G, Zenclussen AC, Westphal S, Fest S, Herberth G. Characterization of post-vaccination SARS-CoV-2 T cell subtypes in patients with different hematologic malignancies and treatments. Front Immunol 2023; 14:1087996. [PMID: 37187728 PMCID: PMC10177659 DOI: 10.3389/fimmu.2023.1087996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 04/03/2023] [Indexed: 05/17/2023] Open
Abstract
Background To evaluate the benefits of SARS-CoV-2 vaccination in cancer patients it is relevant to understand the adaptive immune response elicited after vaccination. Patients affected by hematologic malignancies are frequently immune-compromised and show a decreased seroconversion rate compared to other cancer patients or controls. Therefore, vaccine-induced cellular immune responses in these patients might have an important protective role and need a detailed evaluation. Methods Certain T cell subtypes (CD4, CD8, Tfh, γδT), including cell functionality as indicated by cytokine secretion (IFN, TNF) and expression of activation markers (CD69, CD154) were assessed via multi-parameter flow cytometry in hematologic malignancy patients (N=12) and healthy controls (N=12) after a second SARS-CoV-2 vaccine dose. The PBMC of post-vaccination samples were stimulated with a spike-peptide pool (S-Peptides) of SARS-CoV-2, with CD3/CD28, with a pool of peptides from the cytomegalovirus, Epstein-Barr virus and influenza A virus (CEF-Peptides) or left unstimulated. Furthermore, the concentration of spike-specific antibodies has been analyzed in patients. Results Our results indicate that hematologic malignancy patients developed a robust cellular immune response to SARS-CoV-2 vaccination comparable to that of healthy controls, and for certain T cell subtypes even higher. The most reactive T cells to SARS-CoV-2 spike peptides belonged to the CD4 and Tfh cell compartment, being median (IQR), 3.39 (1.41-5.92) and 2.12 (0.55-4.14) as a percentage of IFN- and TNF-producing Tfh cells in patients. In this regard, the immunomodulatory treatment of patients before the vaccination period seems important as it was strongly associated with a higher percentage of activated CD4 and Tfh cells. SARS-CoV-2- and CEF-specific T cell responses significantly correlated with each other. Compared to lymphoma patients, myeloma patients had an increased percentage of SARS-CoV-2-specific Tfh cells. T-SNE analysis revealed higher frequencies of γδT cells in patients compared to controls, especially in myeloma patients. In general, after vaccination, SARS-CoV-2-specific T cells were also detectable in patients without seroconversion. Conclusion Hematologic malignancy patients are capable of developing a SARS-CoV-2-specific CD4 and Tfh cellular immune response after vaccination, and certain immunomodulatory therapies in the period before vaccination might increase the antigen-specific immune response. A proper response to recall antigens (e.g., CEF-Peptides) reflects immune cellular functionality and might be predictive for generating a newly induced antigen-specific immune response as is expected after SARS-CoV-2 vaccination.
Collapse
Affiliation(s)
- Roald Pfannes
- Dessau Medical Center, Center for Oncology, Dessau, Germany
- Department for Gastroenterology and Oncology, Diakonissenkrankenhaus Leipzig, Agaplession Mitteldeutschland GmbH, Leipzig, Germany
| | - Arkadiusz Pierzchalski
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Ambra Maddalon
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Alexandra Simion
- Institute of Clinical Chemistry, Dessau City Hospital, Brandenburg Medical School Theodor Fontane, Dessau, Germany
| | - Christos C. Zouboulis
- Department of Dermatology, Staedtisches Klinikum Dessau, Brandenburg Medical School Theodor Fontane and Faculty of Health Sciences Brandenburg, Dessau, Germany
- Department of Venereology, Staedtisches Klinikum Dessau, Brandenburg Medical School Theodor Fontane and Faculty of Health Sciences Brandenburg, Dessau, Germany
- Department of Allergology, Staedtisches Klinikum Dessau, Brandenburg Medical School Theodor Fontane and Faculty of Health Sciences Brandenburg, Dessau, Germany
- Department of Immunology, Staedtisches Klinikum Dessau, Brandenburg Medical School Theodor Fontane and Faculty of Health Sciences Brandenburg, Dessau, Germany
| | - Gerhard Behre
- Department for Internal Medicine I, Dessau Medical Center and Brandenburg Medical School Theodor Fontane, Dessau, Germany
| | - Ana Claudia Zenclussen
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
- Perinatal Immunology Research Group, Medical Faculty, Saxonian Incubator for Clinical Translation (SIKT), University of Leipzig, Leipzig, Germany
| | - Sabine Westphal
- Institute of Clinical Chemistry, Dessau City Hospital, Brandenburg Medical School Theodor Fontane, Dessau, Germany
| | - Stefan Fest
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
- Clinic of Pediatrics and Adolescent Medicine, Dessau City Hospital, Brandenburg Medical School Theodor Fontane, Dessau, Germany
| | - Gunda Herberth
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
- *Correspondence: Gunda Herberth,
| |
Collapse
|
12
|
Bertuglia G, Cani L, Larocca A, Gay F, D'Agostino M. Normalization of the Immunological Microenvironment and Sustained Minimal Residual Disease Negativity: Do We Need Both for Long-Term Control of Multiple Myeloma? Int J Mol Sci 2022; 23:15879. [PMID: 36555520 PMCID: PMC9781462 DOI: 10.3390/ijms232415879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/02/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Over the past two decades, the treatment landscape for multiple myeloma (MM) has progressed significantly, with the introduction of several new drug classes that have greatly improved patient outcomes. At present, it is well known how the bone marrow (BM) microenvironment (ME) exerts an immunosuppressive action leading to an exhaustion of the immune system cells and promoting the proliferation and sustenance of tumor plasma cells. Therefore, having drugs that can reconstitute a healthy BM ME can improve results in MM patients. Recent findings clearly demonstrated that achieving minimal residual disease (MRD) negativity and sustaining MRD negativity over time play a pivotal prognostic role. However, despite the achievement of MRD negativity, patients may still relapse. The understanding of immunologic changes in the BM ME during treatment, complemented by a deeper knowledge of plasma cell genomics and biology, will be critical to develop future therapies to sustain MRD negativity over time and possibly achieve an operational cure. In this review, we focus on the components of the BM ME and their role in MM, on the prognostic significance of MRD negativity and, finally, on the relative contribution of tumor plasma cell biology and BM ME to long-term disease control.
Collapse
Affiliation(s)
- Giuseppe Bertuglia
- Division of Hematology, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
- Division of Hematology, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, 10126 Torino, Italy
| | - Lorenzo Cani
- Division of Hematology, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
- Division of Hematology, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, 10126 Torino, Italy
| | - Alessandra Larocca
- Division of Hematology, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
- Division of Hematology, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, 10126 Torino, Italy
| | - Francesca Gay
- Division of Hematology, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
- Division of Hematology, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, 10126 Torino, Italy
| | - Mattia D'Agostino
- Division of Hematology, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
- Division of Hematology, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, 10126 Torino, Italy
| |
Collapse
|
13
|
Wang X, Dai J, Xia J, Ye Z, Huang X, Cao W, Xiao R, He L. Pomalidomide enhances the maturation of dendritic cells derived from healthy donors and multiple myeloma patients. Front Pharmacol 2022; 13:1076096. [PMID: 36545316 PMCID: PMC9760666 DOI: 10.3389/fphar.2022.1076096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 11/18/2022] [Indexed: 12/09/2022] Open
Abstract
Objective: To explore the effect of pomalidomide on the maturation of monocyte-derived dendritic cells (moDCs) from healthy donors (HDs) and multiple myeloma (MM) patients. Methods: MoDCs were generated by the incubation of monocytes from peripheral blood mononuclear cells (PBMCs) for 7 days in a medium consisting of 800 U/ml granulocyte-macrophage colony stimulating factor (GM-CSF), 500 U/ml interleukin-4 (IL-4), RPMI 1,640 medium, 5% human serum, 100 U/ml penicillin and 0.1 mg/ml streptomycin. Meanwhile, the incubation system was administrated with 10 µM pomalidomide or 1 × PBS as the control group. On the eighth day, cells were harvested and analyzed by flow cytometry. The CD80+CD86+ cell population in total cells was gated as moDCs in the FACS analyzing system. After that, the expression of CD40 and HLA-DR on moDCs was analyzed. Meanwhile, the supernatant from the incubation system was evaluated for the secretion of cytokines interleukin-12 (IL-12), tumor necrosis factor-α (TNF-α), and macrophage inflammatory protein 1α (MIP-1α) by enzyme-linked immunosorbent assay (ELISA). Results: When analyzing all the HD-moDCs together (n = 15), pomalidomide significantly increased the mean fluorescence intensity (MFI) of CD40 expression and HLA-DR expression on moDCs compared with the control group (p = 0.003, p = 0.040). Meanwhile, the proportion of CD40+ moDCs and HLA-DR+ moDCs in total moDCs was significantly higher in the pomalidomide group than in the control group (p = 0.008, p = 0.032). When analyzing all MM patient-moDCs together (n = 11), pomalidomide significantly increased the MFI of CD40 expression and HLA-DR expression on moDCs compared with the control group (p = 0.047, p = 0.006). Meanwhile, the proportion of HLA-DR+ moDCs in total DCs was significantly higher in the pomalidomide group than in the control group (p < 0.001). Moreover, HD-moDCs (n = 8) treated with pomalidomide secreted 192% IL-12, 110% TNF-α, and 112% MIP-1α of the untreated moDCs (p = 0.020, p = 0.006, p = 0.055). However, when analyzing MM patient-moDCs (n = 10) together, the secretion of IL-12, TNF-α and MIP-1α from moDCs showed no significant difference between the pomalidomide group and the control group (p = 0.458, p = 0.377, p = 0.248). Conclusion: In vitro, 10 µM pomalidomide enhances the maturation of moDCs derived from both HDs and MM patients. Pomalidomide shows potential to be applied as a DC adjuvant for DC-based immunotherapy, such as the DC vaccine and DC cell therapy in MM.
Collapse
Affiliation(s)
- Xi Wang
- Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jingying Dai
- Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jingyi Xia
- Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Zichen Ye
- Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaobing Huang
- Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Wanjun Cao
- Department of Pharmacy, Nanchong Central Hospital, Nanchong, China
| | - Rong Xiao
- Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China,*Correspondence: Rong Xiao, ; Lin He,
| | - Lin He
- Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China,*Correspondence: Rong Xiao, ; Lin He,
| |
Collapse
|
14
|
Chen LY, Gooding S. Tumor and microenvironmental mechanisms of resistance to immunomodulatory drugs in multiple myeloma. Front Oncol 2022; 12:1038329. [PMID: 36439455 PMCID: PMC9682014 DOI: 10.3389/fonc.2022.1038329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/04/2022] [Indexed: 10/07/2023] Open
Abstract
Resistance to immunomodulatory drugs (IMiDs®) is a major cause of treatment failure, disease relapse and ultimately poorer outcomes in multiple myeloma (MM). In order to optimally deploy IMiDs and their newer derivates CRBN E3 ligase modulators (CELMoDs®) into future myeloma therapeutic regimens, it is imperative to understand the mechanisms behind the inevitable emergence of IMiD resistance. IMiDs bind and modulate Cereblon (CRBN), the substrate receptor of the CUL4CRBN E3 ubiquitin ligase, to target novel substrate proteins for ubiquitination and degradation. Most important of these are IKZF1 and IKZF3, key MM survival transcription factors which sustain the expression of myeloma oncogenes IRF4 and MYC. IMiDs directly target MM cell proliferation, but also stimulate T/NK cell activation by their CRBN-mediated effects, and therefore enhance anti-MM immunity. Thus, their benefits in myeloma are directed against tumor and immune microenvironment - and in considering the mechanisms by which IMiD resistance emerges, both these effects must be appraised. CRBN-dependent mechanisms of IMiD resistance, including CRBN genetic aberrations, CRBN protein loss and CRBN-substrate binding defects, are beginning to be understood. However, only a proportion of IMiD-resistant cases are related to CRBN and therefore additional mechanisms, which are currently less well described, need to be sought. These include resistance within the immune microenvironment. Here we review the existing evidence on both tumor and immune microenvironment mechanisms of resistance to IMiDs, pose important questions for future study, and consider how knowledge regarding resistance mechanism may be utilized to guide treatment decision making in the clinic.
Collapse
Affiliation(s)
- Lucia Y. Chen
- Department of Haematology, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
- Oxford Centre for Translational Myeloma Research, University of Oxford, Oxford, United Kingdom
| | - Sarah Gooding
- Department of Haematology, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
- Oxford Centre for Translational Myeloma Research, University of Oxford, Oxford, United Kingdom
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
15
|
Guo H, Yang J, Wang H, Liu X, Liu Y, Zhou K. Reshaping the tumor microenvironment: The versatility of immunomodulatory drugs in B-cell neoplasms. Front Immunol 2022; 13:1017990. [PMID: 36311747 PMCID: PMC9596992 DOI: 10.3389/fimmu.2022.1017990] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/27/2022] [Indexed: 11/24/2022] Open
Abstract
Immunomodulatory drugs (IMiDs) such as thalidomide, lenalidomide and pomalidomide are antitumor compounds that have direct tumoricidal activity and indirect effects mediated by multiple types of immune cells in the tumor microenvironment (TME). IMiDs have shown remarkable therapeutic efficacy in a set of B-cell neoplasms including multiple myeloma, B-cell lymphomas and chronic lymphocytic leukemia. More recently, the advent of immunotherapy has revolutionized the treatment of these B-cell neoplasms. However, the success of immunotherapy is restrained by immunosuppressive signals and dysfunctional immune cells in the TME. Due to the pleiotropic immunobiological properties, IMiDs have shown to generate synergetic effects in preclinical models when combined with monoclonal antibodies, immune checkpoint inhibitors or CAR-T cell therapy, some of which were successfully translated to the clinic and lead to improved responses for both first-line and relapsed/refractory settings. Mechanistically, despite cereblon (CRBN), an E3 ubiquitin ligase, is considered as considered as the major molecular target responsible for the antineoplastic activities of IMiDs, the exact mechanisms of action for IMiDs-based TME re-education remain largely unknown. This review presents an overview of IMiDs in regulation of immune cell function and their utilization in potentiating efficacy of immunotherapies across multiple types of B-cell neoplasms.
Collapse
Affiliation(s)
| | | | | | | | | | - Keshu Zhou
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
16
|
Tsubokura Y, Yoshimura H, Satake A, Nasa Y, Tsuji R, Ito T, Nomura S. Early administration of lenalidomide after allogeneic hematopoietic stem cell transplantation suppresses graft-versus-host disease by inhibiting T-cell migration to the gastrointestinal tract. Immun Inflamm Dis 2022; 10:e688. [PMID: 36039651 PMCID: PMC9425011 DOI: 10.1002/iid3.688] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 07/30/2022] [Accepted: 08/01/2022] [Indexed: 12/04/2022] Open
Abstract
INTRODUCTION Allogeneic hematopoietic stem cell transplantation (aHSCT) is a curative treatment for hematopoietic malignancies. Graft-versus-host disease (GVHD) is a major complication of aHSCT. After transplantation, the balance of immune conditions, such as proinflammatory cytokine level and T-cell subset count, influences GVHD magnitude. Lenalidomide (LEN) is an immunomodulatory drug used for treating several hematological malignancies such as multiple myeloma, adult T-cell lymphoma/leukemia, and follicular lymphoma. However, the impact of LEN on immune responses after aHSCT has not been elucidated. METHODS We analyzed the lymphocyte composition in naïve mice treated with LEN. Subsequently, we treated host mice with LEN, soon after aHSCT, and analyzed GVHD severity as well as the composition and characteristics of lymphocytes associated with GVHD. RESULTS Using a mouse model, we demonstrated the beneficial effects of LEN for treating acute GVHD. Although natural killer cells were slightly increased by LEN, it did not significantly change T-cell proliferation and the balance of the T-cell subset in naïve mice. LEN did not modulate the suppressive function of regulatory T cells (Tregs). Unexpectedly, LEN prevented severe GVHD in a mouse acute GVHD model. Donor-derived lymphocytes were more numerous in host mice treated with LEN than in host mice treated with vehicle. Lymphocyte infiltration of the gastrointestinal tract in host mice treated with LEN was less severe compared to that in host mice treated with vehicle. The percentage of LPAM-1 (α4 β7 -integrin)-expressing Foxp3- CD4+ T cells was significantly lower in host mice treated with LEN than in host mice treated with vehicle, whereas that of LPAM-1-expressing Tregs was comparable. CONCLUSIONS LEN may be useful as a prophylactic agent for acute GVHD-induced mortality through the inhibition of lymphocyte migration to the gastrointestinal tract. Our data show the effect of LEN on immune responses early after aHSCT and suggest that cereblon, a molecular target of LEN, may be a therapeutic target for preventing acute GVHD-induced mortality.
Collapse
Affiliation(s)
- Yukie Tsubokura
- First Department of Internal MedicineKansai Medical UniversityHirakata CityOsakaJapan
| | - Hideaki Yoshimura
- First Department of Internal MedicineKansai Medical UniversityHirakata CityOsakaJapan
| | - Atsushi Satake
- First Department of Internal MedicineKansai Medical UniversityHirakata CityOsakaJapan
| | - Yutaro Nasa
- First Department of Internal MedicineKansai Medical UniversityHirakata CityOsakaJapan
| | - Ryohei Tsuji
- First Department of Internal MedicineKansai Medical UniversityHirakata CityOsakaJapan
| | - Tomoki Ito
- First Department of Internal MedicineKansai Medical UniversityHirakata CityOsakaJapan
| | - Shosaku Nomura
- First Department of Internal MedicineKansai Medical UniversityHirakata CityOsakaJapan
| |
Collapse
|
17
|
The Role of T Cell Immunity in Monoclonal Gammopathy and Multiple Myeloma: From Immunopathogenesis to Novel Therapeutic Approaches. Int J Mol Sci 2022; 23:ijms23095242. [PMID: 35563634 PMCID: PMC9104275 DOI: 10.3390/ijms23095242] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 02/01/2023] Open
Abstract
Multiple Myeloma (MM) is a malignant growth of clonal plasma cells, typically arising from asymptomatic precursor conditions, namely monoclonal gammopathy of undetermined significance (MGUS) and smoldering MM (SMM). Profound immunological dysfunctions and cytokine deregulation are known to characterize the evolution of the disease, allowing immune escape and proliferation of neoplastic plasma cells. In the past decades, several studies have shown that the immune system can recognize MGUS and MM clonal cells, suggesting that anti-myeloma T cell immunity could be harnessed for therapeutic purposes. In line with this notion, chimeric antigen receptor T cell (CAR-T) therapy is emerging as a novel treatment in MM, especially in the relapsed/refractory disease setting. In this review, we focus on the pivotal contribution of T cell impairment in the immunopathogenesis of plasma cell dyscrasias and, in particular, in the disease progression from MGUS to SMM and MM, highlighting the potentials of T cell-based immunotherapeutic approaches in these settings.
Collapse
|
18
|
Cook MR, Dunleavy K. Targeting The Tumor Microenvironment in Lymphomas: Emerging Biological Insights and Therapeutic Strategies. Curr Oncol Rep 2022; 24:1121-1131. [DOI: 10.1007/s11912-022-01250-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2022] [Indexed: 11/03/2022]
|
19
|
Nastoupil LJ, Chin CK, Westin JR, Fowler NH, Samaniego F, Cheng X, Ma MCJ, Wang Z, Chu F, Dsouza L, Obi C, Mims J, Feng L, Zhou S, Green M, Davis RE, Neelapu SS. Safety and activity of pembrolizumab in combination with rituximab in relapsed or refractory follicular lymphoma. Blood Adv 2022; 6:1143-1151. [PMID: 35015819 PMCID: PMC8864656 DOI: 10.1182/bloodadvances.2021006240] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/07/2021] [Indexed: 11/23/2022] Open
Abstract
PD-1 blockade enhances the function of antitumor T cells and antibody-dependent, cell-mediated cytotoxicity (ADCC) of NK cells. In a single-center, open-label, phase 2 trial, we tested the combination of pembrolizumab, an anti-PD-1 monoclonal antibody, and rituximab, an anti-CD20 monoclonal antibody that induces ADCC, in 30 patients with follicular lymphoma (FL) with rituximab-sensitive disease who had relapsed after ≥1 prior therapy. Pembrolizumab was administered at 200 mg IV every 3 weeks for up to 16 cycles, and rituximab was given at 375 mg/m2 IV weekly for 4 weeks in cycle 1 only. The most common grade 3/4 adverse events (AEs) were liver enzyme abnormalities (3%), diarrhea (3%), nausea (3%), aseptic meningitis (3%), and pancreatitis (3%). Low-grade immune-related AEs were reported in 80% of patients, including diarrhea (43%), liver enzyme abnormalities (33%), thyroid dysfunction (27%), and rash (23%). Grade 3 or 4 immune-related AEs occurred in 13% of the patients. Treatment-related AEs led to discontinuation in 6 (20%) patients. The overall response rate (primary end point) was 67%, and the complete response (CR) rate was 50%. Median progression-free survival (PFS) was 12.6 months (95% confidence interval, 8.2-27.6), the 3-year overall survival rate was 97%, and 23% of patients were in remission at a median follow-up of 35 months. The presence of a high CD8+ T-effector score at baseline in the tumor was associated with induction of a CR and improved PFS. In this single-arm, phase 2 study, the combination of pembrolizumab and rituximab demonstrates favorable efficacy and safety profile in relapsed FL. This trial is registered at www.clinicaltrials.gov as #NCT02446457.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Fuliang Chu
- Department of Lymphoma/Myeloma, San Diego, CA and
| | - Ly Dsouza
- Department of Lymphoma/Myeloma, San Diego, CA and
| | - Chizobam Obi
- Department of Lymphoma/Myeloma, San Diego, CA and
| | | | - Lei Feng
- Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Shouhao Zhou
- Department of Lymphoma/Myeloma, San Diego, CA and
| | | | | | | |
Collapse
|
20
|
Consensus guidelines and recommendations for infection prevention in multiple myeloma: a report from the International Myeloma Working Group. Lancet Haematol 2022; 9:e143-e161. [DOI: 10.1016/s2352-3026(21)00283-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 08/26/2021] [Accepted: 09/07/2021] [Indexed: 12/14/2022]
|
21
|
Kesireddy M, Holstein SA. The era of lenalidomide maintenance therapy in multiple myeloma: settings for achieving best outcomes. Expert Rev Clin Pharmacol 2022; 15:19-31. [DOI: 10.1080/17512433.2022.2032656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Meghana Kesireddy
- Division of Oncology and Hematology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE
| | - Sarah A. Holstein
- Division of Oncology and Hematology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE
| |
Collapse
|
22
|
Molecular Mechanisms of Cereblon-Interacting Small Molecules in Multiple Myeloma Therapy. J Pers Med 2021; 11:jpm11111185. [PMID: 34834536 PMCID: PMC8623651 DOI: 10.3390/jpm11111185] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/08/2021] [Accepted: 11/08/2021] [Indexed: 12/12/2022] Open
Abstract
Thalidomide analogues (or immunomodulatory imide drugs, IMiDs) are cornerstones in the treatment of multiple myeloma (MM). These drugs bind Cereblon (CRBN), a receptor for the Cullin-ring 4 ubiquitin-ligase (CRL4) complex, to modify its substrate specificity. IMiDs mediate CRBN-dependent engagement and proteasomal degradation of ‘neosubstrates’, Ikaros (IKZF1) and Aiolos (IKZF3), conveying concurrent antimyeloma activity and T-cell costimulation. There is now a greater understanding of physiological CRBN functions, including endogenous substrates and chaperone activity. CRISPR Cas9-based genome-wide screening has further elucidated the complex cellular machinery implicated in IMiD sensitivity, including IKZF1/3-independent mechanisms. New-generation IMiD derivatives with more potent anti-cancer properties—the CELMoDs (Cereblon E3 ligase modulators)—are now being evaluated. Rational drug design also allows ‘hijacking’ of CRL4CRBN utilising proteolysis targeting chimeras (PROTACs) to convey entirely distinct substrate repertoires. As all these chemotypes—thalidomide, IMiDs, CELMoDs and PROTACs—engage CRBN and modify its functions, we describe them here in aggregate as ‘CRBN-interacting small molecules’ (CISMs). In this review, we provide a contemporary summary of the biological consequences of CRBN modulation by CISMs. Detailed molecular insight into CRBN–CISM interactions now provides an opportunity to more effectively target previously elusive cancer dependencies, representing a new and powerful tool for the implementation of precision medicine.
Collapse
|
23
|
Ackley J, Ochoa MA, Ghoshal D, Roy K, Lonial S, Boise LH. Keeping Myeloma in Check: The Past, Present and Future of Immunotherapy in Multiple Myeloma. Cancers (Basel) 2021; 13:4787. [PMID: 34638271 PMCID: PMC8507631 DOI: 10.3390/cancers13194787] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 02/06/2023] Open
Abstract
Multiple myeloma is an incurable disease of malignant plasma cells and an ideal target for modern immune therapy. The unique plasma cell biology maintained in multiple myeloma, coupled with its hematological nature and unique bone marrow microenvironment, provide an opportunity to design specifically targeted immunotherapies that selectively kill transformed cells with limited on-target off-tumor effects. Broadly defined, immune therapy is the utilization of the immune system and immune agents to treat a disease. In the context of multiple myeloma, immune therapy can be subdivided into four main categories: immune modulatory imide drugs, targeted antibodies, adoptive cell transfer therapies, and vaccines. In recent years, advances in all four of these categories have led to improved therapies with enhanced antitumor activity and specificity. In IMiDs, modified chemical structures have been developed that improve drug potency while reducing dose limiting side effects. Targeted antibody therapies have resulted from the development of new selectively expressed targets as well as the development of antibody drug conjugates and bispecific antibodies. Adoptive cell therapies, particularly CAR-T therapies, have been enhanced through improvements in the manufacturing process, as well as through the development of CAR constructs that enhance CAR-T activation and provide protection from a suppressive immune microenvironment. This review will first cover in-class breakthrough therapies for each of these categories, as well as therapies currently utilized in the clinic. Additionally, this review will explore up and coming therapeutics in the preclinical and clinical trial stage.
Collapse
Affiliation(s)
- James Ackley
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA 30322, USA; (J.A.); (S.L.)
| | - Miguel Armenta Ochoa
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA; (M.A.O.); (D.G.); (K.R.)
- NSF Engineering Research Center for Cell Manufacturing Technologies, The Marcus Center for Therapeutic Cell Characterization and Manufacturing and the Center for ImmunoEngineering, The Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Delta Ghoshal
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA; (M.A.O.); (D.G.); (K.R.)
- NSF Engineering Research Center for Cell Manufacturing Technologies, The Marcus Center for Therapeutic Cell Characterization and Manufacturing and the Center for ImmunoEngineering, The Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Krishnendu Roy
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA; (M.A.O.); (D.G.); (K.R.)
- NSF Engineering Research Center for Cell Manufacturing Technologies, The Marcus Center for Therapeutic Cell Characterization and Manufacturing and the Center for ImmunoEngineering, The Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Sagar Lonial
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA 30322, USA; (J.A.); (S.L.)
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Lawrence H. Boise
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA 30322, USA; (J.A.); (S.L.)
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
24
|
Ioannou N, Jain K, Ramsay AG. Immunomodulatory Drugs for the Treatment of B Cell Malignancies. Int J Mol Sci 2021; 22:8572. [PMID: 34445275 PMCID: PMC8395307 DOI: 10.3390/ijms22168572] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 12/23/2022] Open
Abstract
Accumulating evidence suggests that the tumor microenvironment (TME) is involved in disease progression and drug resistance in B cell malignancies, by supporting tumor growth and facilitating the ability of malignant cells to avoid immune recognition. Immunomodulatory drugs (IMiDs) such as lenalidomide have some direct anti-tumor activity, but critically also target various cellular compartments of the TME including T cells, NK cells, and stromal cells, which interfere with pro-tumor signaling while activating anti-tumor immune responses. Lenalidomide has delivered favorable clinical outcomes as a single-agent, and in combination therapy leads to durable responses in chronic lymphocytic leukemia (CLL) and several non-Hodgkin lymphomas (NHLs) including follicular lymphoma (FL), diffuse large B cell lymphoma (DLBCL), and mantle cell lymphoma (MCL). Recently, avadomide, a next generation cereblon E3 ligase modulator (CELMoD), has shown potent anti-tumor and TME immunomodulatory effects, as well as promising clinical efficacy in DLBCL. This review describes how the pleiotropic effects of IMiDs and CELMoDs could make them excellent candidates for combination therapy in the immuno-oncology era-a concept supported by preclinical data, as well as the recent approval of lenalidomide in combination with rituximab for the treatment of relapsed/refractory (R/R) FL.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/antagonists & inhibitors
- Adaptor Proteins, Signal Transducing/immunology
- Antineoplastic Agents/therapeutic use
- Enzyme Inhibitors/therapeutic use
- Humans
- Immunologic Factors/therapeutic use
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Lymphoma, B-Cell/drug therapy
- Lymphoma, B-Cell/immunology
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/immunology
- Ubiquitin-Protein Ligases/antagonists & inhibitors
- Ubiquitin-Protein Ligases/immunology
Collapse
Affiliation(s)
| | | | - Alan G. Ramsay
- Faculty of Life Sciences & Medicine, School of Cancer & Pharmaceutical Sciences, King’s College London, London SE1 9RT, UK; (N.I.); (K.J.)
| |
Collapse
|
25
|
Hanel W, Epperla N. Evolving therapeutic landscape in follicular lymphoma: a look at emerging and investigational therapies. J Hematol Oncol 2021; 14:104. [PMID: 34193230 PMCID: PMC8247091 DOI: 10.1186/s13045-021-01113-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/04/2021] [Indexed: 02/08/2023] Open
Abstract
Follicular Lymphoma (FL) is the most common subtype of indolent B cell non-Hodgkin lymphoma. The clinical course can be very heterogeneous with some patients being safely observed over many years without ever requiring treatment to other patients having more rapidly progressive disease requiring multiple lines of treatment for disease control. Front-line treatment of advanced FL has historically consisted of chemoimmunotherapy but has extended to immunomodulatory agents such as lenalidomide. In the relapsed setting, several exciting therapies that target the underlying biology and immune microenvironment have emerged, most notable among them include targeted therapies such as phosphoinositide-3 kinase and Enhancer of Zeste 2 Polycomb Repressive Complex 2 inhibitors and cellular therapies including chimeric antigen receptor T cells and bispecific T cell engagers. There are several combination therapies currently in clinical trials that appear promising. These therapies will likely reshape the treatment approach for patients with relapsed and refractory FL in the coming years. In this article, we provide a comprehensive review of the emerging and investigational therapies in FL and discuss how these agents will impact the therapeutic landscape in FL.
Collapse
Affiliation(s)
- Walter Hanel
- Division of Hematology, Department of Medicine, The James Cancer Hospital and Solove Research Institute, The Ohio State University, 460 W 10th Ave, Columbus, OH 43210 USA
| | - Narendranath Epperla
- Division of Hematology, Department of Medicine, The James Cancer Hospital and Solove Research Institute, The Ohio State University, 460 W 10th Ave, Columbus, OH 43210 USA
- The Ohio State University Comprehensive Cancer Center, 1110E Lincoln Tower, 1800 Cannon Drive, Columbus, OH 43210 USA
| |
Collapse
|
26
|
Immunomodulatory drugs suppress Th1-inducing ability of dendritic cells but enhance Th2-mediated allergic responses. Blood Adv 2021; 4:3572-3585. [PMID: 32761232 DOI: 10.1182/bloodadvances.2019001410] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 05/01/2020] [Indexed: 11/20/2022] Open
Abstract
Immunomodulatory drugs (IMiDs), lenalidomide and pomalidomide, are widely used treatments for multiple myeloma; however, they occasionally lead to episodes of itchy skin and rashes. Here, we analyzed the effects of IMiDs on human myeloid dendritic cells (mDCs) as major regulators of Th1 or Th2 responses and the role they play in allergy. We found that lenalidomide and pomalidomide used at clinical concentrations did not affect the survival or CD86 and OX40-ligand expression of blood mDCs in response to lipopolysaccharide (LPS) and thymic stromal lymphopoietin (TSLP) stimulation. Both lenalidomide and pomalidomide dose-dependently inhibited interleukin-12 (IL-12) and TNF production and STAT4 expression, and enhanced IL-10 production in response to LPS. When stimulated with TSLP, both IMiDs significantly enhanced CCL17 production and STAT6 and IRF4 expression and promoted memory Th2-cell responses. In 46 myeloma patients, serum CCL17 levels at the onset of lenalidomide-associated rash were significantly higher than those without rashes during lenalidomide treatment and those before treatment. Furthermore, serum CCL17 levels in patients who achieved a very good partial response (VGPR) were significantly higher compared with a less than VGPR during lenalidomide treatment. The median time to next treatment was significantly longer in lenalidomide-treated patients with rashes than those without. Collectively, IMiDs suppressed the Th1-inducing capacity of DCs, instead promoting a Th2 response. Thus, the lenalidomide-associated rashes might be a result of an allergic response driven by Th2-axis activation. Our findings suggest clinical efficacy and rashes as a side effect of IMiDs are inextricably linked through immunostimulation.
Collapse
|
27
|
Díaz-Tejedor A, Lorenzo-Mohamed M, Puig N, García-Sanz R, Mateos MV, Garayoa M, Paíno T. Immune System Alterations in Multiple Myeloma: Molecular Mechanisms and Therapeutic Strategies to Reverse Immunosuppression. Cancers (Basel) 2021; 13:cancers13061353. [PMID: 33802806 PMCID: PMC8002455 DOI: 10.3390/cancers13061353] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/14/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary A common characteristic of multiple myeloma (MM) is the dysfunction of patients’ immune system, a condition termed immunosuppression. This state is mainly due to alterations in the number and functionality of the principal immune populations. In this setting, immunotherapy has acquired high relevance in the last years and the investigation of agents that boost the immune system represent a field of interest. In the present review, we will summarize the main cellular and molecular alterations observed in MM patients’ immune system. Furthermore, we will describe the mechanisms of action of the four immunotherapeutic drugs approved so far for the treatment of MM, which are part of the group of monoclonal antibodies (mAbs). Finally, the immune-stimulating effects of several therapeutic agents are described due to their potential role in reversing immunosuppression and, therefore, in favoring the efficacy of immunotherapy drugs, such as mAbs, as part of future pharmacological combinations. Abstract Immunosuppression is a common feature of multiple myeloma (MM) patients and has been associated with disease evolution from its precursor stages. MM cells promote immunosuppressive effects due to both the secretion of soluble factors, which inhibit the function of immune effector cells, and the recruitment of immunosuppressive populations. Alterations in the expression of surface molecules are also responsible for immunosuppression. In this scenario, immunotherapy, as is the case of immunotherapeutic monoclonal antibodies (mAbs), aims to boost the immune system against tumor cells. In fact, mAbs exert part of their cytotoxic effects through different cellular and soluble immune components and, therefore, patients’ immunosuppressive status could reduce their efficacy. Here, we will expose the alterations observed in symptomatic MM, as compared to its precursor stages and healthy subjects, in the main immune populations, especially the inhibition of effector cells and the activation of immunosuppressive populations. Additionally, we will revise the mechanisms responsible for all these alterations, including the interplay between MM cells and immune cells and the interactions among immune cells themselves. We will also summarize the main mechanisms of action of the four mAbs approved so far for the treatment of MM. Finally, we will discuss the potential immune-stimulating effects of non-immunotherapeutic drugs, which could enhance the efficacy of immunotherapeutic treatments.
Collapse
Affiliation(s)
- Andrea Díaz-Tejedor
- Centro de Investigación del Cáncer-IBMCC (CSIC-Universidad de Salamanca), Complejo Asistencial Universitario de Salamanca-IBSAL, Department of Hematology, 37007 Salamanca, Spain; (A.D.-T.); (M.L.-M.); (N.P.); (R.G.-S.); (M.-V.M.); (M.G.)
| | - Mauro Lorenzo-Mohamed
- Centro de Investigación del Cáncer-IBMCC (CSIC-Universidad de Salamanca), Complejo Asistencial Universitario de Salamanca-IBSAL, Department of Hematology, 37007 Salamanca, Spain; (A.D.-T.); (M.L.-M.); (N.P.); (R.G.-S.); (M.-V.M.); (M.G.)
| | - Noemí Puig
- Centro de Investigación del Cáncer-IBMCC (CSIC-Universidad de Salamanca), Complejo Asistencial Universitario de Salamanca-IBSAL, Department of Hematology, 37007 Salamanca, Spain; (A.D.-T.); (M.L.-M.); (N.P.); (R.G.-S.); (M.-V.M.); (M.G.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC, CB16/12/00233), Instituto de Salud Carlos III, 37007 Salamanca, Spain
| | - Ramón García-Sanz
- Centro de Investigación del Cáncer-IBMCC (CSIC-Universidad de Salamanca), Complejo Asistencial Universitario de Salamanca-IBSAL, Department of Hematology, 37007 Salamanca, Spain; (A.D.-T.); (M.L.-M.); (N.P.); (R.G.-S.); (M.-V.M.); (M.G.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC, CB16/12/00233), Instituto de Salud Carlos III, 37007 Salamanca, Spain
| | - María-Victoria Mateos
- Centro de Investigación del Cáncer-IBMCC (CSIC-Universidad de Salamanca), Complejo Asistencial Universitario de Salamanca-IBSAL, Department of Hematology, 37007 Salamanca, Spain; (A.D.-T.); (M.L.-M.); (N.P.); (R.G.-S.); (M.-V.M.); (M.G.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC, CB16/12/00233), Instituto de Salud Carlos III, 37007 Salamanca, Spain
| | - Mercedes Garayoa
- Centro de Investigación del Cáncer-IBMCC (CSIC-Universidad de Salamanca), Complejo Asistencial Universitario de Salamanca-IBSAL, Department of Hematology, 37007 Salamanca, Spain; (A.D.-T.); (M.L.-M.); (N.P.); (R.G.-S.); (M.-V.M.); (M.G.)
| | - Teresa Paíno
- Centro de Investigación del Cáncer-IBMCC (CSIC-Universidad de Salamanca), Complejo Asistencial Universitario de Salamanca-IBSAL, Department of Hematology, 37007 Salamanca, Spain; (A.D.-T.); (M.L.-M.); (N.P.); (R.G.-S.); (M.-V.M.); (M.G.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC, CB16/12/00233), Instituto de Salud Carlos III, 37007 Salamanca, Spain
- Correspondence: ; Tel.: +34-923-294-812; Fax: +34-923-294-743
| |
Collapse
|
28
|
D'Souza C, Prince HM, Neeson PJ. Understanding the Role of T-Cells in the Antimyeloma Effect of Immunomodulatory Drugs. Front Immunol 2021; 12:632399. [PMID: 33746969 PMCID: PMC7973099 DOI: 10.3389/fimmu.2021.632399] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/15/2021] [Indexed: 12/12/2022] Open
Abstract
Immunomodulatory drugs (IMiDs) are effective treatments for patients with multiple myeloma. IMiDs have pleotropic effects including targeting the myeloma cells directly, and improving the anti-myeloma immune response. In the absence of myeloma cells, lenalidomide and pomalidomide induce CD4+ T cell secretion of IL-2 and indirect activation of Natural Killer (NK) cells. In the context of T cell receptor ligation, IMiDs enhance T cell proliferation, cytokine release and Th1 responses, both in vivo and in vitro. Furthermore, combination treatment of IMiDs and myeloma-targeting monoclonal antibodies eg. daratumumab (anti-CD38) and elotuzumab (anti-SLAMF7), checkpoint inhibitors, or bispecific T cell engagers showed synergistic effects, mainly via enhanced T and NK cell dependent cellular toxicity and T cell proliferation. Conversely, the corticosteroid dexamethasone can impair the immune modulatory effects of IMiDs, indicating that careful choice of myeloma drugs in combination with IMiDs is key for the best anti-myeloma therapeutic efficacy. This review presents an overview of the role for T cells in the overall anti-myeloma effects of immunomodulatory drugs.
Collapse
Affiliation(s)
- Criselle D'Souza
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - H Miles Prince
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia.,Clinical Hematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Paul J Neeson
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
29
|
Bertamini L, Bonello F, Boccadoro M, Bringhen S. New drugs in early development for treating multiple myeloma: all that glitters is not gold. Expert Opin Investig Drugs 2020; 29:989-1004. [PMID: 32434394 DOI: 10.1080/13543784.2020.1772753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION The last twenty years have introduced new therapeutic agents for multiple myeloma (MM); these include proteasome inhibitors (PIs), immunomodulatory drugs (IMDs) and monoclonal antibodies (mAbs). However, MM remains incurable, hence there is an unmet need for new agents for the treatment of advanced refractory disease. New agents could also be used in early lines to achieve improved, more sustained remission. AREAS COVERED We review the most promising agents investigated in early-phase trials for the treatment of MM and provide an emphasis on new agents directed against well-known targets (new PIs, IMDs and anti-CD38 mAbs). Drugs that work through distinct and numerous mechanisms of action (e.g. pro-apoptotic agents and tyrosine kinase inhibitors) and innovative immunotherapeutic approaches are also described. The paper culminates with our perspective on therapeutic approaches on the horizon for this disease. EXPERT OPINION IMD iberdomide and the export protein inhibitor selinexor demonstrated efficacy in heavily pretreated patients who had no other therapeutic options. We expect that immunotherapy with anti-BCMA BTEs and ADCs will revolutionize the approach to treating the early stages of the disease. Data on venetoclax in t(11;14)-positive patients may pave the way for personalized therapy. Not all new agents under early clinical evaluation will be investigated in regulatory phase III trials; one of the most important challenges is to identify those that could make a difference.
Collapse
Affiliation(s)
- Luca Bertamini
- Myeloma Unit, Division of Hematology, University of Torino, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino , Torino, Italy
| | - Francesca Bonello
- Myeloma Unit, Division of Hematology, University of Torino, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino , Torino, Italy
| | - Mario Boccadoro
- Myeloma Unit, Division of Hematology, University of Torino, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino , Torino, Italy
| | - Sara Bringhen
- Myeloma Unit, Division of Hematology, University of Torino, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino , Torino, Italy
| |
Collapse
|
30
|
D'Arrigo P, Tufano M, Rea A, Vigorito V, Novizio N, Russo S, Romano MF, Romano S. Manipulation of the Immune System for Cancer Defeat: A Focus on the T Cell Inhibitory Checkpoint Molecules. Curr Med Chem 2020; 27:2402-2448. [PMID: 30398102 DOI: 10.2174/0929867325666181106114421] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 10/15/2018] [Accepted: 10/24/2018] [Indexed: 12/19/2022]
Abstract
The immune system actively counteracts the tumorigenesis process; a breakout of the immune system function, or its ability to recognize transformed cells, can favor cancer development. Cancer becomes able to escape from immune system control by using multiple mechanisms, which are only in part known at a cellular and molecular level. Among these mechanisms, in the last decade, the role played by the so-called "inhibitory immune checkpoints" is emerging as pivotal in preventing the tumor attack by the immune system. Physiologically, the inhibitory immune checkpoints work to maintain the self-tolerance and attenuate the tissue injury caused by pathogenic infections. Cancer cell exploits such immune-inhibitory molecules to contrast the immune intervention and induce tumor tolerance. Molecular agents that target these checkpoints represent the new frontier for cancer treatment. Despite the heterogeneity and multiplicity of molecular alterations among the tumors, the immune checkpoint targeted therapy has been shown to be helpful in selected and even histologically different types of cancer, and are currently being adopted against an increasing variety of tumors. The most frequently used is the moAb-based immunotherapy that targets the Programmed Cell Death 1 protein (PD-1), the PD-1 Ligand (PD-L1) or the cytotoxic T lymphocyte antigen-4 (CTLA4). However, new therapeutic approaches are currently in development, along with the discovery of new immune checkpoints exploited by the cancer cell. This article aims to review the inhibitory checkpoints, which are known up to now, along with the mechanisms of cancer immunoediting. An outline of the immune checkpoint targeting approaches, also including combined immunotherapies and the existing trials, is also provided. Notwithstanding the great efforts devoted by researchers in the field of biomarkers of response, to date, no validated FDA-approved immunological biomarkers exist for cancer patients. We highlight relevant studies on predictive biomarkers and attempt to discuss the challenges in this field, due to the complex and largely unknown dynamic mechanisms that drive the tumor immune tolerance.
Collapse
Affiliation(s)
- Paolo D'Arrigo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Martina Tufano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Anna Rea
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Vincenza Vigorito
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Nunzia Novizio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Salvatore Russo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Maria Fiammetta Romano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Simona Romano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
31
|
Leblay N, Maity R, Hasan F, Neri P. Deregulation of Adaptive T Cell Immunity in Multiple Myeloma: Insights Into Mechanisms and Therapeutic Opportunities. Front Oncol 2020; 10:636. [PMID: 32432039 PMCID: PMC7214816 DOI: 10.3389/fonc.2020.00636] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/06/2020] [Indexed: 12/16/2022] Open
Abstract
Immunotherapy has recently emerged as a promising treatment option for multiple myeloma (MM) patients. Profound immune dysfunction and evasion of immune surveillance are known to characterize MM evolution and disease progression. Along with genomic changes observed in malignant plasma cells, the bone marrow (BM) milieu creates a protective environment sustained by the complex interaction of BM stromal cells (BMSCs) and malignant cells that using bidirectional connections and cytokines released stimulate disease progression, drug resistance and enable immune escape. Local immune suppression and T-cell exhaustion are important mediating factors of clinical outcomes and responses to immune-based approaches. Thus, further characterization of the defects present in the immune system of MM patients is essential to develop novel therapies and to repurpose the existing ones. This review seeks to provide insights into the mechanisms that promote tumor escape, cause inadequate T-cell stimulation and impaired cytotoxicity in MM. Furthermore, it highlights current immunotherapies being used to restore adaptive T-cell immune responses in MM and describes strategies created to escape these multiple immune evasion mechanisms.
Collapse
Affiliation(s)
- Noémie Leblay
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada
| | - Ranjan Maity
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada
| | - Fajer Hasan
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada
| | - Paola Neri
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
32
|
Perumal D, Imai N, Laganà A, Finnigan J, Melnekoff D, Leshchenko VV, Solovyov A, Madduri D, Chari A, Cho HJ, Dudley JT, Brody JD, Jagannath S, Greenbaum B, Gnjatic S, Bhardwaj N, Parekh S. Mutation-derived Neoantigen-specific T-cell Responses in Multiple Myeloma. Clin Cancer Res 2020; 26:450-464. [PMID: 31857430 PMCID: PMC6980765 DOI: 10.1158/1078-0432.ccr-19-2309] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 09/19/2019] [Accepted: 11/15/2019] [Indexed: 12/30/2022]
Abstract
PURPOSE Somatic mutations in cancer cells can give rise to novel protein sequences that can be presented by antigen-presenting cells as neoantigens to the host immune system. Tumor neoantigens represent excellent targets for immunotherapy, due to their specific expression in cancer tissue. Despite the widespread use of immunomodulatory drugs and immunotherapies that recharge T and NK cells, there has been no direct evidence that neoantigen-specific T-cell responses are elicited in multiple myeloma. EXPERIMENTAL DESIGN Using next-generation sequencing data we describe the landscape of neo-antigens in 184 patients with multiple myeloma and successfully validate neoantigen-specific T cells in patients with multiple myeloma and support the feasibility of neoantigen-based therapeutic vaccines for use in cancers with intermediate mutational loads such as multiple myeloma. RESULTS In this study, we demonstrate an increase in neoantigen load in relapsed patients with multiple myeloma as compared with newly diagnosed patients with multiple myeloma. Moreover, we identify shared neoantigens across multiple patients in three multiple myeloma oncogenic driver genes (KRAS, NRAS, and IRF4). Next, we validate neoantigen T-cell response and clonal expansion in correlation with clinical response in relapsed patients with multiple myeloma. This is the first study to experimentally validate the immunogenicity of predicted neoantigens from next-generation sequencing in relapsed patients with multiple myeloma. CONCLUSIONS Our findings demonstrate that somatic mutations in multiple myeloma can be immunogenic and induce neoantigen-specific T-cell activation that is associated with antitumor activity in vitro and clinical response in vivo. Our results provide the foundation for using neoantigen targeting strategies such as peptide vaccines in future trials for patients with multiple myeloma.
Collapse
Affiliation(s)
- Deepak Perumal
- Department of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, New York
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Naoko Imai
- Department of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, New York
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Alessandro Laganà
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
- Institute for Next Generation Healthcare, Icahn School of Medicine at Mount Sinai, New York, New York
| | - John Finnigan
- Department of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, New York
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - David Melnekoff
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
- Institute for Next Generation Healthcare, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Violetta V Leshchenko
- Department of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, New York
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Alexander Solovyov
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
- Center for Computational Immunology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Deepu Madduri
- Department of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, New York
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ajai Chari
- Department of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, New York
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Hearn Jay Cho
- Department of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, New York
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Joel T Dudley
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
- Institute for Next Generation Healthcare, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Joshua D Brody
- Department of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, New York
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Sundar Jagannath
- Department of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, New York
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Benjamin Greenbaum
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
- Center for Computational Immunology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Sacha Gnjatic
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Nina Bhardwaj
- Department of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, New York
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Samir Parekh
- Department of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, New York.
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
33
|
Dou A, Fang J. Cyclosporine Broadens the Therapeutic Potential of Lenalidomide in Myeloid Malignancies. JOURNAL OF CELLULAR IMMUNOLOGY 2020; 2:237-244. [PMID: 32984863 PMCID: PMC7518522 DOI: 10.33696/immunology.2.049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The immunomodulatory drug lenalidomide is used for the treatment of certain hematologic malignancies, including myelodysplastic syndromes (MDS). Lenalidomide interacts with cereblon (CRBN), a component of the CRL4CRBN E3 ubiquitin ligase complex, leading to ubiquitination and subsequent degradation of substrates, such as transcription factor Ikaros (Ikaros family zinc finger 1, IKZF1). With a genome loss of function screen, we recently identified two novel pathways mediated by lenalidomide in MDS. In this review, we summarized the major findings of these two pathways and their clinical implications. Depletion of G protein-coupled receptor 68 (GPR68) or an endogenous calcineurin (CaN) inhibitor, regulator of calcineurin 1 (RCAN1), reversed the inhibitory effect of lenalidomide on MDSL cells, an MDS cell line. Intriguingly, both GPR68 and RCAN1 expression levels were upregulated in MDSL cells after treatment with lenalidomide that was dependent on diminishment of IKZF1, indicating that IKZF1 functioned as a transcription repressor for GPR68 and RCAN1. Mechanistic studies revealed that upregulation or activation of GPR68 induced a Ca2+/calpain pro-apoptotic pathway, while upregulation of RCAN1 inhibited the CaN pro-survival pathway in MDSL cells. Notably, the pharmacological CaN inhibitor, cyclosporine, enhanced the sensitivity to lenalidomide in MDS as well as acute myeloid leukemia (AML). Surprisingly, pretreatment with lenalidomide reversed the immunosuppressive effects of cyclosporine on T lymphocytes. Our studies suggest that lenalidomide mediates degradation of IKZF1, leading to derepression of GPR68 and RCAN1 that activates the Ca2+/calpain pro- apoptotic pathway and inhibits the CaN pro-survival pathway, respectively. Our studies implicate that cyclosporine extends the therapeutic potential of lenalidomide to myeloid malignancies without compromising immune function.
Collapse
Affiliation(s)
- Aixia Dou
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina College of Pharmacy, Columbia, SC, USA
| | - Jing Fang
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina College of Pharmacy, Columbia, SC, USA
| |
Collapse
|
34
|
Xie X, Chen Y, Hu Y, He Y, Zhang H, Li Y. Lenalidomide Augments the Antitumor Activities of Eps8 Peptide-Specific Cytotoxic T Lymphocytes against Multiple Myeloma. Mol Cancer Ther 2019; 18:2258-2269. [PMID: 31413179 DOI: 10.1158/1535-7163.mct-19-0424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 06/19/2019] [Accepted: 08/07/2019] [Indexed: 11/16/2022]
Abstract
Cancer immunotherapy is a promising new approach to cancer treatment. It has been demonstrated that a high number of tumor-specific cytotoxic T cells (CTL) is associated with increased survival in patients with multiple myeloma. Here, we focused on EGFR pathway substrate 8 (Eps8) as a candidate tumor-associated antigen (TAA) in multiple myeloma. Previous work has shown that Eps8-based immunotherapy in HLA-A2+ cancer patients may result in efficient antitumor immune responses against diverse tumor types. To improve immunotherapy for patients with multiple myeloma, we constructed a cocktail vaccine by combining several HLA-A2-restricted epitopes derived from Eps8 (Eps8cocktail), including Eps8101-2L (WLQDMILQV), Eps8276-1Y9V (YLDDIEFFV), and Eps8455-1Y (YLAESVANV). The CTLs induced by Eps8cocktail (Eps8cocktail-CTLs) showed highly effective anti-multiple myeloma activity, including Th1 cytokines production, cell proliferation, and cytotoxicity against HLA-A2+ multiple myeloma cells. This study highlights the importance of using a cocktail vaccine instead of a single-peptide vaccine to induce a robust response. Importantly, we revealed that lenalidomide effectively stimulated the antitumor activity of the Eps8cocktail-CTLs, with increasing expression trends for T-cell markers (CD28, CD40L, 41BB, and OX40). Compared with unstimulated CTLs and Eps8cocktail-CTLs, lenalidomide-treated Eps8cocktail-CTLs showed superior anti-multiple myeloma activity in humanized multiple myeloma models, including delaying tumor burden increases due to enhanced immune function. These results provide the framework for an Eps8 cocktail vaccination therapy to induce effective Eps8-specific CTLs in HLA-A2+ patients with multiple myeloma. Moreover, these studies further demonstrate that lenalidomide augments the immune response, providing a possibility for its use in combination with peptide vaccines to improve patient outcomes.
Collapse
Affiliation(s)
- Xiaoling Xie
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yiran Chen
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yuxing Hu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yanjie He
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Honghao Zhang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yuhua Li
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
35
|
Kibata K, Ito T, Inaba M, Tanaka A, Iwata R, Inagaki-Katashiba N, Phan V, Satake A, Nomura S. The immunomodulatory-drug, lenalidomide, sustains and enhances interferon-α production by human plasmacytoid dendritic cells. J Blood Med 2019; 10:217-226. [PMID: 31372079 PMCID: PMC6635835 DOI: 10.2147/jbm.s206459] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/31/2019] [Indexed: 11/23/2022] Open
Abstract
Background: Lenalidomide (LEN), an immunomodulatory drug (IMiD), is currently used for treatment of multiple myeloma (MM). LEN potentiates T cell and natural killer cell functions. However, the cellular and molecular mechanisms underlying the immunomodulatory effects of LEN remain unclear. We focused on the effects of LEN on human plasmacytoid dendritic cells (pDCs), which are the major source of interferon (IFN)-α in the blood and play a central role in innate immune responses. Results: We found that bortezomib, a proteasome inhibitor used to treat MM, killed pDCs but that 0.1-3 μM LEN (covering clinical plasma concentration range) did not affect pDC survival or CD86 expression. Bortezomib inhibited pDC-derived IFN-α production in a dose-dependent fashion, but 0.1-3 µM LEN sustained pDC-derived IFN-α production when stimulated with an optimal concentration of CpG-ODN 2216 (3 μM). In pDCs stimulated with a low concentration of CpG-ODN (0.1 μM), LEN enhanced IFN-α production. These results indicated that LEN, when used at a clinically relevant concentration, can potentially enhance IFN-α production by pDCs. Conclusion: Collectively, our findings unveiled a novel target of LEN and extend the repertoire of the drug's known immunomodulatory effects. These effects may explain the low incidence of herpes zoster viral infection observed during LEN treatment compared with bortezomib treatment. LEN may function as an IMiD affecting a wide array of immune cells, including pDCs, leading to amplification of a positive immune axis able to eliminate MM cells.
Collapse
Affiliation(s)
- Kayoko Kibata
- Kansai Medical University, First Department of Internal Medicine, Osaka, Japan
| | - Tomoki Ito
- Kansai Medical University, First Department of Internal Medicine, Osaka, Japan
| | - Muneo Inaba
- Kansai Medical University, First Department of Internal Medicine, Osaka, Japan
| | - Akihiro Tanaka
- Kansai Medical University, First Department of Internal Medicine, Osaka, Japan
| | - Ryoichi Iwata
- Kansai Medical University, Department of Neurosurgery, Osaka, Japan
| | | | - Vien Phan
- Kansai Medical University, First Department of Internal Medicine, Osaka, Japan
| | - Atsushi Satake
- Kansai Medical University, First Department of Internal Medicine, Osaka, Japan
| | - Shosaku Nomura
- Kansai Medical University, First Department of Internal Medicine, Osaka, Japan
| |
Collapse
|
36
|
Swan D, Lynch K, Gurney M, O’Dwyer M. Current and emerging immunotherapeutic approaches to the treatment of multiple myeloma. Ther Adv Hematol 2019; 10:2040620719854171. [PMID: 31244984 PMCID: PMC6582283 DOI: 10.1177/2040620719854171] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 05/09/2019] [Indexed: 11/17/2022] Open
Abstract
Multiple myeloma (MM) has a worldwide incidence of 1-5/100,000/year. Outcomes have improved significantly in recent years following incorporation of immunomodulatory drugs and proteasome inhibitors into standard-of-care regimes. MM is profoundly immunosuppressive, enabling immune evasion, proliferation and disease progression. The role of the immune system in MM is becoming increasingly characterized and understood, and numerous therapies are under development or in routine clinical use targeting these elements of MM pathogenesis. In this review we discuss the immunosuppressive effects of MM, then the therapies targeting these defects. Specifically, we review the monoclonal and bispecific antibodies, alongside adoptive cellular therapies currently under investigation.
Collapse
Affiliation(s)
- Dawn Swan
- Clinical Research Facility, University Hospital Galway, Newcastle Road, Galway, H91 YR71, Ireland
| | - Kevin Lynch
- National University of Ireland, Galway, Ireland
| | - Mark Gurney
- University Hospital Galway, Ireland
- National University of Ireland, Galway, Ireland
| | - Michael O’Dwyer
- University Hospital Galway, Ireland
- National University of Ireland, Galway, Ireland
| |
Collapse
|
37
|
Serrano-Del Valle A, Anel A, Naval J, Marzo I. Immunogenic Cell Death and Immunotherapy of Multiple Myeloma. Front Cell Dev Biol 2019; 7:50. [PMID: 31041312 PMCID: PMC6476910 DOI: 10.3389/fcell.2019.00050] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 03/19/2019] [Indexed: 12/24/2022] Open
Abstract
Over the past decades, immunotherapy has demonstrated a prominent clinical efficacy in a wide variety of human tumors. For many years, apoptosis has been considered a non-immunogenic or tolerogenic process whereas necrosis or necroptosis has long been acknowledged to play a key role in inflammation and immune-related processes. However, the new concept of “immunogenic cell death” (ICD) has challenged this traditional view and has granted apoptosis with immunogenic abilities. This paradigm shift offers clear implications in designing novel anti-cancer therapeutic approaches. To date, several screening studies have been carried out to discover bona fide ICD inducers and reveal the inherent capacity of a wide variety of drugs to induce cell death-associated exposure of danger signals and to bring about in vivo anti-cancer immune responses. Recent shreds of evidence place ER stress at the core of all the scenarios where ICD occur. Furthermore, ER stress and the unfolded protein response (UPR) have emerged as important targets in different human cancers. Notably, in multiple myeloma (MM), a lethal plasma cell disorder, the elevated production of immunoglobulins leaves these cells heavily reliant on the survival arm of the UPR. For that reason, drugs that disrupt ER homeostasis and engage ER stress-associated cell death, such as proteasome inhibitors, which are currently used for the treatment of MM, as well as novel ER stressors are intended to be promising therapeutic agents in MM. This not only holds true for their capacity to induce cell death, but also to their potential ability to activate the immunogenic arm of the ER stress response, with the ensuing exposure of danger signals. We provide here an overview of the up-to-date knowledge regarding the cell death mechanisms involved in situations of ER stress with a special focus on the connections with the drug-induced ER stress pathways that evoke ICD. We will also discuss how this could assist in optimizing and developing better immunotherapeutic approaches, especially in MM treatment.
Collapse
Affiliation(s)
| | - Alberto Anel
- Department of Biochemistry and Molecular and Cell Biology, University of Zaragoza, Zaragoza, Spain
| | - Javier Naval
- Department of Biochemistry and Molecular and Cell Biology, University of Zaragoza, Zaragoza, Spain
| | - Isabel Marzo
- Department of Biochemistry and Molecular and Cell Biology, University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
38
|
Bastea LI, Liou GY, Pandey V, Fleming AK, von Roemeling CA, Doeppler H, Li Z, Qiu Y, Edenfield B, Copland JA, Tun HW, Storz P. Pomalidomide Alters Pancreatic Macrophage Populations to Generate an Immune-Responsive Environment at Precancerous and Cancerous Lesions. Cancer Res 2019; 79:1535-1548. [PMID: 30696657 DOI: 10.1158/0008-5472.can-18-1153] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 12/13/2018] [Accepted: 01/23/2019] [Indexed: 01/17/2023]
Abstract
During development of pancreatic cancer, alternatively activated macrophages contribute to fibrogenesis, pancreatic intraepithelial neoplasia (PanIN) lesion growth, and generation of an immunosuppressive environment. Here, we show that the immunomodulatory agent pomalidomide depletes pancreatic lesion areas of alternatively activated macrophage populations. Pomalidomide treatment resulted in downregulation of interferon regulatory factor 4, a transcription factor for M2 macrophage polarization. Pomalidomide-induced absence of alternatively activated macrophages led to a decrease in fibrosis at PanIN lesions and in syngeneic tumors; this was due to generation of an inflammatory, immune-responsive environment with increased expression of IL1α and presence of activated (IFNγ-positive) CD4+ and CD8+ T-cell populations. Our results indicate that pomalidomide could be used to decrease fibrogenesis in pancreatic cancer and may be ideal as a combination treatment with chemotherapeutic drugs or other immunotherapies. SIGNIFICANCE: These findings reveal new insights into how macrophage populations within the pancreatic cancer microenvironment can be modulated, providing the means to turn the microenvironment from immunosuppressive to immune-responsive.
Collapse
Affiliation(s)
- Ligia I Bastea
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Jacksonville, Florida
| | - Geou-Yarh Liou
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Jacksonville, Florida.,Department of Biological Sciences, Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, Georgia
| | - Veethika Pandey
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Jacksonville, Florida
| | - Alicia K Fleming
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Jacksonville, Florida.,The Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, Minnesota
| | - Christina A von Roemeling
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Jacksonville, Florida.,The Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, Minnesota
| | - Heike Doeppler
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Jacksonville, Florida
| | - Zhimin Li
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Jacksonville, Florida.,Department of Hematology/Oncology, Mayo Clinic, Jacksonville, Florida
| | - Yushi Qiu
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Jacksonville, Florida.,Department of Hematology/Oncology, Mayo Clinic, Jacksonville, Florida
| | - Brandy Edenfield
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Jacksonville, Florida
| | - John A Copland
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Jacksonville, Florida
| | - Han W Tun
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Jacksonville, Florida.,Department of Hematology/Oncology, Mayo Clinic, Jacksonville, Florida
| | - Peter Storz
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Jacksonville, Florida.
| |
Collapse
|
39
|
Fuchs O. Treatment of Lymphoid and Myeloid Malignancies by Immunomodulatory Drugs. Cardiovasc Hematol Disord Drug Targets 2019; 19:51-78. [PMID: 29788898 DOI: 10.2174/1871529x18666180522073855] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 05/05/2018] [Accepted: 05/14/2018] [Indexed: 06/08/2023]
Abstract
Thalidomide and its derivatives (lenalidomide, pomalidomide, avadomide, iberdomide hydrochoride, CC-885 and CC-90009) form the family of immunomodulatory drugs (IMiDs). Lenalidomide (CC5013, Revlimid®) was approved by the US FDA and the EMA for the treatment of multiple myeloma (MM) patients, low or intermediate-1 risk transfusion-dependent myelodysplastic syndrome (MDS) with chromosome 5q deletion [del(5q)] and relapsed and/or refractory mantle cell lymphoma following bortezomib. Lenalidomide has also been studied in clinical trials and has shown promising activity in chronic lymphocytic leukemia (CLL) and non-Hodgkin lymphoma (NHL). Lenalidomide has anti-inflammatory effects and inhibits angiogenesis. Pomalidomide (CC4047, Imnovid® [EU], Pomalyst® [USA]) was approved for advanced MM insensitive to bortezomib and lenalidomide. Other IMiDs are in phases 1 and 2 of clinical trials. Cereblon (CRBN) seems to have an important role in IMiDs action in both lymphoid and myeloid hematological malignancies. Cereblon acts as the substrate receptor of a cullin-4 really interesting new gene (RING) E3 ubiquitin ligase CRL4CRBN. This E3 ubiquitin ligase in the absence of lenalidomide ubiquitinates CRBN itself and the other components of CRL4CRBN complex. Presence of lenalidomide changes specificity of CRL4CRBN which ubiquitinates two transcription factors, IKZF1 (Ikaros) and IKZF3 (Aiolos), and casein kinase 1α (CK1α) and marks them for degradation in proteasomes. Both these transcription factors (IKZF1 and IKZF3) stimulate proliferation of MM cells and inhibit T cells. Low CRBN level was connected with insensitivity of MM cells to lenalidomide. Lenalidomide decreases expression of protein argonaute-2, which binds to cereblon. Argonaute-2 seems to be an important drug target against IMiDs resistance in MM cells. Lenalidomide decreases also basigin and monocarboxylate transporter 1 in MM cells. MM cells with low expression of Ikaros, Aiolos and basigin are more sensitive to lenalidomide treatment. The CK1α gene (CSNK1A1) is located on 5q32 in commonly deleted region (CDR) in del(5q) MDS. Inhibition of CK1α sensitizes del(5q) MDS cells to lenalidomide. CK1α mediates also survival of malignant plasma cells in MM. Though, inhibition of CK1α is a potential novel therapy not only in del(5q) MDS but also in MM. High level of full length CRBN mRNA in mononuclear cells of bone marrow and of peripheral blood seems to be necessary for successful therapy of del(5q) MDS with lenalidomide. While transfusion independence (TI) after lenalidomide treatment is more than 60% in MDS patients with del(5q), only 25% TI and substantially shorter duration of response with occurrence of neutropenia and thrombocytopenia were achieved in lower risk MDS patients with normal karyotype treated with lenalidomide. Shortage of the biomarkers for lenalidomide response in these MDS patients is the main problem up to now.
Collapse
Affiliation(s)
- Ota Fuchs
- Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20 Prague 2, Czech Republic
| |
Collapse
|
40
|
Bezu L, Kepp O, Cerrato G, Pol J, Fucikova J, Spisek R, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: Peptide-based vaccines in anticancer therapy. Oncoimmunology 2018; 7:e1511506. [PMID: 30524907 PMCID: PMC6279318 DOI: 10.1080/2162402x.2018.1511506] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Indexed: 12/15/2022] Open
Abstract
Peptide-based anticancer vaccination aims at stimulating an immune response against one or multiple tumor-associated antigens (TAAs) following immunization with purified, recombinant or synthetically engineered epitopes. Despite high expectations, the peptide-based vaccines that have been explored in the clinic so far had limited therapeutic activity, largely due to cancer cell-intrinsic alterations that minimize antigenicity and/or changes in the tumor microenvironment that foster immunosuppression. Several strategies have been developed to overcome such limitations, including the use of immunostimulatory adjuvants, the co-treatment with cytotoxic anticancer therapies that enable the coordinated release of damage-associated molecular patterns, and the concomitant blockade of immune checkpoints. Personalized peptide-based vaccines are also being explored for therapeutic activity in the clinic. Here, we review recent preclinical and clinical progress in the use of peptide-based vaccines as anticancer therapeutics.Abbreviations: CMP: carbohydrate-mimetic peptide; CMV: cytomegalovirus; DC: dendritic cell; FDA: Food and Drug Administration; HPV: human papillomavirus; MDS: myelodysplastic syndrome; MHP: melanoma helper vaccine; NSCLC: non-small cell lung carcinoma; ODD: orphan drug designation; PPV: personalized peptide vaccination; SLP: synthetic long peptide; TAA: tumor-associated antigen; TNA: tumor neoantigen
Collapse
Affiliation(s)
- Lucillia Bezu
- Faculty of Medicine, University of Paris Sud/Paris XI, Le Kremlin-Bicêtre, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers,Paris, France.,U1138, INSERM, Paris, France.,Université Paris Descartes/Paris V, Paris, France.,Université Pierre et Marie Curie/Paris VI, Paris, France
| | - Oliver Kepp
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers,Paris, France.,U1138, INSERM, Paris, France.,Université Paris Descartes/Paris V, Paris, France.,Université Pierre et Marie Curie/Paris VI, Paris, France
| | - Giulia Cerrato
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers,Paris, France.,U1138, INSERM, Paris, France.,Université Paris Descartes/Paris V, Paris, France.,Université Pierre et Marie Curie/Paris VI, Paris, France
| | - Jonathan Pol
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers,Paris, France.,U1138, INSERM, Paris, France.,Université Paris Descartes/Paris V, Paris, France.,Université Pierre et Marie Curie/Paris VI, Paris, France
| | - Jitka Fucikova
- Sotio, Prague, Czech Republic.,Dept. of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Radek Spisek
- Sotio, Prague, Czech Republic.,Dept. of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Laurence Zitvogel
- Faculty of Medicine, University of Paris Sud/Paris XI, Le Kremlin-Bicêtre, France.,Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France.,INSERM, U1015, Gustave Roussy Cancer Campus, Villejuif, France
| | - Guido Kroemer
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers,Paris, France.,U1138, INSERM, Paris, France.,Université Paris Descartes/Paris V, Paris, France.,Université Pierre et Marie Curie/Paris VI, Paris, France.,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.,Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Lorenzo Galluzzi
- Université Paris Descartes/Paris V, Paris, France.,Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.,Sandra and Edward Meyer Cancer Center, New York, NY, USA
| |
Collapse
|
41
|
Holstein SA, Suman VJ, McCarthy PL. Update on the role of lenalidomide in patients with multiple myeloma. Ther Adv Hematol 2018; 9:175-190. [PMID: 30013765 DOI: 10.1177/2040620718775629] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 04/06/2018] [Indexed: 11/15/2022] Open
Abstract
Lenalidomide is a derivative of thalidomide and belongs to the class of drugs known as the immunomodulatory drugs (IMiDs). The IMiDs have played a large role in improving the survival outcomes of patients with multiple myeloma. In particular, lenalidomide is currently standard of care in the newly diagnosed setting, in the maintenance setting post-autologous stem cell transplant, as well as in the relapsed/refractory setting. While the combination of lenalidomide and various proteasome inhibitors has proven particularly effective, there are emerging data demonstrating the effectiveness of lenalidomide in combination with other important classes of drugs including the monoclonal antibodies. Recent studies have provided insight into the molecular target of lenalidomide and the other IMiDs, although there is still much to be learned regarding the mechanisms by which lenalidomide affects the myeloma cell and the immune system. Here we review the molecular mechanisms of action, side effects, and the results of the clinical trials which have led to the widespread incorporation of lenalidomide into the myeloma therapeutic armamentarium.
Collapse
Affiliation(s)
- Sarah A Holstein
- Division of Oncology and Hematology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Vera J Suman
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Philip L McCarthy
- Department of Medicine, Blood and Marrow Transplant Center, Roswell Park Comprehensive Cancer Center, Buffalo, Elm and Carlton Streets, CSC 815, NY 14263, USA
| |
Collapse
|
42
|
Holstein SA, Hillengass J, McCarthy PL. Next-Generation Drugs Targeting the Cereblon Ubiquitin Ligase. J Clin Oncol 2018; 36:2101-2104. [PMID: 29715055 DOI: 10.1200/jco.2018.77.9637] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Sarah A Holstein
- Sarah A. Holstein, University of Nebraska Medical Center, Omaha, NE; and Jens Hillengass and Philip L. McCarthy, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Jens Hillengass
- Sarah A. Holstein, University of Nebraska Medical Center, Omaha, NE; and Jens Hillengass and Philip L. McCarthy, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Philip L McCarthy
- Sarah A. Holstein, University of Nebraska Medical Center, Omaha, NE; and Jens Hillengass and Philip L. McCarthy, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| |
Collapse
|
43
|
Ji Z, Su J, Wu D, Peng H, Zhao W, Nlong Zhao B, Zhou X. Predicting the impact of combined therapies on myeloma cell growth using a hybrid multi-scale agent-based model. Oncotarget 2018; 8:7647-7665. [PMID: 28032590 PMCID: PMC5352350 DOI: 10.18632/oncotarget.13831] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 11/30/2016] [Indexed: 11/25/2022] Open
Abstract
Multiple myeloma is a malignant still incurable plasma cell disorder. This is due to refractory disease relapse, immune impairment, and development of multi-drug resistance. The growth of malignant plasma cells is dependent on the bone marrow (BM) microenvironment and evasion of the host's anti-tumor immune response. Hence, we hypothesized that targeting tumor-stromal cell interaction and endogenous immune system in BM will potentially improve the response of multiple myeloma (MM). Therefore, we proposed a computational simulation of the myeloma development in the complicated microenvironment which includes immune cell components and bone marrow stromal cells and predicted the effects of combined treatment with multi-drugs on myeloma cell growth. We constructed a hybrid multi-scale agent-based model (HABM) that combines an ODE system and Agent-based model (ABM). The ODEs was used for modeling the dynamic changes of intracellular signal transductions and ABM for modeling the cell-cell interactions between stromal cells, tumor, and immune components in the BM. This model simulated myeloma growth in the bone marrow microenvironment and revealed the important role of immune system in this process. The predicted outcomes were consistent with the experimental observations from previous studies. Moreover, we applied this model to predict the treatment effects of three key therapeutic drugs used for MM, and found that the combination of these three drugs potentially suppress the growth of myeloma cells and reactivate the immune response. In summary, the proposed model may serve as a novel computational platform for simulating the formation of MM and evaluating the treatment response of MM to multiple drugs.
Collapse
Affiliation(s)
- Zhiwei Ji
- Division of Radiologic Sciences and Center for Bioinformatics and Systems Biology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, USA 27157
| | - Jing Su
- Division of Radiologic Sciences and Center for Bioinformatics and Systems Biology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, USA 27157
| | - Dan Wu
- Division of Radiologic Sciences and Center for Bioinformatics and Systems Biology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, USA 27157
| | - Huiming Peng
- Division of Radiologic Sciences and Center for Bioinformatics and Systems Biology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, USA 27157
| | - Weiling Zhao
- Division of Radiologic Sciences and Center for Bioinformatics and Systems Biology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, USA 27157
| | - Brian Nlong Zhao
- Division of Radiologic Sciences and Center for Bioinformatics and Systems Biology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, USA 27157
| | - Xiaobo Zhou
- Division of Radiologic Sciences and Center for Bioinformatics and Systems Biology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, USA 27157
| |
Collapse
|
44
|
Menssen HD, Harnack U, Erben U, Neri D, Hirsch B, Dürkop H. Antibody-based delivery of tumor necrosis factor (L19-TNFα) and interleukin-2 (L19-IL2) to tumor-associated blood vessels has potent immunological and anticancer activity in the syngeneic J558L BALB/c myeloma model. J Cancer Res Clin Oncol 2018; 144:499-507. [PMID: 29327244 DOI: 10.1007/s00432-017-2564-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 12/18/2017] [Indexed: 12/13/2022]
Abstract
PURPOSE To analyze the impact of TNFα or IL2 on human lymphocytes in vitro and the anti-tumor and immune-modifying effects of L19-IL2 and L19-TNFα on subcutaneously growing J558L myeloma in immunocompetent mice. METHODS PBMCs from three healthy volunteers were incubated with IL2, TNFα, or with IL2 plus addition of TNFα (final 20 h). BALB/c J558L mice with subcutaneous tumors were treated with intravenous L19-TNFα plus L19-IL2, or controls. Tumor growth and intra- and peri-tumoral tissues were analyzed for micro-vessel density, necrosis, immune cell composition, and PD1 or PD-L1 expressing cells. RESULTS Exposure of PBMC in vitro to IL2, TNFα, or to IL2 over 3 and 5 days plus TNFα for the final 20 h resulted in an approximately 50 and 75% reduction of the CD25low effector cell/CD25high Treg cell ratio, respectively, compared to medium control. IL2 or TNFα increased the proportion of CD4- CD25low effector lymphocytes while reducing the proportion of CD4+ CD25low Teff cells. In the J558L myeloma model, tumor eradication was observed in 58, 42, 25, and 0% of mice treated with L19-TNFα plus L19-IL2, L19-TNFα, L19-IL2, and PBS, respectively. L19-TNFα/L19-IL2 combination caused tumor necrosis, capillary density doubling, peri-tumoral T cell and PD1+ T cell reduction (- 50%), and an increase in PD-L1+ myeloma cells. CONCLUSION IL2, TNFα, or IL2 plus TNFα (final 20 h) increased the proportion of CD4- CD25low effector lymphocytes possibly indicating immune activation. L19-TNFα/L19-IL2 combination therapy eradicated tumors in J558L myeloma BALB/c mice likely via TNFα-induced tumor necrosis and L19-TNFα/L19-IL2-mediated local cellular immune reactions.
Collapse
Affiliation(s)
- Hans D Menssen
- Division of Hematology and Oncology, Campus Benjamin Franklin, Department of Medicine, Charité-Universitätsmedizin Berlin, Hindenburgdamm 30, 12203, Berlin, Germany.
| | - Ulf Harnack
- Division of Oncology and Hematology, Campus Mitte, Department of Medicine, Charité-Universitätsmedizin Berlin, Charité-Platz 1, 10117, Berlin, Germany
| | - Ulrike Erben
- Division of Gastroenterology, Infectious Diseases and Rheumatology, Medical Department, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Dario Neri
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Wolfgang-Pauli-Str. 10, 8093, Zurich, Switzerland
| | - Burkhard Hirsch
- Department of Pathology at Campus Benjamin Franklin, Campus Mitte, Institute of Pathology, Charité-Universitätsmedizin Berlin, Virchowweg 15, 10117, Berlin, Germany
- Department of Medicine, Campus Mitte, Institute of Pathology, Charité-Universitätsmedizin Berlin, Virchowweg 15, 10117, Berlin, Germany
| | - Horst Dürkop
- Pathodiagnostik Berlin, Komturstrasse 58-62, 12099, Berlin, Germany
| |
Collapse
|
45
|
Nahas MR, Rosenblatt J, Lazarus HM, Avigan D. Anti-cancer vaccine therapy for hematologic malignancies: An evolving era. Blood Rev 2018; 32:312-325. [PMID: 29475779 DOI: 10.1016/j.blre.2018.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 02/08/2018] [Accepted: 02/13/2018] [Indexed: 12/19/2022]
Abstract
The potential promise of therapeutic vaccination as effective therapy for hematologic malignancies is supported by the observation that allogeneic hematopoietic cell transplantation is curative for a subset of patients due to the graft-versus-tumor effect mediated by alloreactive lymphocytes. Tumor vaccines are being explored as a therapeutic strategy to re-educate host immunity to recognize and target malignant cells through the activation and expansion of effector cell populations. Via several mechanisms, tumor cells induce T cell dysfunction and senescence, amplifying and maintaining tumor cell immunosuppressive effects, resulting in failure of clinical trials of tumor vaccines and adoptive T cell therapies. The fundamental premise of successful vaccine design involves the introduction of tumor-associated antigens in the context of effective antigen presentation so that tolerance can be reversed and a productive response can be generated. With the increasing understanding of the role of both the tumor and tumor microenvironment in fostering immune tolerance, vaccine therapy is being explored in the context of immunomodulatory therapies. The most effective strategy may be to use combination therapies such as anti-cancer vaccines with checkpoint blockade to target critical aspects of this environment in an effort to prevent the re-establishment of tumor tolerance while limiting toxicity associated with autoimmunity.
Collapse
Affiliation(s)
- Myrna R Nahas
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA.
| | - Jacalyn Rosenblatt
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Hillard M Lazarus
- Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - David Avigan
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| |
Collapse
|
46
|
Nelde A, Kowalewski DJ, Backert L, Schuster H, Werner JO, Klein R, Kohlbacher O, Kanz L, Salih HR, Rammensee HG, Stevanović S, Walz JS. HLA ligandome analysis of primary chronic lymphocytic leukemia (CLL) cells under lenalidomide treatment confirms the suitability of lenalidomide for combination with T-cell-based immunotherapy. Oncoimmunology 2018; 7:e1316438. [PMID: 29632711 DOI: 10.1080/2162402x.2017.1316438] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/14/2017] [Accepted: 03/31/2017] [Indexed: 02/06/2023] Open
Abstract
Recent studies suggest that CLL is an immunogenic disease, which might be effectively targeted by antigen-specific T-cell-based immunotherapy. However, CLL is associated with a profound immune defect, which might represent a critical limitation for mounting clinically effective antitumor immune responses. As several studies have demonstrated that lenalidomide can reinforce effector T-cell responses in CLL, the combination of T-cell-based immunotherapy with the immunomodulatory drug lenalidomide represents a promising approach to overcome the immunosuppressive state in CLL. Antigen-specific immunotherapy also requires the robust presentation of tumor-associated HLA-presented antigens on target cells. We thus performed a longitudinal study of the effect of lenalidomide on the HLA ligandome of primary CLL cells in vitro. We showed that lenalidomide exposure does not affect absolute HLA class I and II surface expression levels on primary CLL cells. Importantly, semi-quantitative mass spectrometric analyses of the HLA peptidome of three CLL patient samples found only minor qualitative and quantitative effects of lenalidomide on HLA class I- and II-restricted peptide presentation. Furthermore, we confirmed stable presentation of previously described CLL-associated antigens under lenalidomide treatment. Strikingly, among the few HLA ligands showing significant modulation under lenalidomide treatment, we identified upregulated IKZF-derived peptides, which may represent a direct reflection of the cereblon-mediated effect of lenalidomide on CLL cells. Since we could not observe any relevant influence of lenalidomide on the established CLL-associated antigen targets of anticancer T-cell responses, this study validates the suitability of lenalidomide for the combination with antigen-specific T-cell-based immunotherapies.
Collapse
Affiliation(s)
- Annika Nelde
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany.,Department of Hematology and Oncology, University of Tübingen, Tübingen, Germany
| | - Daniel J Kowalewski
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany.,Immatics Biotechnologies GmbH, Tübingen, Germany
| | - Linus Backert
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany.,Applied Bioinformatics, Center for Bioinformatics and Department of Computer Science, University of Tübingen, Tübingen, Germany
| | - Heiko Schuster
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany.,Immatics Biotechnologies GmbH, Tübingen, Germany
| | - Jan-Ole Werner
- Department of Hematology and Oncology, University of Tübingen, Tübingen, Germany
| | - Reinhild Klein
- Department of Hematology and Oncology, University of Tübingen, Tübingen, Germany
| | - Oliver Kohlbacher
- Applied Bioinformatics, Center for Bioinformatics and Department of Computer Science, University of Tübingen, Tübingen, Germany.,Quantitative Biology Center, University of Tübingen, Tübingen, Germany.,Biomolecular Interactions, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Lothar Kanz
- Department of Hematology and Oncology, University of Tübingen, Tübingen, Germany
| | - Helmut R Salih
- Department of Hematology and Oncology, University of Tübingen, Tübingen, Germany.,Clinical Cooperation Unit Translational Immunology, German Cancer Consortium (DKTK), DKFZ partner site Tübingen, Tübingen, Germany
| | - Hans-Georg Rammensee
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany.,German Cancer Consortium (DKTK), DKFZ partner site Tübingen, Tübingen, Germany
| | - Stefan Stevanović
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany.,German Cancer Consortium (DKTK), DKFZ partner site Tübingen, Tübingen, Germany
| | - Juliane S Walz
- Department of Hematology and Oncology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
47
|
Cheah CY, Fowler NH. Novel agents for relapsed and refractory follicular lymphoma. Best Pract Res Clin Haematol 2017; 31:41-48. [PMID: 29452665 DOI: 10.1016/j.beha.2017.11.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 11/10/2017] [Indexed: 12/13/2022]
Abstract
Follicular lymphoma is one of the most common non-Hodgkin's lymphomas. Although current frontline regimens are associated with high response rates, most patients still relapse. When progression is discovered, re-establishing the diagnosis and ruling out transformation in paramount. The outcomes following relapse have been improving due to the activity and increasing availability of novel agents with various mechanisms of action. Despite these advances, single agent activity is limited and the disease remains incurable in the majority of cases. Examples of drug classes with promising activity in relapsed disease include anti-CD20 monoclonal antibodies, immunomodulatory drugs (IMiDs), small molecule tyrosine kinase inhibitors, bcl2 inhibitors, epigenetic modifiers, conjugated antibodies, and checkpoint inhibitors. Many drugs in each class are associated with unique, variable and often surprising toxicity profiles. Combination studies are currently underway with novel-novel combinations and with traditional chemotherapy regimens. This overview will discuss the results of several recent studies exploring activity of novel drugs in relapsed follicular lymphoma.
Collapse
Affiliation(s)
- Chan Yoon Cheah
- Department of Haematology, Sir Charles Gairdner Hospital and Pathwest Laboratory Medicine WA, Nedlands, WA, Australia; Medical School, University of Western Australia, Crawley, WA, Australia
| | - Nathan H Fowler
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
48
|
Neuber B, Dai J, Waraich WA, Awwad MHS, Engelhardt M, Schmitt M, Medenhoff S, Witzens-Harig M, Ho AD, Goldschmidt H, Hundemer M. Lenalidomide overcomes the immunosuppression of regulatory CD8 +CD28 - T-cells. Oncotarget 2017; 8:98200-98214. [PMID: 29228683 PMCID: PMC5716723 DOI: 10.18632/oncotarget.21516] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 09/21/2017] [Indexed: 11/29/2022] Open
Abstract
Although lenalidomide and pomalidomide are well-established treatment options in patients with multiple myeloma, their immune-modulating effects are not fully understood. While CD8+CD28− regulatory T-cells in patients with hematologic disorders display a known immune-escape mechanism, we show that lenalidomide can overcome the immunosuppressive impact of CD8+CD28− T-cells. We analyzed in vitro the antigen-specific T-cell responses of healthy donors and patients with multiple myeloma with or without the addition of autologous CD8+CD28− T-cells in the absence and presence of lenalidomide. We found that lenalidomide enhances the antigen-specific secretion of IFN-γ and Granzyme B despite the addition of CD8+CD28− T-cells. Furthermore, we showed that lenalidomide inhibits the IL-6 secretion of mononuclear cells, triggered by CD8+CD28− T-cells. The addition of IL-6 counteracts the action of lenalidomide based stimulation of IFN-γ secretion and induction of T-cell maturation but not the secretion of Granzyme B. Surprisingly, pomalidomide failed to induce IL-6 suppression and displayed immunostimulating effects only after a prolonged incubation time. Analysis of the IL-6 modulating cereblon-binding protein KPNA2 showed the similar degradation capacity of lenalidomide and pomalidomide without explaining the divergent effects. In conclusion, we showed that IL-6 and lenalidomide, but not pomalidomide, are opponents in a myeloma-antigen specific T-cell model.
Collapse
Affiliation(s)
- Brigitte Neuber
- Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Jingying Dai
- Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Wjahat A Waraich
- Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Mohamed H S Awwad
- Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Melanie Engelhardt
- Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Michael Schmitt
- Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Sergej Medenhoff
- Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | | | - Anthony D Ho
- Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Hartmut Goldschmidt
- Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany.,National Center for Tumor Diseases, University of Heidelberg, Heidelberg, Germany
| | - Michael Hundemer
- Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
49
|
Stern PL. Is immunity in cancer the key to improving clinical outcome?: Report on the International Symposium on Immunotherapy, The Royal Society, London, UK, 12-13 May 2017. THERAPEUTIC ADVANCES IN VACCINES 2017; 5:55-68. [PMID: 28794878 DOI: 10.1177/2051013617720659] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 06/19/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Peter L Stern
- Division of Molecular & Clinical Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Paterson Building, Wilmslow Road, Manchester M20 4BX, UK
| |
Collapse
|
50
|
Fowler NH, Cheah CY, Gascoyne RD, Gribben J, Neelapu SS, Ghia P, Bollard C, Ansell S, Curran M, Wilson WH, O'Brien S, Grant C, Little R, Zenz T, Nastoupil LJ, Dunleavy K. Role of the tumor microenvironment in mature B-cell lymphoid malignancies. Haematologica 2017; 101:531-40. [PMID: 27132279 DOI: 10.3324/haematol.2015.139493] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 01/28/2016] [Indexed: 12/19/2022] Open
Abstract
The tumor microenvironment is the cellular and molecular environment in which the tumor exists and with which it continuously interacts. In B-cell lymphomas, this microenvironment is intriguing in that it plays critical roles in the regulation of tumor cell survival and proliferation, fostering immune escape as well as the development of treatment resistance. The purpose of this review is to summarize the proceedings of the Second Annual Summit on the Immune Microenvironment in Hematologic Malignancies that took place on September 11-12, 2014 in Dublin, Ireland. We provide a timely overview of the composition and biological relevance of the cellular and molecular microenvironment interface and discuss the role of interactions between the microenvironment and neoplastic cells in a variety of B-cell lymphomas. In addition, we focus on various novel therapeutic strategies that target the tumor microenvironment, including agents that modulate B-cell receptor pathways and immune-checkpoints, chimeric antigen receptor T cells and immunomodulatory agents.
Collapse
Affiliation(s)
- Nathan H Fowler
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chan Yoon Cheah
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA Department of Haematology, Pathwest Laboratory Medicine WA and Sir Charles Gairdner Hospital, Perth, Western Australia University of Western Australia, Perth, Canada
| | - Randy D Gascoyne
- British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - John Gribben
- Department of Haemato-Oncology, Barts Cancer Institute, London, UK
| | - Sattva S Neelapu
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Paolo Ghia
- Università Vita-Salute San Raffaele, Division of Experimental Oncology, IRCCS Istituto Scientifico San Raffaele, Milan, Italy Department of Onco-Hematology, Ospedale San Raffaele, Milan, Italy
| | | | | | - Michael Curran
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wyndham H Wilson
- Lymphoid Malignancies Branch, National Cancer Institute, Bethesda, MD, USA
| | | | | | - Richard Little
- Cancer Therapeutic Evaluation Program, National Cancer Institute, Bethesda, MD, USA
| | | | - Loretta J Nastoupil
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kieron Dunleavy
- Lymphoid Malignancies Branch, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|