1
|
Yin H, Shi A, Wu J. Platelet-Activating Factor Promotes the Development of Non-Alcoholic Fatty Liver Disease. Diabetes Metab Syndr Obes 2022; 15:2003-2030. [PMID: 35837578 PMCID: PMC9275506 DOI: 10.2147/dmso.s367483] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/28/2022] [Indexed: 11/23/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a multifaceted clinicopathological syndrome characterised by excessive hepatic lipid accumulation that causes steatosis, excluding alcoholic factors. Platelet-activating factor (PAF), a biologically active lipid transmitter, induces platelet activation upon binding to the PAF receptor. Recent studies have found that PAF is associated with gamma-glutamyl transferase, which is an indicator of liver disease. Moreover, PAF can stimulate hepatic lipid synthesis and cause hypertriglyceridaemia. Furthermore, the knockdown of the PAF receptor gene in the animal models of NAFLD helped reduce the inflammatory response, improve glucose homeostasis and delay the development of NAFLD. These findings suggest that PAF is associated with NAFLD development. According to reports, patients with NAFLD or animal models have marked platelet activation abnormalities, mainly manifested as enhanced platelet adhesion and aggregation and altered blood rheology. Pharmacological interventions were accompanied by remission of abnormal platelet activation and significant improvement in liver function and lipids in the animal model of NAFLD. These confirm that platelet activation may accompany a critical importance in NAFLD development and progression. However, how PAFs are involved in the NAFLD signalling pathway needs further investigation. In this paper, we review the relevant literature in recent years and discuss the role played by PAF in NAFLD development. It is important to elucidate the pathogenesis of NAFLD and to find effective interventions for treatment.
Collapse
Affiliation(s)
- Hang Yin
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, People’s Republic of China
| | - Anhua Shi
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, People’s Republic of China
| | - Junzi Wu
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, People’s Republic of China
- Correspondence: Junzi Wu; Anhua Shi, Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, People’s Republic of China, Tel/Fax +86 187 8855 7524; +86 138 8885 0813, Email ;
| |
Collapse
|
2
|
Li Y, Yan H, Guo J, Han Y, Zhang C, Liu X, Du J, Tian XL. Down-regulated RGS5 by genetic variants impairs endothelial cell function and contributes to coronary artery disease. Cardiovasc Res 2021; 117:240-255. [PMID: 31605122 DOI: 10.1093/cvr/cvz268] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 08/22/2019] [Accepted: 10/04/2019] [Indexed: 12/20/2022] Open
Abstract
AIMS Genetic contribution to coronary artery disease (CAD) remains largely unillustrated. Although transcriptomic profiles have identified dozens of genes that are differentially expressed in normal and atherosclerotic vessels, whether those genes are genetically associated with CAD remains to be determined. Here, we combined genetic association studies, transcriptome profiles and in vitro and in vivo functional experiments to identify novel susceptibility genes for CAD. METHODS AND RESULTS Through an integrative analysis of transcriptome profiles with genome-wide association studies for CAD, we obtained 18 candidate genes and selected one representative single nucleotide polymorphism (SNP) for each gene for multi-centred validations. We identified an intragenic SNP, rs1056515 in RGS5 gene (odds ratio = 1.17, 95% confidence interval =1.10-1.24, P = 3.72 × 10-8) associated with CAD at genome-wide significance. Rare genetic variants in linkage disequilibrium with rs1056515 were identified in CAD patients leading to a decreased expression of RGS5. The decreased expression was also observed in atherosclerotic vessels and endothelial cells treated by various cardiovascular risk factors. Through siRNA knockdown and adenoviral overexpression, we further showed that RGS5 regulated endothelial inflammation, vascular remodelling, as well as canonical NF-κB signalling activation. Moreover, CXCL12, a specific downstream target of the non-canonical NF-κB pathway, was strongly affected by RGS5. However, the p100 processing, a well-documented marker for non-canonical NF-κB pathway activation, was not altered, suggesting an existence of a novel mechanism by which RGS5 regulates CXCL12. CONCLUSIONS We identified RGS5 as a novel susceptibility gene for CAD and showed that the decreased expression of RGS5 impaired endothelial cell function and functionally contributed to atherosclerosis through a variety of molecular mechanisms. How RGS5 regulates the expression of CXCL12 needs further studies.
Collapse
Affiliation(s)
- Yang Li
- Vascular Biology Laboratory, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung & Blood Vessel Disease, Beijing, China
| | - Han Yan
- Department of Human Population Genetics, Institute of Molecular Medicine, Peking University, No. 5 Yiheyuan Road, Beijing, China
| | - Jian Guo
- Department of Human Population Genetics, Institute of Molecular Medicine, Peking University, No. 5 Yiheyuan Road, Beijing, China
| | - Yingchun Han
- Vascular Biology Laboratory, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung & Blood Vessel Disease, Beijing, China
| | - Cuifang Zhang
- Department of Human Population Genetics, Institute of Molecular Medicine, Peking University, No. 5 Yiheyuan Road, Beijing, China
| | - Xiuying Liu
- Center for Molecular Systems Biology, Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jie Du
- Vascular Biology Laboratory, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung & Blood Vessel Disease, Beijing, China
| | - Xiao-Li Tian
- Department of Human Population Genetics, Institute of Molecular Medicine, Peking University, No. 5 Yiheyuan Road, Beijing, China
- Department of Human Population Genetics, A217 Life Science Building, Human Aging Research Institute and School of Life Science, Jiangxi Key Laboratory of Human Aging, Nanchang University, 999 Xuefu Road, Honggutan New District, Nanchang City, Jiangxi Province 330031, China
| |
Collapse
|
3
|
Sudhakaran M, Parra MR, Stoub H, Gallo KA, Doseff AI. Apigenin by targeting hnRNPA2 sensitizes triple-negative breast cancer spheroids to doxorubicin-induced apoptosis and regulates expression of ABCC4 and ABCG2 drug efflux transporters. Biochem Pharmacol 2020; 182:114259. [PMID: 33011162 DOI: 10.1016/j.bcp.2020.114259] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/25/2020] [Accepted: 09/29/2020] [Indexed: 01/14/2023]
Abstract
Acquired resistance to doxorubicin is a major hurdle in triple-negative breast cancer (TNBC) therapy, emphasizing the need to identify improved strategies. Apigenin and other structurally related dietary flavones are emerging as potential chemo-sensitizers, but their effect on three-dimensional TNBC spheroid models has not been investigated. We previously showed that apigenin associates with heterogeneous ribonuclear protein A2/B1 (hnRNPA2), an RNA-binding protein involved in mRNA and co-transcriptional regulation. However, the role of hnRNPA2 in apigenin chemo-sensitizing activity has not been investigated. Here, we show that apigenin induced apoptosis in TNBC spheroids more effectively than apigenin-glycoside, owing to higher cellular uptake. Moreover, apigenin inhibited the growth of TNBC patient-derived organoids at an in vivo achievable concentration. Apigenin sensitized spheroids to doxorubicin-induced DNA damage, triggering caspase-9-mediated intrinsic apoptotic pathway and caspase-3 activity. Silencing of hnRNPA2 decreased apigenin-induced sensitization to doxorubicin in spheroids by diminishing apoptosis and partly abrogated apigenin-mediated reduction of ABCC4 and ABCG2 efflux transporters. Together these findings provide novel insights into the critical role of hnRNPA2 in mediating apigenin-induced sensitization of TNBC spheroids to doxorubicin by increasing the expression of efflux transporters and apoptosis, underscoring the relevance of using dietary compounds as a chemotherapeutic adjuvant.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily G, Member 2/biosynthesis
- ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics
- Animals
- Antibiotics, Antineoplastic/administration & dosage
- Antibiotics, Antineoplastic/metabolism
- Apigenin/administration & dosage
- Apigenin/metabolism
- Apoptosis/drug effects
- Apoptosis/physiology
- Cell Survival/drug effects
- Cell Survival/physiology
- Dose-Response Relationship, Drug
- Doxorubicin/administration & dosage
- Doxorubicin/metabolism
- Drug Delivery Systems/methods
- Female
- Gene Expression Regulation, Neoplastic
- Heterogeneous-Nuclear Ribonucleoprotein Group A-B/deficiency
- Heterogeneous-Nuclear Ribonucleoprotein Group A-B/genetics
- Humans
- Mice
- Multidrug Resistance-Associated Proteins/biosynthesis
- Multidrug Resistance-Associated Proteins/genetics
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Spheroids, Cellular/drug effects
- Spheroids, Cellular/metabolism
- Triple Negative Breast Neoplasms/drug therapy
- Triple Negative Breast Neoplasms/genetics
- Triple Negative Breast Neoplasms/metabolism
- Xenograft Model Antitumor Assays/methods
Collapse
Affiliation(s)
- Meenakshi Sudhakaran
- Physiology Graduate Program, Michigan State University, East Lansing, MI 48824, United States
| | - Michael Ramirez Parra
- Department of Physiology, Michigan State University, East Lansing, MI 48824, United States
| | - Hayden Stoub
- Physiology Graduate Program, Michigan State University, East Lansing, MI 48824, United States
| | - Kathleen A Gallo
- Department of Physiology, Michigan State University, East Lansing, MI 48824, United States.
| | - Andrea I Doseff
- Department of Physiology, Michigan State University, East Lansing, MI 48824, United States; Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, United States.
| |
Collapse
|
4
|
Leonhardt J, Große S, Marx C, Siwczak F, Stengel S, Bruns T, Bauer R, Kiehntopf M, Williams DL, Wang ZQ, Mosig AS, Weis S, Bauer M, Heller R. Candida albicans β-Glucan Differentiates Human Monocytes Into a Specific Subset of Macrophages. Front Immunol 2018; 9:2818. [PMID: 30555483 PMCID: PMC6284042 DOI: 10.3389/fimmu.2018.02818] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 11/14/2018] [Indexed: 12/12/2022] Open
Abstract
β-Glucan derived from cell walls of Candida albicans is a potent immune modulator. It has been shown to induce trained immunity in monocytes via epigenetic and metabolic reprogramming and to protect from lethal sepsis if applied prior to infection. Since β-glucan-trained monocytes have not been classified within the system of mononuclear phagocytes we analyzed these cells metabolically, phenotypically and functionally with a focus on monocyte-to-macrophage differentiation and compared them with naïve monocytes and other types of monocyte-derived cells such as classically (M1) or alternatively (M2) activated macrophages and monocyte-derived dendritic cells (moDCs). We show that β-glucan inhibits spontaneous apoptosis of monocytes independent from autocrine or paracrine M-CSF release and stimulates monocyte differentiation into macrophages. β-Glucan-differentiated macrophages exhibit increased cell size and granularity and enhanced metabolic activity when compared to naïve monocytes. Although β-glucan-primed cells expressed markers of alternative activation and secreted higher levels of IL-10 after lipopolysaccharide (LPS), their capability to release pro-inflammatory cytokines and to kill bacteria was unaffected. Our data demonstrate that β-glucan priming induces a population of immune competent long-lived monocyte-derived macrophages that may be involved in immunoregulatory processes.
Collapse
Affiliation(s)
- Julia Leonhardt
- Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany.,Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany
| | - Silke Große
- Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany.,Institute of Molecular Cell Biology, Center for Molecular Biomedicine, Jena University Hospital, Jena, Germany
| | - Christian Marx
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
| | - Fatina Siwczak
- Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany.,Institute of Biochemistry II, Jena University Hospital, Jena, Germany
| | - Sven Stengel
- Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany.,Department of Internal Medicine IV, Jena University Hospital, Jena, Germany
| | - Tony Bruns
- Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany.,Department of Internal Medicine IV, Jena University Hospital, Jena, Germany
| | - Reinhard Bauer
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine, Jena University Hospital, Jena, Germany
| | - Michael Kiehntopf
- Institute of Clinical Chemistry and Laboratory Diagnostics Jena University Hospital, Jena, Germany
| | - David L Williams
- Department of Surgery and Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Zhao-Qi Wang
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
| | - Alexander S Mosig
- Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany.,Institute of Biochemistry II, Jena University Hospital, Jena, Germany
| | - Sebastian Weis
- Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany.,Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany.,Center for Infectious Diseases and Infection Control, Jena University Hospital, Jena, Germany
| | - Michael Bauer
- Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany.,Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany
| | - Regine Heller
- Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany.,Institute of Molecular Cell Biology, Center for Molecular Biomedicine, Jena University Hospital, Jena, Germany
| |
Collapse
|
5
|
Tenconi PE, Giusto NM, Salvador GA, Mateos MV. Phospholipase D1 modulates protein kinase C-epsilon in retinal pigment epithelium cells during inflammatory response. Int J Biochem Cell Biol 2016; 81:67-75. [DOI: 10.1016/j.biocel.2016.10.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 10/11/2016] [Accepted: 10/19/2016] [Indexed: 12/13/2022]
|
6
|
Li S, Gao X, Wu X, Wu Z, Cheng L, Zhu L, Shen D, Tong X. Parthenolide inhibits LPS-induced inflammatory cytokines through the toll-like receptor 4 signal pathway in THP-1 cells. Acta Biochim Biophys Sin (Shanghai) 2015; 47:368-375. [PMID: 25841439 DOI: 10.1093/abbs/gmv019] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 01/20/2015] [Indexed: 02/07/2023] Open
Abstract
Parthenolide (PTL) shows potent anti-inflammatory and anti-cancer activities. In the present study, the molecular mechanisms of PTL's activities were explored in lipopolysaccharide (LPS)-induced human leukemia monocytic THP-1 cells and human primary monocytes. The 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium salt (MTS) assay was used to analyze the effect of PTL on THP-1 cell viability. Enzyme-linked immunosorbent assay was used to determine the effect of PTL on LPS-induced inflammatory cytokine secretion. Flow cytometry and quantitative real-time polymerase chain reaction were used to assess the effect of PTL on LPS-induced toll-like receptor 4 (TLR4) expression. Phosphorylation levels of signaling molecules were determined by western blot analysis. Results showed that PTL <12.5 μM did not significantly affect THP-1 cells viability. LPS treatment led to a marked up-regulation of interleukin (IL)-6, IL-1β, IL-8, IL-12p40, tumor necrosis factor-α, IL-18, and NO in THP-1 cells. However, PTL inhibited the expression of these cytokines in a dose-dependent manner, with IC50 values of 1.091-2.620 μM. PTL blocked TLR4 expression with an IC50 value of 1.373 μM as determined by the flow cytometry analysis, and this blocking effect was verified at both protein and mRNA levels. Up-regulation of phosphorylation levels of extracellular signal-regulated kinase 1/2, Jun N-terminal kinase, p38, nuclear factor κB (NF-κB) p65, and IκBα and up-regulation of expressions of other molecules (inducible nitric oxide synthase, TLR4, and TNF receptor-associated factor 6) induced by LPS were abolished by PTL in a dose-dependent manner. The anti-inflammatory mechanisms of PTL operate partly through the TLR4-mediated mitogen-activated protein kinase and NF-κB signaling pathways. Therefore, TLR4 may be a new target for anti-inflammation therapies.
Collapse
Affiliation(s)
- Shuangshuang Li
- Department of Hematology, First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou 310003, China Department of Hematology, Zhejiang Provincial People's Hospital, Hangzhou 310003, China
| | - Xiangli Gao
- Department of Hematology, First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou 310003, China
| | - Xiaoxin Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou 310003, China
| | - Zhigang Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou 310003, China
| | - Linfang Cheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou 310003, China
| | - Lifen Zhu
- Department of Hematology, First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou 310003, China
| | - Dan Shen
- Department of Hematology, First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou 310003, China
| | - Xiangmin Tong
- Department of Hematology, First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou 310003, China Department of Hematology, Zhejiang Provincial People's Hospital, Hangzhou 310003, China
| |
Collapse
|