1
|
Zhu H, Xu J, Wang W, Zhang B, Liu J, Liang C, Hua J, Meng Q, Yu X, Shi S. Intratumoral CD38 +CD19 +B cells associate with poor clinical outcomes and immunosuppression in patients with pancreatic ductal adenocarcinoma. EBioMedicine 2024; 103:105098. [PMID: 38608514 PMCID: PMC11017281 DOI: 10.1016/j.ebiom.2024.105098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 03/13/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND The widespread involvement of tumor-infiltrating B cells highlights their potential role in tumor behavior. However, B cell heterogeneity in PDAC remains unexplored. Studying TIL-Bs in PDAC aims to identify new treatment strategies. METHODS We performed single-cell RNA sequencing to study the heterogeneity of B cells in PDAC. The prognostic and immunologic value of the identified CD38+ B cells was explored in FUSCC (n = 147) and TCGA (n = 176) cohorts. Flow cytometry was conducted to characterize the relationship between CD38+ B cells and other immune cells, as well as their phenotypic features. In vitro and in vivo experiments were performed to assess the putative effect of CD38+ B cells on antitumor immunity. FINDINGS The presence of CD38+ B cells in PDAC was associated with unfavorable clinicopathological features and poorer overall survival (p < 0.001). Increased infiltration of CD38+ B cells was accompanied by reduced natural killer (NK) cells (p = 0.021) and increased regulatory T cells (p = 0.016). Molecular profiling revealed high expression of IL-10, IL-35, TGF-β, GZMB, TIM-1, CD5 and CD21, confirming their putative regulatory B cell-like features. Co-culture experiments demonstrated suppression of NK cell cytotoxicity by CD38+ B cell-derived IL-10 (p < 0.001). Finally, in vivo experiments suggested adoptive transfer of CD38+ B cells reduced antitumor immunity and administration of a CD38 inhibitor hampered tumor growth (p < 0.001). INTERPRETATION We discovered regulatory B cell-like CD38+ B cell infiltration as an independent prognostic factor in PDAC. The use of CD38 inhibitor may provide new possibilities for PDAC immunotherapy. FUNDING This study was supported by the National Natural Science Foundation of China (U21A20374), Shanghai Municipal Science and Technology Major Project (21JC1401500), Scientific Innovation Project of Shanghai Education Committee (2019-01-07-00-07-E00057), Special Project for Clinical Research in the Health Industry of the Shanghai Health Commission (No. 20204Y0265) and Natural Science Foundation of Shanghai (23ZR1479300).
Collapse
MESH Headings
- Humans
- ADP-ribosyl Cyclase 1/metabolism
- Carcinoma, Pancreatic Ductal/immunology
- Carcinoma, Pancreatic Ductal/pathology
- Carcinoma, Pancreatic Ductal/mortality
- Carcinoma, Pancreatic Ductal/metabolism
- Carcinoma, Pancreatic Ductal/therapy
- Animals
- Mice
- Prognosis
- Antigens, CD19/metabolism
- Antigens, CD19/immunology
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Pancreatic Neoplasms/immunology
- Pancreatic Neoplasms/pathology
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/mortality
- Female
- Male
- Membrane Glycoproteins/metabolism
- Membrane Glycoproteins/genetics
- Cell Line, Tumor
- Tumor Microenvironment/immunology
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- Middle Aged
- B-Lymphocyte Subsets/immunology
- B-Lymphocyte Subsets/metabolism
- Immunosuppression Therapy
Collapse
Affiliation(s)
- Heng Zhu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
| | - Wei Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
| | - Bo Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
| | - Jiang Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
| | - Chen Liang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
| | - Jie Hua
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
| | - Qingcai Meng
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
| | - Si Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
| |
Collapse
|
2
|
Xu Z, He L, Wu Y, Yang L, Li C, Wu H. PTEN regulates hematopoietic lineage plasticity via PU.1-dependent chromatin accessibility. Cell Rep 2023; 42:112967. [PMID: 37561626 DOI: 10.1016/j.celrep.2023.112967] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/20/2023] [Accepted: 07/26/2023] [Indexed: 08/12/2023] Open
Abstract
PTEN loss in fetal liver hematopoietic stem cells (HSCs) leads to alterations in myeloid, T-, and B-lineage potentials and T-lineage acute lymphoblastic leukemia (T-ALL) development. To explore the mechanism underlying PTEN-regulated hematopoietic lineage choices, we carry out integrated assay for transposase-accessible chromatin using sequencing (ATAC-seq), single-cell RNA-seq, and in vitro culture analyses using in vivo-isolated mouse pre-leukemic HSCs and progenitors. We find that PTEN loss alters chromatin accessibility of key lineage transcription factor (TF) binding sites at the prepro-B stage, corresponding to increased myeloid and T-lineage potentials and reduced B-lineage potential. Importantly, we find that PU.1 is an essential TF downstream of PTEN and that altering PU.1 levels can reprogram the chromatin accessibility landscape and myeloid, T-, and B-lineage potentials in Ptennull prepro-B cells. Our study discovers prepro-B as the key developmental stage underlying PTEN-regulated hematopoietic lineage choices and suggests a critical role of PU.1 in modulating the epigenetic state and lineage plasticity of prepro-B progenitors.
Collapse
Affiliation(s)
- Zihan Xu
- The MOE Key Laboratory of Cell Proliferation and Differentiation, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, China; Center for Statistical Science, Peking University, Beijing, China
| | - Libing He
- The MOE Key Laboratory of Cell Proliferation and Differentiation, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yilin Wu
- The MOE Key Laboratory of Cell Proliferation and Differentiation, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Lu Yang
- The MOE Key Laboratory of Cell Proliferation and Differentiation, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Cheng Li
- The MOE Key Laboratory of Cell Proliferation and Differentiation, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, China; Center for Statistical Science, Peking University, Beijing, China.
| | - Hong Wu
- The MOE Key Laboratory of Cell Proliferation and Differentiation, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
| |
Collapse
|
3
|
Zhang N, Shen Y, Zhu W, Li C, Liu S, Li H, Wang Y, Wang J, Zhang Q, Sun J, Xie L, Yu S, Wu Q. Spatial transcriptomics shows moxibustion promotes hippocampus astrocyte and neuron interaction. Life Sci 2022; 310:121052. [DOI: 10.1016/j.lfs.2022.121052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 10/04/2022] [Accepted: 10/04/2022] [Indexed: 11/07/2022]
|
4
|
Zeng F, Zhang J, Jin X, Liao Q, Chen Z, Luo G, Zhou Y. Effect of CD38 on B-cell function and its role in the diagnosis and treatment of B-cell-related diseases. J Cell Physiol 2022; 237:2796-2807. [PMID: 35486480 DOI: 10.1002/jcp.30760] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/28/2022] [Accepted: 04/20/2022] [Indexed: 11/09/2022]
Abstract
CD38 is a multifunctional receptor and enzyme present on the surface of B lymphocytes, which can induce B lymphocytes proliferation and apoptosis by crosslinking related cytokines to affect the function of B cells, thus affecting immune regulation in humans and promoting tumorigenesis. The level of CD38 expression in B cells has become an important factor in the clinical diagnosis, treatment, and prognosis of malignant tumors and other related diseases. Therefore, studying the relationship between CD38 expression on the surface of B cells and the occurrence of the disease is of great significance for elucidating its association with disease pathogenesis and the clinical targeted therapy. In this paper, we review the effects of CD38 on B-cell activation, proliferation, and differentiation, and elaborate the functional role and mechanism of CD38 expression on B cells. We also summarize the relationship between the level of CD38 expression on the surface of B cells and the diagnosis, treatment, and prognosis of various diseases, as well as the potential use of targeted CD38 treatment for related diseases. This will provide an important theoretical basis for the scientific research and clinical diagnosis and treatment of B-cell-related diseases.
Collapse
Affiliation(s)
- Feng Zeng
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Jiani Zhang
- Senile Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xi Jin
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Qianjin Liao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Zhifang Chen
- Department of Gynecology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Gengqiu Luo
- Department of Pathology, Xiangya Hospital, Basic School of Medicine, Central South University, Changsha, Hunan, China
| | - Yanhong Zhou
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| |
Collapse
|
5
|
Wada F, Shimomura Y, Yabushita T, Yamashita D, Ohno A, Imoto H, Maruoka H, Hara S, Ishikawa T. CD38 expression is an important prognostic marker in diffuse large B-cell lymphoma. Hematol Oncol 2021; 39:483-489. [PMID: 34327725 DOI: 10.1002/hon.2904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/28/2021] [Accepted: 07/13/2021] [Indexed: 01/08/2023]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a heterogeneous group of diseases with variable outcomes. Although several prognostic markers have been developed, specific biomarkers for stratifying treatment strategies have not been fully investigated. This study aimed to analyze the clinical impact of the expression of cluster of differentiation (CD) 38, which is associated with cellular proliferation and disease progression, in patients with de-novo DLBCL. Using flow cytometry analysis, 137 cases with DLBCL were investigated for surface expression of CD38. Based on the cut-off value by the survival classification and regression tree analysis, the patients were categorized into a CD38HIGH group (n = 37) and CD38LOW group (n = 100). The 4-years progression-free survival (PFS) was 31.6% in the CD38HIGH group and 60.7% in the CD38LOW group (p < 0.001). Multivariate analysis showed the CD38HIGH group to be associated with significantly worse PFS (adjusted hazard ratio [aHR], 2.15, 95% CI: 1.26-3.68, p = 0.005) and poor overall survival (OS) (aHR, 2.54, 95% CI: 1.25-5.19, p = 0.010) than the CD38LOW group. In conclusion, we demonstrated that high CD38 expression is an independent adverse prognostic factor associated with poor clinical outcomes compared to low CD38 expression. CD38 expression in DLBCL cells might be useful for predicting outcomes and designing risk-adapted therapies for patients with de-novo DLBCL.
Collapse
Affiliation(s)
- Fumiya Wada
- Department of Hematology, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Yoshimitsu Shimomura
- Department of Hematology, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Tomohiro Yabushita
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Daisuke Yamashita
- Department of Pathology, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Aya Ohno
- Department of Clinical Laboratory, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Hiroharu Imoto
- Department of Hematology, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Hayato Maruoka
- Department of Clinical Laboratory, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Shigeo Hara
- Department of Pathology, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Takayuki Ishikawa
- Department of Hematology, Kobe City Medical Center General Hospital, Kobe, Japan
| |
Collapse
|
6
|
Abstract
CD38 is a transmembrane glycoprotein that is widely expressed in a variety of human tissues and cells, especially those in the immune system. CD38 protein was previously considered as a cell activation marker, and today monoclonal antibodies targeting CD38 have witnessed great achievements in multiple myeloma and promoted researchers to conduct research on other tumors. In this review, we provide a wide-ranging review of the biology and function of the human molecule outside the field of myeloma. We focus mainly on current research findings to summarize and update the findings gathered from diverse areas of study. Based on these findings, we attempt to extend the role of CD38 in the context of therapy of solid tumors and expand the role of the molecule from a simple marker to an immunomodulator.
Collapse
Affiliation(s)
- Yanli Li
- Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, PR China
| | - Rui Yang
- Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, PR China
| | - Limo Chen
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009 USA
| | - Sufang Wu
- Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, PR China
| |
Collapse
|
7
|
Khan S, Liu Y, Ernst LM, Leung LYT, Budylowski P, Dong S, Campisi P, Propst EJ, Wolter NE, Grunebaum E, Ostrowski M, Ehrhardt GRA. Detection of Human CD38 Using Variable Lymphocyte Receptor (VLR) Tetramers. Cells 2020; 9:E950. [PMID: 32290546 PMCID: PMC7226959 DOI: 10.3390/cells9040950] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/03/2020] [Accepted: 04/10/2020] [Indexed: 12/20/2022] Open
Abstract
CD38 is a multifunctional cell surface receptor expressed on multiple cell lineages of hematopoietic origin with high levels of expression on human plasma cells. Previously, we isolated the monoclonal variable lymphocyte receptor B (VLRB) MM3 antibody from the evolutionarily distant sea lamprey, which recognized the CD38 ectoenzyme exclusively on human plasma cells in a manner that correlated with CD38 enzymatic activity. The plasma cell-specific binding of VLRB MM3 contrasts with the broad pattern of expression of CD38-determined conventional antibodies specific for this antigen. In an effort to facilitate the application of this unique reagent in combination with conventional antibody panels, we explored a strategy to generate VLRB MM3 tetramers. The resulting reagent maintained the threshold-based recognition of CD38. Increased sensitivity achieved with VLRB MM3 tetramers also showed preferential recognition of germinal center centroblasts over centrocytes. VLRB MM3 tetramers thus provided a unique and versatile single-step staining reagent for the detection of human CD38 that is readily incorporated into multi-color flow cytometry panels.
Collapse
Affiliation(s)
- Srijit Khan
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A1, Canada; (S.K.); (Y.L.); (L.M.E.); (L.Y.T.L.); (S.D.); (M.O.)
| | - Yanling Liu
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A1, Canada; (S.K.); (Y.L.); (L.M.E.); (L.Y.T.L.); (S.D.); (M.O.)
| | - Laura M. Ernst
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A1, Canada; (S.K.); (Y.L.); (L.M.E.); (L.Y.T.L.); (S.D.); (M.O.)
| | - Leslie Y. T. Leung
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A1, Canada; (S.K.); (Y.L.); (L.M.E.); (L.Y.T.L.); (S.D.); (M.O.)
| | - Patrick Budylowski
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A1, Canada; (S.K.); (Y.L.); (L.M.E.); (L.Y.T.L.); (S.D.); (M.O.)
| | - Shilan Dong
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A1, Canada; (S.K.); (Y.L.); (L.M.E.); (L.Y.T.L.); (S.D.); (M.O.)
| | - Paolo Campisi
- Department of Otolaryngology—Head and Neck Surgery, Hospital for Sick Children and University of Toronto, Toronto, ON M5G 1X8, Canada; (P.C.); (E.J.P.); (N.E.W.)
| | - Evan J. Propst
- Department of Otolaryngology—Head and Neck Surgery, Hospital for Sick Children and University of Toronto, Toronto, ON M5G 1X8, Canada; (P.C.); (E.J.P.); (N.E.W.)
| | - Nikolaus E. Wolter
- Department of Otolaryngology—Head and Neck Surgery, Hospital for Sick Children and University of Toronto, Toronto, ON M5G 1X8, Canada; (P.C.); (E.J.P.); (N.E.W.)
| | - Eyal Grunebaum
- Division of Immunology and Allergy, Hospital for Sick Children and University of Toronto, Toronto, ON M5G 1X8, Canada;
| | - Mario Ostrowski
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A1, Canada; (S.K.); (Y.L.); (L.M.E.); (L.Y.T.L.); (S.D.); (M.O.)
| | - Götz R. A. Ehrhardt
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A1, Canada; (S.K.); (Y.L.); (L.M.E.); (L.Y.T.L.); (S.D.); (M.O.)
| |
Collapse
|
8
|
Li Y, Li B, Zhou E, Fu S, Wang Y, Wu L, Lei Y, Guo Z, Ye J. CD38 play roles in T cell-dependent response and B cell differentiation in nile tilapia (Oreochromis niloticus). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 103:103515. [PMID: 31605715 DOI: 10.1016/j.dci.2019.103515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/20/2019] [Accepted: 10/03/2019] [Indexed: 06/10/2023]
Abstract
CD38 is a multifunctional cell surface molecule that plays a crucial role in B cell activation, differentiation, and maturation in mammals with an increased expression in B cell maturation. In this study, a CD38-like molecule (OnCD38) was cloned and identified from Nile tilapia (Oreochromis niloticus), and its functional characterization was investigated. The open reading frame of OnCD38 is 828 bp of the nucleotide sequence, encoding a polypeptide of 275 amino acids. The deduced amino acid sequence of OnCD38 is highly homologous to other teleost fish and similar to mammals, containing extracellular, intracellular and transmembrane regions. Subcellular localization studies revealed that OnCD38 molecules were presented on the surface of B cells. Three healthy tilapia were used in each experimental group and control group. Following keyhole limpet hemocyanin (KLH) challenge in vivo, the mRNA expression of OnCD38 was significantly up-regulated in peripheral blood, spleen, and head kidney, with an earlier up-regulation in the second challenge than the first one. The up-regulation of OnCD38 expression was also detected in head kidney leukocytes after stimulation with LPS, recombinant HomoIL-10 ((r)HomoIL-10), (r)OnIL-10, and LPS plus (r)OnIL-10 in vitro. Furthermore, the OnCD38 expression increased with the differentiation of B cells, reaching a high level (10.1 fold higher than resting mature B cells) at the plasma-like B cells. Taken together, in this study, these results indicate that the OnCD38 is likely involved in the T cell-dependent response and plays roles in B cell differentiation in Nile tilapia.
Collapse
Affiliation(s)
- Yuan Li
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong, 510631, PR China
| | - Bingxi Li
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong, 510631, PR China
| | - Enxu Zhou
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong, 510631, PR China
| | - Shengli Fu
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong, 510631, PR China
| | - Yuhong Wang
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong, 510631, PR China
| | - Liting Wu
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong, 510631, PR China
| | - Yang Lei
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong, 510631, PR China
| | - Zheng Guo
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong, 510631, PR China
| | - Jianmin Ye
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong, 510631, PR China.
| |
Collapse
|
9
|
Vaisitti T, Arruga F, Guerra G, Deaglio S. Ectonucleotidases in Blood Malignancies: A Tale of Surface Markers and Therapeutic Targets. Front Immunol 2019; 10:2301. [PMID: 31636635 PMCID: PMC6788384 DOI: 10.3389/fimmu.2019.02301] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 09/11/2019] [Indexed: 12/11/2022] Open
Abstract
Leukemia develops as the result of intrinsic features of the transformed cell, such as gene mutations and derived oncogenic signaling, and extrinsic factors, such as a tumor-friendly, immunosuppressed microenvironment, predominantly in the lymph nodes and the bone marrow. There, high extracellular levels of nucleotides, mainly NAD+ and ATP, are catabolized by different ectonucleotidases, which can be divided in two families according to substrate specificity: on one side those that metabolize NAD+, including CD38, CD157, and CD203a; on the other, those that convert ATP, namely CD39 (and other ENTPDases) and CD73. They generate products that modulate intracellular calcium levels and that activate purinergic receptors. They can also converge on adenosine generation with profound effects, both on leukemic cells, enhancing chemoresistance and homing, and on non-malignant immune cells, polarizing them toward tolerance. This review will first provide an overview of ectonucleotidases expression within the immune system, in physiological and pathological conditions. We will then focus on different hematological malignancies, discussing their role as disease markers and possibly pathogenic agents. Lastly, we will describe current efforts aimed at therapeutic targeting of this family of enzymes.
Collapse
Affiliation(s)
- Tiziana Vaisitti
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Francesca Arruga
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Giulia Guerra
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Silvia Deaglio
- Department of Medical Sciences, University of Turin, Turin, Italy
| |
Collapse
|
10
|
Boroda AV, Kipryushina YO, Odintsova NA. Chemical modulation of apoptosis in molluscan cell cultures. Cell Stress Chaperones 2019; 24:905-916. [PMID: 31230213 PMCID: PMC6717236 DOI: 10.1007/s12192-019-01014-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/28/2019] [Accepted: 05/31/2019] [Indexed: 12/11/2022] Open
Abstract
This study focused on the alterations that occur in larval molluscan cells after administration of apoptotic inducers and inhibitors used in mammalian cells in response to cold stress. This is the first report on apoptosis modulation in molluscan cells assessed by flow cytometry. Mitochondrial activity, general caspase activation, and membrane integrity of control molluscan cells were compared to those processes in frozen-thawed molluscan cells, primary mouse embryonic fibroblasts, and human colon tumor cells prior to treatment and after incubation with apoptotic inducers or inhibitors. We tested three apoptotic inducers (staurosporine, camptothecin, and mitomycin C, routinely used for the chemical induction of apoptosis in different mammalian cells) and found that only staurosporine resulted in an evident apoptotic increase in molluscan cell cultures: 9.06% early apoptotic cells in comparison with 5.63% in control frozen-thawed cells and 20.6% late apoptotic cells in comparison with 10.68% in controls. Camptothecin did not significantly induce molluscan cell apoptosis but did cause a slight increase in the number of active cells after thawing. Mitomycin C produced similar results, but its effect was less pronounced. In addition, we hypothesize that the use of the apoptotic inhibitors could reduce apoptosis, which is significant after cryopreservation in molluscan cells; however, our attempts failed. Development in this direction is important for understanding the mechanisms of marine organisms' cold susceptibility.
Collapse
Affiliation(s)
- Andrey Victorovich Boroda
- National Scientific Center of Marine Biology of the Far Eastern Branch of the Russian Academy of Sciences, 17 Palchevsky St, Vladivostok, Primorsky krai, 690041, Russia.
| | - Yulia Olegovna Kipryushina
- National Scientific Center of Marine Biology of the Far Eastern Branch of the Russian Academy of Sciences, 17 Palchevsky St, Vladivostok, Primorsky krai, 690041, Russia
- Far Eastern Federal University, Vladivostok, Russia
| | - Nelly Adolphovna Odintsova
- National Scientific Center of Marine Biology of the Far Eastern Branch of the Russian Academy of Sciences, 17 Palchevsky St, Vladivostok, Primorsky krai, 690041, Russia
- Far Eastern Federal University, Vladivostok, Russia
| |
Collapse
|
11
|
Nelissen TP, Bamford RA, Tochitani S, Akkus K, Kudzinskas A, Yokoi K, Okamoto H, Yamamoto Y, Burbach JPH, Matsuzaki H, Oguro-Ando A. CD38 is Required for Dendritic Organization in Visual Cortex and Hippocampus. Neuroscience 2018; 372:114-125. [PMID: 29306053 DOI: 10.1016/j.neuroscience.2017.12.050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 12/15/2017] [Accepted: 12/26/2017] [Indexed: 12/26/2022]
Abstract
Morphological screening of mouse brains with known behavioral deficits can give great insight into the relationship between brain regions and their behavior. Oxytocin- and CD38-deficient mice have previously been shown to have behavioral phenotypes, such as restrictions in social memory, social interactions, and maternal behavior. CD38 is reported as an autism spectrum disorder (ASD) candidate gene and its behavioral phenotypes may be linked to ASD. To address whether these behavioral phenotypes relate to brain pathology and neuronal morphology, here we investigate the morphological changes in the CD38-deficient mice brains, with focus on the pathology and neuronal morphology of the cortex and hippocampus, using Nissl staining, immunohistochemistry, and Golgi staining. No difference was found in terms of cortical layer thickness. However, we found abnormalities in the number of neurons and neuronal morphology in the visual cortex and dentate gyrus (DG). In particular, there were arborisation differences between CD38-/- and CD38+/+ mice in the apical dendrites of the visual cortex and hippocampal CA1 pyramidal neurons. The data suggest that CD38 is implicated in appropriate development of brain regions important for social behavior.
Collapse
Affiliation(s)
- Thom P Nelissen
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht and Utrecht University, Stratenum 4.205, P.O. Box 85060, 3508 AB Utrecht, The Netherlands
| | - Rosemary A Bamford
- University of Exeter Medical School, University of Exeter, Exeter EX2 5DW, United Kingdom
| | - Shiro Tochitani
- Research Center for Child Mental Development, University of Fukui, Fukui 910-1193, Japan; Department of Radiological Technology, Faculty of Health Science, Suzaka University of Medical Science, Suzaka, Mie, Japan
| | - Kamuran Akkus
- University of Exeter Medical School, University of Exeter, Exeter EX2 5DW, United Kingdom
| | - Aurimas Kudzinskas
- University of Exeter Medical School, University of Exeter, Exeter EX2 5DW, United Kingdom
| | - Kenichiro Yokoi
- Research Center for Child Mental Development, University of Fukui, Fukui 910-1193, Japan
| | - Hiroshi Okamoto
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendei 980-8575, Japan; Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8640, Japan
| | - Yasuhiko Yamamoto
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8640, Japan
| | - J Peter H Burbach
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht and Utrecht University, Stratenum 4.205, P.O. Box 85060, 3508 AB Utrecht, The Netherlands
| | - Hideo Matsuzaki
- Research Center for Child Mental Development, University of Fukui, Fukui 910-1193, Japan; Department of Development of Functional Brain Activities, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Fukui 910-1193, Japan.
| | - Asami Oguro-Ando
- University of Exeter Medical School, University of Exeter, Exeter EX2 5DW, United Kingdom.
| |
Collapse
|
12
|
Yamamoto K, Shichiri H, Uda A, Yamashita K, Nishioka T, Kume M, Makimoto H, Nakagawa T, Hirano T, Hirai M. Apoptotic Effects of the Extracts of Cordyceps militaris
via Erk Phosphorylation in a Renal Cell Carcinoma Cell Line. Phytother Res 2015; 29:707-13. [DOI: 10.1002/ptr.5305] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 12/17/2014] [Accepted: 01/07/2015] [Indexed: 12/21/2022]
Affiliation(s)
- Kazuhiro Yamamoto
- Department of Pharmacy; Kobe University Hospital; 7-5-2 Kusunoki-cho Chuo-ku Kobe 650-0017 Japan
| | - Hiroaki Shichiri
- Division of Pharmacokinetics, Department of Internal Related; Kobe University Graduate School of Medicine; 7-5-2 Kusunoki-cho Chuo-ku Kobe 650-0017 Japan
| | - Atsushi Uda
- Department of Pharmacy; Kobe University Hospital; 7-5-2 Kusunoki-cho Chuo-ku Kobe 650-0017 Japan
| | - Kazuhiko Yamashita
- Department of Pharmacy; Kobe University Hospital; 7-5-2 Kusunoki-cho Chuo-ku Kobe 650-0017 Japan
| | - Tatsuya Nishioka
- Department of Pharmacy; Kobe University Hospital; 7-5-2 Kusunoki-cho Chuo-ku Kobe 650-0017 Japan
| | - Manabu Kume
- Department of Pharmacy; Kobe University Hospital; 7-5-2 Kusunoki-cho Chuo-ku Kobe 650-0017 Japan
| | - Hiroo Makimoto
- Department of Pharmacy; Kobe University Hospital; 7-5-2 Kusunoki-cho Chuo-ku Kobe 650-0017 Japan
| | - Tsutomu Nakagawa
- Department of Pharmacy; Kobe University Hospital; 7-5-2 Kusunoki-cho Chuo-ku Kobe 650-0017 Japan
- Division of Pharmacokinetics, Department of Internal Related; Kobe University Graduate School of Medicine; 7-5-2 Kusunoki-cho Chuo-ku Kobe 650-0017 Japan
| | - Takeshi Hirano
- Department of Pharmacy; Kobe University Hospital; 7-5-2 Kusunoki-cho Chuo-ku Kobe 650-0017 Japan
- Division of Pharmacokinetics, Department of Internal Related; Kobe University Graduate School of Medicine; 7-5-2 Kusunoki-cho Chuo-ku Kobe 650-0017 Japan
| | - Midori Hirai
- Department of Pharmacy; Kobe University Hospital; 7-5-2 Kusunoki-cho Chuo-ku Kobe 650-0017 Japan
- Division of Pharmacokinetics, Department of Internal Related; Kobe University Graduate School of Medicine; 7-5-2 Kusunoki-cho Chuo-ku Kobe 650-0017 Japan
| |
Collapse
|