1
|
Chen C, Liu J, Ma Y, Wang Y, Cai L. MicroRNA-650 promotes melanoma metastasis via targeting inhibitor of growth family member 4. Heliyon 2024; 10:e36199. [PMID: 39253208 PMCID: PMC11382039 DOI: 10.1016/j.heliyon.2024.e36199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/12/2024] [Accepted: 08/12/2024] [Indexed: 09/11/2024] Open
Abstract
Objective This study aimed to evaluate the effects of microRNA-650 (miR-650) on melanoma metastasis and reveal the regulatory relationship between miR-650 and the inhibitor of growth family member 4 (ING4). Methods miR-650 expression was determined in human melanoma WM115 and A-375 cells. WM115 cells were transfected with miR-650 mimic or mimic control. The invasion and migration abilities of transfected WM115 cells were analyzed using Transwell and wound healing assays, respectively. Then, miR-650-overexpression lentivirus vector was constructed and transfected into WM115 cells. After injection into the mice, the number of micro-metastatic foci in the lung tissues was counted. A regulatory relationship between miR-650 and ING4 was identified in WM115 and A-375 cells. Results The miR-650 expression was upregulated in WM115 and A-375 cells. WM115 cells transfected with the miR-650 mimic exhibited higher invasive and migratory abilities than mock cells or cells transfected with negative control (NC). The number of micro-metastatic foci was significantly higher in mice injected with Lenti-miR-650 than that in those injected with mock or NC controls. Transfection with miR-650 mimic observably inhibited the expression of ING4 in WM115 and A-375 cells, whereas transfection with miR-650 inhibitor had the opposite effect. Dual-luciferase reporter gene assay showed that the miR-650 mimic inhibited the luciferase activity of ING4. Conclusion miR-650 promotes melanoma metastasis by downregulating ING4 expression.
Collapse
Affiliation(s)
- Chen Chen
- Department of Dermatology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, China
| | - Jing Liu
- Department of Dermatology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, China
| | - Yanli Ma
- Department of Dermatology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, China
| | - Yu Wang
- Department of Dermatology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, China
| | - Limin Cai
- Department of Dermatology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, China
| |
Collapse
|
2
|
Xagara A, Goulielmaki M, Fortis SP, Kokkalis A, Chantzara E, Christodoulopoulos G, Samaras I, Saloustros E, Tsapakidis K, Papadopoulos V, Pateras IS, Georgoulias V, Baxevanis CN, Kotsakis A. Pre-Existing Immunity Predicts Response to First-Line Immunotherapy in Non-Small Cell Lung Cancer Patients. Cancers (Basel) 2024; 16:2393. [PMID: 39001455 PMCID: PMC11240823 DOI: 10.3390/cancers16132393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
T-cell-mediated anti-tumoral responses may have significant clinical relevance as a biomarker for response to immunotherapy. The value of peripheral blood pre-existing tumor antigen-specific T cells (PreI+) as a predictive immunotherapy biomarker in NSCLC patients was investigated, along with the frequency of various circulating immune cells. Fifty-two treatment-naïve, stage III/IV NSCLC patients, treated with front-line immune checkpoint inhibitors (ICI)-containing regimens were enrolled. PreI was calculated as the percentages of CD3+IFNγ+ cells after in vitro co-cultures of PBMCs with peptides against four different Tumor-Associated Antigens (TAA). Immunophenotyping of peripheral blood immune cells was performed using multicolor flow cytometry. PreI+ T cells were detected in 44% of patients. Median overall survival (OS) was significantly higher in PreI+ patients compared to PreI- patients (not reached vs. 321 days, respectively; p = 0.014). PreI+ patients had significantly higher numbers of possible exhausted CD3+CD8+PD-1+ cells and lower percentages of immunosuppressive Tregs compared to PreI- patients. Additionally, patients with PreI+ and low numbers of peripheral blood M-MDSCs had a significant survival advantage compared to the rest of the patients. Thus, combining pre-existing tumor antigen-specific immunity before initiation of ICI in NSCLC patients with selected immune-suppressive cells could identify patients who have a favorable clinical outcome when treated with ICI-containing regimens.
Collapse
Affiliation(s)
- Anastasia Xagara
- Laboratory of Oncology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece;
| | - Maria Goulielmaki
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 171 Alexandras Ave., 11522 Athens, Greece; (M.G.); (S.P.F.); (C.N.B.)
| | - Sotirios P. Fortis
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 171 Alexandras Ave., 11522 Athens, Greece; (M.G.); (S.P.F.); (C.N.B.)
| | - Alexandros Kokkalis
- Department of Medical Oncology, University General Hospital of Larissa, 41110 Larissa, Greece; (A.K.); (E.C.); (G.C.); (I.S.); (E.S.); (K.T.); (V.P.)
| | - Evangelia Chantzara
- Department of Medical Oncology, University General Hospital of Larissa, 41110 Larissa, Greece; (A.K.); (E.C.); (G.C.); (I.S.); (E.S.); (K.T.); (V.P.)
| | - George Christodoulopoulos
- Department of Medical Oncology, University General Hospital of Larissa, 41110 Larissa, Greece; (A.K.); (E.C.); (G.C.); (I.S.); (E.S.); (K.T.); (V.P.)
| | - Ioannis Samaras
- Department of Medical Oncology, University General Hospital of Larissa, 41110 Larissa, Greece; (A.K.); (E.C.); (G.C.); (I.S.); (E.S.); (K.T.); (V.P.)
| | - Emmanouil Saloustros
- Department of Medical Oncology, University General Hospital of Larissa, 41110 Larissa, Greece; (A.K.); (E.C.); (G.C.); (I.S.); (E.S.); (K.T.); (V.P.)
| | - Konstantinos Tsapakidis
- Department of Medical Oncology, University General Hospital of Larissa, 41110 Larissa, Greece; (A.K.); (E.C.); (G.C.); (I.S.); (E.S.); (K.T.); (V.P.)
| | - Vasileios Papadopoulos
- Department of Medical Oncology, University General Hospital of Larissa, 41110 Larissa, Greece; (A.K.); (E.C.); (G.C.); (I.S.); (E.S.); (K.T.); (V.P.)
| | - Ioannis S. Pateras
- Second Department of Pathology, “Attikon” University Hospital, Medical School, National and Kapodistrian University of Athens, 15772 Athens, Greece;
| | - Vasilis Georgoulias
- First Department of Medical Oncology, Metropolitan General Hospital, 15562 Athens, Greece;
| | - Constantin N. Baxevanis
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 171 Alexandras Ave., 11522 Athens, Greece; (M.G.); (S.P.F.); (C.N.B.)
| | - Athanasios Kotsakis
- Laboratory of Oncology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece;
- Department of Medical Oncology, University General Hospital of Larissa, 41110 Larissa, Greece; (A.K.); (E.C.); (G.C.); (I.S.); (E.S.); (K.T.); (V.P.)
| |
Collapse
|
3
|
Liang H, Jo JH, Zhang Z, MacGibeny MA, Han J, Proctor DM, Taylor ME, Che Y, Juneau P, Apolo AB, McCulloch JA, Davar D, Zarour HM, Dzutsev AK, Brownell I, Trinchieri G, Gulley JL, Kong HH. Predicting cancer immunotherapy response from gut microbiomes using machine learning models. Oncotarget 2022; 13:876-889. [PMID: 35875611 PMCID: PMC9295706 DOI: 10.18632/oncotarget.28252] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 06/20/2022] [Indexed: 01/04/2023] Open
Abstract
Cancer immunotherapy has significantly improved patient survival. Yet, half of patients do not respond to immunotherapy. Gut microbiomes have been linked to clinical responsiveness of melanoma patients on immunotherapies; however, different taxa have been associated with response status with implicated taxa inconsistent between studies. We used a tumor-agnostic approach to find common gut microbiome features of response among immunotherapy patients with different advanced stage cancers. A combined meta-analysis of 16S rRNA gene sequencing data from our mixed tumor cohort and three published immunotherapy gut microbiome datasets from different melanoma patient cohorts found certain gut bacterial taxa correlated with immunotherapy response status regardless of tumor type. Using multivariate selbal analysis, we identified two separate groups of bacterial genera associated with responders versus non-responders. Statistical models of gut microbiome community features showed robust prediction accuracy of immunotherapy response in amplicon sequencing datasets and in cross-sequencing platform validation with shotgun metagenomic datasets. Results suggest baseline gut microbiome features may be predictive of clinical outcomes in oncology patients on immunotherapies, and some of these features may be generalizable across different tumor types, patient cohorts, and sequencing platforms. Findings demonstrate how machine learning models can reveal microbiome-immunotherapy interactions that may ultimately improve cancer patient outcomes.
Collapse
Affiliation(s)
- Hai Liang
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jay-Hyun Jo
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zhiwei Zhang
- Biostatistics Branch, Division of Cancer Treatment and Diagnostics, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Margaret A. MacGibeny
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Medical Education, West Virginia University, Morgantown, WV 26506, USA
| | - Jungmin Han
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Diana M. Proctor
- Translational and Functional Genomics Branch, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Monica E. Taylor
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - You Che
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Paul Juneau
- NIH Library, Division of Library Services, Office of Research Services, NIH, Bethesda, MD 20892, USA
- Zimmerman Associates Inc., Fairfax, VA 22030, USA
| | - Andrea B. Apolo
- Genitourinary Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | - John A. McCulloch
- Genetics and Microbiome Core, Laboratory of Integrative Cancer Immunology, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | - Diwakar Davar
- Department of Medicine and UPMC Hillman Cancer Center University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Hassane M. Zarour
- Department of Medicine and UPMC Hillman Cancer Center University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Amiran K. Dzutsev
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | - Isaac Brownell
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Center for Immuno-Oncology, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | - Giorgio Trinchieri
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | - James L. Gulley
- Center for Immuno-Oncology, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | - Heidi H. Kong
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
4
|
León-Letelier RA, Castro-Medina DI, Badillo-Godinez O, Tepale-Segura A, Huanosta-Murillo E, Aguilar-Flores C, De León-Rodríguez SG, Mantilla A, Fuentes-Pananá EM, López-Macías C, Bonifaz LC. Induction of Progenitor Exhausted Tissue-Resident Memory CD8 + T Cells Upon Salmonella Typhi Porins Adjuvant Immunization Correlates With Melanoma Control and Anti-PD-1 Immunotherapy Cooperation. Front Immunol 2020; 11:583382. [PMID: 33240271 PMCID: PMC7682137 DOI: 10.3389/fimmu.2020.583382] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/14/2020] [Indexed: 01/04/2023] Open
Abstract
Immunotherapy has improved the clinical response in melanoma patients, although a relevant percentage of patients still cannot be salvaged. The search for the immune populations that provide the best tumor control and that can be coaxed by immunotherapy strategies is a hot topic in cancer research nowadays. Tumor-infiltrating TCF-1+ progenitor exhausted CD8+ T cells seem to grant the best melanoma prognosis and also efficiently respond to anti-PD-1 immunotherapy, giving rise to a TIM-3+ terminally exhausted population with heightened effector activity. We tested Porins from Salmonella Typhi as a pathogen associated molecular pattern adjuvant of natural or model antigen in prophylactic and therapeutic immunization approaches against murine melanoma. Porins induced protection against melanomas, even upon re-challenging of tumor-free mice. Porins efficiently expanded IFN-γ-producing CD8+ T cells and induced central and effector memory in lymph nodes and tissue-resident (Trm) T cells in the skin and tumors. Porins induced TCF-1+ PD-1+ CD8+ Trm T cells in the tumor stroma and the presence of this population correlated with melanoma growth protection in mice. Porins immunization also cooperated with anti-PD-1 immunotherapy to hamper melanoma growth. Importantly, the potentially protective Trm populations induced by Porins in the murine model were also observed in melanoma patients in which their presence also correlated with disease control. Our data support the use of cancer vaccination to sculpt the tumor stroma with efficient and lasting Trm T cells with effector activities, highlighting the use of Porins as an adjuvant. Furthermore, our data place CD8+ Trm T cells with a progenitor exhausted phenotype as an important population for melanoma control, either independently or in cooperation with anti-PD-1 immunotherapy.
Collapse
Affiliation(s)
- Ricardo A León-Letelier
- Unidad de Investigación Médica en Inmunoquímica, UMAE Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico.,Posgrado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Daniel I Castro-Medina
- Unidad de Investigación Médica en Inmunoquímica, UMAE Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Oscar Badillo-Godinez
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Mexico
| | - Araceli Tepale-Segura
- Unidad de Investigación Médica en Inmunoquímica, UMAE Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Enrique Huanosta-Murillo
- Unidad de Investigación Médica en Inmunoquímica, UMAE Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Cristina Aguilar-Flores
- Unidad de Investigación Médica en Inmunoquímica, UMAE Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Saraí G De León-Rodríguez
- Unidad de Investigación Médica en Inmunoquímica, UMAE Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico.,Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Alejandra Mantilla
- Servicio de Patología, Hospital de Oncología, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Ezequiel M Fuentes-Pananá
- Unidad de Investigación en Virología y Cáncer, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Constantino López-Macías
- Unidad de Investigación Médica en Inmunoquímica, UMAE Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Laura C Bonifaz
- Unidad de Investigación Médica en Inmunoquímica, UMAE Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| |
Collapse
|
5
|
Peters BA, Wilson M, Moran U, Pavlick A, Izsak A, Wechter T, Weber JS, Osman I, Ahn J. Relating the gut metagenome and metatranscriptome to immunotherapy responses in melanoma patients. Genome Med 2019; 11:61. [PMID: 31597568 PMCID: PMC6785875 DOI: 10.1186/s13073-019-0672-4] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 09/12/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Recent evidence suggests that immunotherapy efficacy in melanoma is modulated by gut microbiota. Few studies have examined this phenomenon in humans, and none have incorporated metatranscriptomics, important for determining expression of metagenomic functions in the microbial community. METHODS In melanoma patients undergoing immunotherapy, gut microbiome was characterized in pre-treatment stool using 16S rRNA gene and shotgun metagenome sequencing (n = 27). Transcriptional expression of metagenomic pathways was confirmed with metatranscriptome sequencing in a subset of 17. We examined associations of taxa and metagenomic pathways with progression-free survival (PFS) using 500 × 10-fold cross-validated elastic-net penalized Cox regression. RESULTS Higher microbial community richness was associated with longer PFS in 16S and shotgun data (p < 0.05). Clustering based on overall microbiome composition divided patients into three groups with differing PFS; the low-risk group had 99% lower risk of progression than the high-risk group at any time during follow-up (p = 0.002). Among the species selected in regression, abundance of Bacteroides ovatus, Bacteroides dorei, Bacteroides massiliensis, Ruminococcus gnavus, and Blautia producta were related to shorter PFS, and Faecalibacterium prausnitzii, Coprococcus eutactus, Prevotella stercorea, Streptococcus sanguinis, Streptococcus anginosus, and Lachnospiraceae bacterium 3 1 46FAA to longer PFS. Metagenomic functions related to PFS that had correlated metatranscriptomic expression included risk-associated pathways of L-rhamnose degradation, guanosine nucleotide biosynthesis, and B vitamin biosynthesis. CONCLUSIONS This work adds to the growing evidence that gut microbiota are related to immunotherapy outcomes, and identifies, for the first time, transcriptionally expressed metagenomic pathways related to PFS. Further research is warranted on microbial therapeutic targets to improve immunotherapy outcomes.
Collapse
Affiliation(s)
- Brandilyn A Peters
- Department of Population Health, NYU School of Medicine, New York, NY, 10016, USA
| | - Melissa Wilson
- Department of Medicine, NYU School of Medicine, New York, NY, USA
- NYU Perlmutter Cancer Center, New York, NY, USA
- Present Address: Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Una Moran
- NYU Perlmutter Cancer Center, New York, NY, USA
- The Ronald O. Perelman Department of Dermatology, NYU School of Medicine, New York, NY, USA
| | - Anna Pavlick
- Department of Medicine, NYU School of Medicine, New York, NY, USA
- NYU Perlmutter Cancer Center, New York, NY, USA
| | - Allison Izsak
- The Ronald O. Perelman Department of Dermatology, NYU School of Medicine, New York, NY, USA
| | - Todd Wechter
- The Ronald O. Perelman Department of Dermatology, NYU School of Medicine, New York, NY, USA
| | - Jeffrey S Weber
- Department of Medicine, NYU School of Medicine, New York, NY, USA
- NYU Perlmutter Cancer Center, New York, NY, USA
| | - Iman Osman
- Department of Medicine, NYU School of Medicine, New York, NY, USA
- NYU Perlmutter Cancer Center, New York, NY, USA
- The Ronald O. Perelman Department of Dermatology, NYU School of Medicine, New York, NY, USA
| | - Jiyoung Ahn
- Department of Population Health, NYU School of Medicine, New York, NY, 10016, USA.
- NYU Perlmutter Cancer Center, New York, NY, USA.
| |
Collapse
|
6
|
Lafrenie RM, Speigl L, Buckner CA, Pawelec G, Conlon MS, Shipp C. Frequency of Immune Cell Subtypes in Peripheral Blood Correlates With Outcome for Patients With Metastatic Breast Cancer Treated With High-Dose Chemotherapy. Clin Breast Cancer 2019; 19:433-442. [PMID: 31383605 DOI: 10.1016/j.clbc.2019.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 04/16/2019] [Accepted: 05/09/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND The frequency of circulating leukocytes has been shown to be a prognostic factor in patients being treated for different types of cancer. In breast cancer, tumor-infiltrating leukocytes may predict patient outcome, but few studies have investigated such associations for circulating leukocytes. PATIENTS AND METHODS Multiparametric flow cytometry was used to examine the immunophenotypes of circulating peripheral blood mononuclear cells for 88 patients with metastatic breast cancer, which was then correlated to breast cancer-specific survival. Patients had been treated either with high-dose cyclophosphamide-containing regimens (group 1, n = 51 patients) or high-dose paclitaxel-containing regimens (group 2, n = 37 patients). RESULTS The frequency of peripheral blood CD14+ monocytes indicated prognosis for patients in group 1 (but not group 2), while higher levels of CD11c+ dendritic cells indicated a better prognosis for patients in group 2 (but not group 1). The frequency of a number of different CD4+ or CD8+ T cell subtypes also predicted prognosis for patients in group 2. For example, patients in group 2 with a higher frequency of circulating CD4+ or CD8+ naive T cells (CD45RA+CD95-CD27+CD28+) showed a poorer prognosis. In contrast, T cells were not associated with prognosis for patients in group 1. CONCLUSION Circulating leukocytes can predict clinical outcome for patients with breast cancer. Prediction of clinical outcome in this cohort of metastatic breast cancer patients was specific to the type of chemotherapy, and this finding is likely to apply to other therapies.
Collapse
Affiliation(s)
- Robert M Lafrenie
- Health Sciences North Research Institute, Sudbury, Ontario, Canada; Laurentian University, Sudbury, Ontario, Canada; Northern Ontario School of Medicine, Sudbury, Ontario, Canada.
| | - Lisa Speigl
- Department of Internal Medicine II, University Hospital Tübingen, Tübingen, Germany
| | - Carly A Buckner
- Health Sciences North Research Institute, Sudbury, Ontario, Canada; Laurentian University, Sudbury, Ontario, Canada
| | - Graham Pawelec
- Health Sciences North Research Institute, Sudbury, Ontario, Canada; Department of Internal Medicine II, University Hospital Tübingen, Tübingen, Germany
| | - Michael S Conlon
- Health Sciences North Research Institute, Sudbury, Ontario, Canada
| | - Christopher Shipp
- Department of Internal Medicine II, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
7
|
Microphthalmia-Associated Transcription Factor (MITF) Regulates Immune Cell Migration into Melanoma. Transl Oncol 2018; 12:350-360. [PMID: 30502589 PMCID: PMC6290759 DOI: 10.1016/j.tranon.2018.10.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 10/31/2018] [Indexed: 12/29/2022] Open
Abstract
Microphthalmia-associated transcription factor (MITF) is a key transcription factor in melanoma development and progression. MITF amplification and downregulation have been observed in a significant proportion of melanoma patients and correlate with clinical outcomes. Here, we have investigated the effect of MITF on melanoma chemokine expression and immune cell attraction. In B16F10 melanoma cells, MITF knockdown reduced expression of CXCL10, with concomitantly decreased attraction of immune cells and accelerated tumor outgrowth. Conversely, overexpression of MITF in YUMM1.1 melanoma cells also led to an increased immune cell attraction in vitro. Subcutaneous YUMM1.1 melanomas overexpressing MITF however showed a reduced immune infiltration of lymphocytes and an increased tumor growth. In human melanoma cell lines, silencing of MITF enhanced chemokine production and immune cell attraction, while overexpression of MITF led to lower immune cell attraction. In summary, our results show that MITF regulates chemokine expression in murine and in human melanoma cells, and affects in vivo immune cell attraction and tumor growth. These results reveal a functional relationship between MITF and immune cell infiltration, which may be exploited for cancer therapy.
Collapse
|
8
|
Arisi M, Zane C, Caravello S, Rovati C, Zanca A, Venturini M, Calzavara-Pinton P. Sun Exposure and Melanoma, Certainties and Weaknesses of the Present Knowledge. Front Med (Lausanne) 2018; 5:235. [PMID: 30214901 PMCID: PMC6126418 DOI: 10.3389/fmed.2018.00235] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 08/03/2018] [Indexed: 12/15/2022] Open
Abstract
Sun exposure is the main risk factor for cutaneous malignant melanoma (CMM). However, the UV-related pathogenetic mechanisms leading to CMM are far to be fully elucidated. In this paper we will focus on what we still don't fully know about the relationship between UVR and CMM. In particular, we will discuss: the action spectrum of human CMM, how different modalities of exposure (continuous/ intermittent; erythemal/ suberythemal) relate to different CMM variants, the preferential UVR induced DNA mutations observed in different CMM variants, the role of UV-related and UV-unrelated genetic damages in the same melanoma cells. Moreover, we will debate the importance of UVA induced oxidative and anaerobic damages to DNA and other cell structures and the role of melanins, of modulation of innate and acquired immunity, of vitamin D and of chronic exposure to phototoxic drugs and other xenobiotics. A better understanding of these issues will help developing more effective preventative strategies and new therapeutic approaches.
Collapse
Affiliation(s)
- Mariachiara Arisi
- Department of Dermatology, Spedali Civili di Brescia, University of Brescia, Brescia, Italy
| | - Cristina Zane
- Department of Dermatology, Spedali Civili di Brescia, University of Brescia, Brescia, Italy
| | - Simone Caravello
- Department of Dermatology, Spedali Civili di Brescia, University of Brescia, Brescia, Italy
| | - Chiara Rovati
- Department of Dermatology, Spedali Civili di Brescia, University of Brescia, Brescia, Italy
| | - Arianna Zanca
- Department of Dermatology, Spedali Civili di Brescia, University of Brescia, Brescia, Italy
| | - Marina Venturini
- Department of Dermatology, Spedali Civili di Brescia, University of Brescia, Brescia, Italy
| | | |
Collapse
|
9
|
Luo L, Zhu C, Yin H, Jiang M, Zhang J, Qin B, Luo Z, Yuan X, Yang J, Li W, Du Y, You J. Laser Immunotherapy in Combination with Perdurable PD-1 Blocking for the Treatment of Metastatic Tumors. ACS NANO 2018; 12:7647-7662. [PMID: 30020768 DOI: 10.1021/acsnano.8b00204] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
A convenient and feasible therapeutic strategy for malignant and metastatic tumors was constructed here by combining photothermal ablation (PTA)-based laser immunotherapy with perdurable PD-1 blockade immunotherapy. Hollow gold nanoshells (HAuNS, a photothermal agent) and AUNP12 (an anti PD-1 peptide, APP) were co-encapsulated into poly(lactic- co-glycolic) acid (PLGA) nanoparticles. Unlike monoclonal PD-1/PD-L1 antibodies, PD-1 peptide inhibitor shows lower cost and immunotoxicity but needs frequent administration due to its rapid clearance in vivo. Our data here showed that the formed HAuNS- and APP-loaded PLGA nanoparticles (AA@PN) could maintain release periods of up to 40 days for the peptide, and a single intratumoral injection of AA@PN could replace the frequent administration of free APP. After the administration of AA@PN and irradiation with a near-infrared laser at the tumor site, an excellent killing effect on the primary tumor cells was achieved by the PTA. The nanoparticles also played a vaccine-like role under the adjuvant of cytosine-phospho-guanine (CpG) oligodeoxynucleotide and generated a localized antitumor-immune response. Furthermore, sustained APP release with laser-dependent transient triggering could induce the blockage of PD-1/PD-L1 pathway to activate T cells, thus subsequently generating a systemic immune response. Our data demonstrated that the PTA combined with perdurable PD-1 blocking could efficiently eradicate the primary tumors and inhibit the growth of metastatic tumors as well as their formation. The present study provides a promising therapeutic strategy for the treatment of advanced cancer with metastasis and presents a valuable reference for obtaining better outcomes in clinical cancer immunotherapy.
Collapse
Affiliation(s)
- Lihua Luo
- College of Pharmaceutical Sciences , Zhejiang University , 866 Yuhangtang Road , Hangzhou , Zhejiang 310058 , PR China
| | - Chunqi Zhu
- College of Pharmaceutical Sciences , Zhejiang University , 866 Yuhangtang Road , Hangzhou , Zhejiang 310058 , PR China
| | - Hang Yin
- College of Pharmaceutical Sciences , Zhejiang University , 866 Yuhangtang Road , Hangzhou , Zhejiang 310058 , PR China
| | - Mengshi Jiang
- College of Pharmaceutical Sciences , Zhejiang University , 866 Yuhangtang Road , Hangzhou , Zhejiang 310058 , PR China
| | - Junlei Zhang
- College of Pharmaceutical Sciences , Zhejiang University , 866 Yuhangtang Road , Hangzhou , Zhejiang 310058 , PR China
| | - Bing Qin
- College of Pharmaceutical Sciences , Zhejiang University , 866 Yuhangtang Road , Hangzhou , Zhejiang 310058 , PR China
| | - Zhenyu Luo
- College of Pharmaceutical Sciences , Zhejiang University , 866 Yuhangtang Road , Hangzhou , Zhejiang 310058 , PR China
| | - Xiaoling Yuan
- College of Pharmaceutical Sciences , Zhejiang University , 866 Yuhangtang Road , Hangzhou , Zhejiang 310058 , PR China
| | - Jie Yang
- College of Pharmaceutical Sciences , Zhejiang University , 866 Yuhangtang Road , Hangzhou , Zhejiang 310058 , PR China
| | - Wei Li
- College of Pharmaceutical Sciences , Zhejiang University , 866 Yuhangtang Road , Hangzhou , Zhejiang 310058 , PR China
| | - Yongzhong Du
- College of Pharmaceutical Sciences , Zhejiang University , 866 Yuhangtang Road , Hangzhou , Zhejiang 310058 , PR China
| | - Jian You
- College of Pharmaceutical Sciences , Zhejiang University , 866 Yuhangtang Road , Hangzhou , Zhejiang 310058 , PR China
| |
Collapse
|