1
|
Zhang J, Zhan H, Xu H, Wang R, Li Z, Feng F, Wu H, Xu Z, Wang S, Guo Y, Li Y. Infectious agents in dilated cardiomyopathy: Genetic interactions, autoimmunity, mechanisms, and therapeutic approaches. Autoimmun Rev 2025; 24:103860. [PMID: 40562294 DOI: 10.1016/j.autrev.2025.103860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Accepted: 06/21/2025] [Indexed: 06/28/2025]
Abstract
Dilated cardiomyopathy (DCM) is a heterogeneous myocardial disorder characterized by left ventricular dilation and systolic dysfunction in the absence of ischemic, hypertensive, or valvular heart disease. Although its precise etiology remains unclear, it is widely recognized as a multifactorial disease arising from complex interactions between genetic predisposition and environmental triggers. Among these, infectious agents have been implicated in the pathogenesis of various subtypes, particularly inflammatory and idiopathic DCM. These agents can contribute to disease onset and progression through direct cardiomyocyte injury, immune-mediated chronic inflammation, and other yet-to-be-defined mechanisms. Infection-driven autoimmune activation is another potential key contributor to DCM, potentially linking infectious exposure to sustained myocardial damage. However, the precise role of various infectious agents in DCM initiation and progression, as well as their interactions with genetic predisposition and autoimmune activation, is inadequately understood. Improving understanding of infection-related etiologies could facilitate development of targeted therapeutic strategies; however, significant challenges persist in identifying causative and novel pathogens, and translating this into clinical practice. Therefore, this review explores the complex interactions between infectious agents, genetic predisposition, and autoimmune responses in DCM pathogenesis. We summarize current evidence on the role of infectious agents in DCM and emerging therapeutic strategies aimed at treating infection-related DCM. Finally, we outline future research directions to advance understanding of infection-associated DCM and improve patient outcomes. We reveal that a deeper understanding of host-microbe interactions, immune pathways, and genetic predisposition is essential for advancing DCM research. Furthermore, integrating genomics, metagenomics, and antibody and immunological profiling is crucial for developing personalized therapeutic strategies for this complex disease.
Collapse
Affiliation(s)
- Jingdi Zhang
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Haoting Zhan
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Honglin Xu
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Rongrong Wang
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Zhan Li
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Futai Feng
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Hongzheng Wu
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Zhixin Xu
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Siyu Wang
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Ye Guo
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.
| | - Yongzhe Li
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.
| |
Collapse
|
2
|
Martínez-Rojas PP, Monroy-Martínez V, Ruiz-Ordaz BH. Role of extracellular vesicles in the pathogenesis of mosquito-borne flaviviruses that impact public health. J Biomed Sci 2025; 32:4. [PMID: 39754219 PMCID: PMC11699717 DOI: 10.1186/s12929-024-01096-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 11/08/2024] [Indexed: 01/06/2025] Open
Abstract
Mosquito-borne flaviviruses represent a public health challenge due to the high-rate endemic infections, severe clinical outcomes, and the potential risk of emerging global outbreaks. Flavivirus disease pathogenesis converges on cellular factors from vectors and hosts, and their interactions are still unclear. Exosomes and microparticles are extracellular vesicles released from cells that mediate the intercellular communication necessary for maintaining homeostasis; however, they have been shown to be involved in disease establishment and progression. This review focuses on the roles of extracellular vesicles in the pathogenesis of mosquito-borne flavivirus diseases: how they contribute to viral cycle completion, cell-to-cell transmission, and cellular responses such as inflammation, immune suppression, and evasion, as well as their potential use as biomarkers or therapeutics (antiviral or vaccines). We highlight the current findings concerning the functionality of extracellular vesicles in different models of dengue virus, Zika virus, yellow fever virus, Japanese encephalitis virus, and West Nile virus infections and diseases. The available evidence suggests that extracellular vesicles mediate diverse functions between hosts, constituting novel effectors for understanding the pathogenic mechanisms of flaviviral diseases.
Collapse
Affiliation(s)
- Pedro Pablo Martínez-Rojas
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), 04510, Mexico City, Mexico
| | - Verónica Monroy-Martínez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), 04510, Mexico City, Mexico
| | - Blanca H Ruiz-Ordaz
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), 04510, Mexico City, Mexico.
| |
Collapse
|
3
|
Ghita L, Yao Z, Xie Y, Duran V, Cagirici HB, Samir J, Osman I, Rebellón-Sánchez DE, Agudelo-Rojas OL, Sanz AM, Sahoo MK, Robinson ML, Gelvez-Ramirez RM, Bueno N, Luciani F, Pinsky BA, Montoya JG, Estupiñan-Cardenas MI, Villar-Centeno LA, Rojas-Garrido EM, Rosso F, Quake SR, Zanini F, Einav S. Global and cell type-specific immunological hallmarks of severe dengue progression identified via a systems immunology approach. Nat Immunol 2023; 24:2150-2163. [PMID: 37872316 PMCID: PMC10863980 DOI: 10.1038/s41590-023-01654-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 09/15/2023] [Indexed: 10/25/2023]
Abstract
Severe dengue (SD) is a major cause of morbidity and mortality. To define dengue virus (DENV) target cells and immunological hallmarks of SD progression in children's blood, we integrated two single-cell approaches capturing cellular and viral elements: virus-inclusive single-cell RNA sequencing (viscRNA-Seq 2) and targeted proteomics with secretome analysis and functional assays. Beyond myeloid cells, in natural infection, B cells harbor replicating DENV capable of infecting permissive cells. Alterations in cell type abundance, gene and protein expression and secretion as well as cell-cell communications point towards increased immune cell migration and inflammation in SD progressors. Concurrently, antigen-presenting cells from SD progressors demonstrate intact uptake yet impaired interferon response and antigen processing and presentation signatures, which are partly modulated by DENV. Increased activation, regulation and exhaustion of effector responses and expansion of HLA-DR-expressing adaptive-like NK cells also characterize SD progressors. These findings reveal DENV target cells in human blood and provide insight into SD pathogenesis beyond antibody-mediated enhancement.
Collapse
Affiliation(s)
- Luca Ghita
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Zhiyuan Yao
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Yike Xie
- School of Clinical Medicine, UNSW Sydney, Sydney, New South Wales, Australia
| | - Veronica Duran
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Chan Zuckerberg Biohub-San Francisco, San Francisco, CA, USA
| | - Halise Busra Cagirici
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Jerome Samir
- School of Biomedical Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - Ilham Osman
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | | | | | - Ana Maria Sanz
- Clinical Research Center, Fundación Valle del Lili, Cali, Colombia
| | - Malaya Kumar Sahoo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Makeda L Robinson
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Nathalia Bueno
- Centro de Atención y Diagnóstico de Enfermedades Infecciosas (CDI/Fundacion INFOVIDA), Bucaramanga, Colombia
| | - Fabio Luciani
- School of Biomedical Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - Benjamin A Pinsky
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jose G Montoya
- Palo Alto Medical Foundation and Dr. Jack S. Remington Laboratory for Speciality Diagnostics, Palo Alto, CA, USA
| | | | - Luis Angel Villar-Centeno
- Centro de Atención y Diagnóstico de Enfermedades Infecciosas (CDI/Fundacion INFOVIDA), Bucaramanga, Colombia
| | - Elsa Marina Rojas-Garrido
- Centro de Atención y Diagnóstico de Enfermedades Infecciosas (CDI/Fundacion INFOVIDA), Bucaramanga, Colombia
| | - Fernando Rosso
- Clinical Research Center, Fundación Valle del Lili, Cali, Colombia
- Division of Infectious Diseases, Department of Internal Medicine, Fundación Valle del Lili, Cali, Colombia
| | - Stephen R Quake
- Chan Zuckerberg Biohub-San Francisco, San Francisco, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Applied Physics, Stanford University, Stanford, CA, USA
| | - Fabio Zanini
- School of Clinical Medicine, UNSW Sydney, Sydney, New South Wales, Australia.
- Cellular Genomics Futures Institute, UNSW Sydney, Sydney, New South Wales, Australia.
- Evolution and Ecology Research Centre, UNSW Sydney, Sydney, New South Wales, Australia.
| | - Shirit Einav
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Chan Zuckerberg Biohub-San Francisco, San Francisco, CA, USA.
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
4
|
Low GKK, Jiee SF, Masilamani R, Shanmuganathan S, Rai P, Manda M, Omosumwen OF, Kagize J, Gavino AI, Azahar A, Jabbar MA. Routine blood parameters of dengue infected children and adults. A meta-analysis. Pathog Glob Health 2023; 117:565-589. [PMID: 36593636 PMCID: PMC10392251 DOI: 10.1080/20477724.2022.2161864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The World Health Organization (WHO) has revised dengue case classification in 2009 to better reflect the severity of the disease. However, there was no comprehensive meta-analysis of pooled routine blood parameters according to the age or the categories of the 2009 WHO classification. This study aimed to meta-analyze the routine blood parameters of dengue infected children and adults. Electronic search was performed with eligible articles included for review. Meta-analysis was conducted for six blood parameters stratified into children, adults and all ages, which were further grouped into the three 2009 WHO case classifications (dengue without warning signs, DwoWS; dengue with warning signs, DwWS; severe dengue, SD), non-severe dengue (non-SD) and 'All' cases. A total of 55 articles were included in the meta-analysis. Fifteen studies were conducted in the children's age category, 31 studies in the adult category and nine studies in all ages. The four selected pooled blood parameters for children were white blood cell (WBC) (×103/L) with 5.11 (SD), 5.64 (DwWS), 5.52 (DwoWS) and 4.68 (Non-SD) hematocrit (HCT) (%) with 36.78 (SD), 40.70 (DwWS), 35.00 (DwoWS) and 29.78 (Non-SD) platelet (PLT) (×103/µL) with 78.66 (SD), 108.01 (DwWS), 153.47 (DwoWS) and 108.29 (non-SD); and aspartate aminotransferase (AST) (/µL) with 248.88 (SD), 170.83 (DwWS), 83.24 (DwoWS) and 102.99 (non-SD). For adult, WBC were 4.96 (SD), 6.44 (DwWS), 7.74 (DwoWS) and 3.61 (non-SD); HCT were 39.50 (SD), 39.00 (DwWS), 37.45 (DwoWS) and 41.68 (non-SD); PLT were 49.62 (SD), 96.60 (DwWS), 114.37 (DwoWS) and 71.13 (non-SD); and AST were 399.50 (SD), 141.01 (DwWS), 96.19 (DwoWS) and 118.13 (non-SD). These blood parameters could not differentiate between each dengue severity according to the WHO 2009 classification, SD, DwoWS, DwWS and non-SD, because the timing of blood drawing was not known and there was an overlapping confidence interval among the clinical classification. Hence, these pooled blood parameter values could not be used to guide clinicians in management and did not correlate with severity as in previous scientific literatures and guidelines.
Collapse
Affiliation(s)
- Gary KK Low
- Research Operations, Nepean Hospital, Kingswood, New South Wales, Australia
- Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Sam Froze Jiee
- Sarawak State Health Department, Ministry of Health Malaysia, Sri Aman District Health Office, Sri Aman, Sarawak, Malaysia
| | - Retneswari Masilamani
- Department of Population Medicine, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Kajang, Selangor, Malaysia
| | - Selvanaayagam Shanmuganathan
- Quality Unit, Hospital Kulim, Kulim, Kedah, Malaysia
- Menzies Centre Health Policy and Economics, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
- Health Vertical, Torrens University Australia, Sydney, New South Wales, Australia
| | - Pramila Rai
- Health Vertical, Torrens University Australia, Sydney, New South Wales, Australia
| | - Mitali Manda
- Hammondcare Neringah Hospital, Wahroonga,New South Wales, Australia
| | - Osamudiamen Favour Omosumwen
- Department of Addiction and Community Health Professional, Faculty of Health and Social Science, Sundance College Edmonton, Edmonton, Alberta, Canada
| | - Jackob Kagize
- Health Vertical, Torrens University Australia, Sydney, New South Wales, Australia
| | - Alex I. Gavino
- Centre for Health Futures, Torrens University Australia, Sydney, New South Wales, Australia
- Public Health Department, Torrens University Australia, Sydney, New South Wales, Australia
| | - Aizad Azahar
- Department of Anaesthesiology and Intensive Care, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Mohammed Abdulrazzaq Jabbar
- Department of Population Medicine, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Kajang, Selangor, Malaysia
| |
Collapse
|
5
|
Ioannidis LJ, Studniberg SI, Eriksson EM, Suwarto S, Denis D, Liao Y, Shi W, Garnham AL, Sasmono RT, Hansen DS. Integrated systems immunology approach identifies impaired effector T cell memory responses as a feature of progression to severe dengue fever. J Biomed Sci 2023; 30:24. [PMID: 37055751 PMCID: PMC10103532 DOI: 10.1186/s12929-023-00916-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/02/2023] [Indexed: 04/15/2023] Open
Abstract
BACKGROUND Typical symptoms of uncomplicated dengue fever (DF) include headache, muscle pains, rash, cough, and vomiting. A proportion of cases progress to severe dengue hemorrhagic fever (DHF), associated with increased vascular permeability, thrombocytopenia, and hemorrhages. Progression to severe dengue is difficult to diagnose at the onset of fever, which complicates patient triage, posing a socio-economic burden on health systems. METHODS To identify parameters associated with protection and susceptibility to DHF, we pursued a systems immunology approach integrating plasma chemokine profiling, high-dimensional mass cytometry and peripheral blood mononuclear cell (PBMC) transcriptomic analysis at the onset of fever in a prospective study conducted in Indonesia. RESULTS After a secondary infection, progression to uncomplicated dengue featured transcriptional profiles associated with increased cell proliferation and metabolism, and an expansion of ICOS+CD4+ and CD8+ effector memory T cells. These responses were virtually absent in cases progressing to severe DHF, that instead mounted an innate-like response, characterised by inflammatory transcriptional profiles, high circulating levels of inflammatory chemokines and with high frequencies of CD4low non-classical monocytes predicting increased odds of severe disease. CONCLUSIONS Our results suggests that effector memory T cell activation might play an important role ameliorating severe disease symptoms during a secondary dengue infection, and in the absence of that response, a strong innate inflammatory response is required to control viral replication. Our research also identified discrete cell populations predicting increased odds of severe disease, with potential diagnostic value.
Collapse
Affiliation(s)
- Lisa J Ioannidis
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Stephanie I Studniberg
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Emily M Eriksson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Suhendro Suwarto
- Division of Tropical and Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia, Cipto Mangunkusumo National Hospital (RSCM), Jakarta, Indonesia
| | - Dionisius Denis
- Eijkman Research Center for Molecular Biology, Jakarta, Indonesia
| | - Yang Liao
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
| | - Wei Shi
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
| | - Alexandra L Garnham
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- School of Mathematics and Statistics, The University of Melbourne, Parkville, VIC, Australia
| | - R Tedjo Sasmono
- Eijkman Research Center for Molecular Biology, Jakarta, Indonesia
| | - Diana S Hansen
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia.
- Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
6
|
Costa KB, Garcia BCC, Costa MLB, Pena YG, Figueiredo EAB, Ottoni MHF, Santos JD, de Oliveira Ottone V, de Oliveira DB, Rocha-Vieira E. Association between Anti-DENV IgM Serum Prevalence and CD11b Expression by Classical Monocytes in Obesity. Viruses 2023; 15:234. [PMID: 36680274 PMCID: PMC9865527 DOI: 10.3390/v15010234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Dengue and obesity are currently highly prevalent conditions worldwide and the association between these two conditions may result in greater risk for DENV infection and disease severity. In this study the association between obesity and recent, inapparent dengue was investigated. Serum DENV IgM and NS1 were evaluated in 49 adult volunteers (15 lean and 34 individuals with obesity, according to body mass index), between September 2017 and June 2018. Adiposity, endocrine, metabolic, and immune data of the participants were also obtained. None of the study participants tested positive for the DENV NS1 antigen. DENV IgM was detected in 33.3% of the lean individuals, and in 44.1% of those with obesity; the presence of DENV IgM was not associated with body mass index (OR = 1.32, 95% CI = 0.59-2.98, p = 0.48). However, body fat index was higher in obese individuals who had recent inapparent dengue (14.7 ± 3.1 versus 12.7 ± 2.1 kg/m2, p = 0.04), as was the expression of CD11b by classical (CD14++CD16-) monocytes (1103.0 ± 311.3 versus 720.3 ± 281.1 mean fluoresce intensity). Our findings suggest an association between adiposity and recent inapparent dengue and the involvement of classical monocytes in this association.
Collapse
Affiliation(s)
- Karine Beatriz Costa
- Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas, Universidade Federal dos Vales do Jequitinonha e Mucuri, Diamantina 39100-000, MG, Brazil
- Departamento de Medicina, Universidade Federal de Juiz de Fora, Governador Valadares 35010-180, MG, Brazil
- Laboratory of Exercise Biology and Immunometabolism, Centro Integrado de Pós-Graduação e Pesquisa em Saúde, Universidade Federal dos Vales do Jequitinonha e Mucuri, Diamantina 39100-000, MG, Brazil
| | - Bruna Caroline Chaves Garcia
- Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas, Universidade Federal dos Vales do Jequitinonha e Mucuri, Diamantina 39100-000, MG, Brazil
- Laboratory of Exercise Biology and Immunometabolism, Centro Integrado de Pós-Graduação e Pesquisa em Saúde, Universidade Federal dos Vales do Jequitinonha e Mucuri, Diamantina 39100-000, MG, Brazil
| | - Marina Luiza Baêta Costa
- Laboratory of Exercise Biology and Immunometabolism, Centro Integrado de Pós-Graduação e Pesquisa em Saúde, Universidade Federal dos Vales do Jequitinonha e Mucuri, Diamantina 39100-000, MG, Brazil
| | - Yara Gomes Pena
- Laboratory of Exercise Biology and Immunometabolism, Centro Integrado de Pós-Graduação e Pesquisa em Saúde, Universidade Federal dos Vales do Jequitinonha e Mucuri, Diamantina 39100-000, MG, Brazil
| | - Eduardo Augusto Barbosa Figueiredo
- Laboratory of Exercise Biology and Immunometabolism, Centro Integrado de Pós-Graduação e Pesquisa em Saúde, Universidade Federal dos Vales do Jequitinonha e Mucuri, Diamantina 39100-000, MG, Brazil
| | - Marcelo Henrique Fernandes Ottoni
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal dos Vales do Jequitinonha e Mucuri, Diamantina 39100-000, MG, Brazil
| | - Juliane Duarte Santos
- Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas, Universidade Federal dos Vales do Jequitinonha e Mucuri, Diamantina 39100-000, MG, Brazil
| | - Vinícius de Oliveira Ottone
- Laboratory of Exercise Biology and Immunometabolism, Centro Integrado de Pós-Graduação e Pesquisa em Saúde, Universidade Federal dos Vales do Jequitinonha e Mucuri, Diamantina 39100-000, MG, Brazil
| | - Danilo Bretas de Oliveira
- Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas, Universidade Federal dos Vales do Jequitinonha e Mucuri, Diamantina 39100-000, MG, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal dos Vales do Jequitinonha e Mucuri, Diamantina 39100-000, MG, Brazil
| | - Etel Rocha-Vieira
- Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas, Universidade Federal dos Vales do Jequitinonha e Mucuri, Diamantina 39100-000, MG, Brazil
- Laboratory of Exercise Biology and Immunometabolism, Centro Integrado de Pós-Graduação e Pesquisa em Saúde, Universidade Federal dos Vales do Jequitinonha e Mucuri, Diamantina 39100-000, MG, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal dos Vales do Jequitinonha e Mucuri, Diamantina 39100-000, MG, Brazil
| |
Collapse
|
7
|
Flórez-Álvarez L, de Souza EE, Botosso VF, de Oliveira DBL, Ho PL, Taborda CP, Palmisano G, Capurro ML, Pinho JRR, Ferreira HL, Minoprio P, Arruda E, de Souza Ferreira LC, Wrenger C, Durigon EL. Hemorrhagic fever viruses: Pathogenesis, therapeutics, and emerging and re-emerging potential. Front Microbiol 2022; 13:1040093. [PMID: 36386719 PMCID: PMC9640979 DOI: 10.3389/fmicb.2022.1040093] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/06/2022] [Indexed: 01/29/2023] Open
Abstract
Hemorrhagic fever viruses (HFVs) pose a threat to global public health owing to the emergence and re-emergence of highly fatal diseases. Viral hemorrhagic fevers (VHFs) caused by these viruses are mostly characterized by an acute febrile syndrome with coagulation abnormalities and generalized hemorrhage that may lead to life-threatening organ dysfunction. Currently, the events underlying the viral pathogenicity associated with multiple organ dysfunction syndrome still underexplored. In this minireview, we address the current knowledge of the mechanisms underlying VHFs pathogenesis and discuss the available development of preventive and therapeutic options to treat these infections. Furthermore, we discuss the potential of HFVs to cause worldwide emergencies along with factors that favor their spread beyond their original niches.
Collapse
Affiliation(s)
| | | | | | | | - Paulo Lee Ho
- Virology Laboratory, Butantan Institute, São Paulo, Brazil
| | | | - Giuseppe Palmisano
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - João Renato Rebello Pinho
- Albert Einstein Institute for Teaching and Research (IIEP), Hospital Israelita Albert Einstein, São Paulo, Brazil,Hospital das Clínicas da Faculdade de Medicina, University of São Paulo, São Paulo, Brazil
| | - Helena Lage Ferreira
- Faculty of Animal Science and Food Engineering, University of São Paulo, São Paulo, Brazil
| | | | - Eurico Arruda
- Faculty of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Luís Carlos de Souza Ferreira
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil,Scientific Platform Pasteur-USP, São Paulo, Brazil
| | - Carsten Wrenger
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil,*Correspondence: Carsten Wrenger, ; Edison Luiz Durigon,
| | - Edison Luiz Durigon
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil,Scientific Platform Pasteur-USP, São Paulo, Brazil,*Correspondence: Carsten Wrenger, ; Edison Luiz Durigon,
| |
Collapse
|
8
|
Maheshwari D, Saini K, Singh P, Singla M, Nayak K, Aggarwal C, Chawla YM, Bajpai P, Kaur M, Gunisetty S, Eberhardt CS, Nyodu R, Moore K, Suthar MS, Medigeshi GR, Anderson E, Lodha R, Kabra SK, Ahmed R, Chandele A, Murali-Krishna K. Contrasting behavior between the three human monocyte subsets in dengue pathophysiology. iScience 2022; 25:104384. [PMID: 35620424 PMCID: PMC9127603 DOI: 10.1016/j.isci.2022.104384] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/09/2022] [Accepted: 05/05/2022] [Indexed: 10/26/2022] Open
|
9
|
Intermediate Monocytes with PD-L1 and CD62L Expression as a Possible Player in Active SARS-CoV-2 Infection. Viruses 2022; 14:v14040819. [PMID: 35458548 PMCID: PMC9031659 DOI: 10.3390/v14040819] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/05/2022] [Accepted: 04/12/2022] [Indexed: 12/12/2022] Open
Abstract
Monocytes play a role in viral biology, but little is known about the monocyte subpopulation in the course of COVID-19 disease. The aim of the study was the analysis of classical, intermediate and non-classical monocytes with expression of PD-L1 and CD62L, TIM-3 and CD86 molecules in peripheral blood (PB) to distinguish patients with SARS-CoV-2 infection from convalescent patients. The study group consisted of 55 patients with SARS-CoV-2 infection and 51 convalescent patients. The cells were analyzed by flow cytometry. The number and proportion of monocytes were lower in patients with COVID-19 than convalescent patients. We observed a lower proportion of non-classical monocytes in COVID-19 patients than convalescent ones. There was a higher proportion of PDL-1-positive intermediate monocytes in COVID-19 patients than convalescent ones. We noticed a higher geometric mean fluorescence intensity (GeoMean) of PD-L1 on intermediate monocytes in COVID-19 patients than convalescent patients, and a higher proportion of CD62L-positive monocytes in COVID-19 patients in comparison with convalescent ones. We found a higher GeoMean of CD62L on monocytes in COVID-19 patients than convalescent ones. Assessment of PD-L1- and CD62L-positive monocyte subsets may identify patients with a possible predisposition for rapid recovery. The monitoring of monocyte subsets in PB might be a useful test in COVID-19 patients.
Collapse
|
10
|
Lertjuthaporn S, Keawvichit R, Polsrila K, Sukapirom K, Chuansumrit A, Chokephaibulkit K, Ansari AA, Khowawisetsut L, Pattanapanyasat K. Kinetic Changes of Peripheral Blood Monocyte Subsets and Expression of Co-Stimulatory Molecules during Acute Dengue Virus Infection. Pathogens 2021; 10:pathogens10111458. [PMID: 34832614 PMCID: PMC8625762 DOI: 10.3390/pathogens10111458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/31/2021] [Accepted: 11/09/2021] [Indexed: 11/21/2022] Open
Abstract
Monocytes, one of the main target cells for dengue virus (DENV) infection, contribute to the resolution of viremia and to pathogenesis. We performed a longitudinal study by a detailed phenotypic comparison of classical (CD14++CD16−, non-classical (CD14+CD16++) and intermediate (CD14++CD16+) monocyte subsets in blood samples from dengue fever (DF) to the severe dengue hemorrhagic fever (DHF) and healthy individuals. Various costimulatory molecules of CD40, CD80, CD86 and inducible costimulatory ligand (ICOSL) expressed on these three monocyte subsets were also analyzed. DENV-infected patients showed an increase in the frequency of intermediate monocytes and a decrease in the classical monocytes when compared to healthy individuals. Although these differences did not correlate with disease severity, changes during the early phase of infection gradually returned to normal in the defervescence phase. Moreover, decreased frequency of classical monocytes was associated with a significant up-regulation of co-stimulatory molecules CD40, CD86 and ICOSL. Kinetics of these co-stimulatory molecule-expressing classical monocytes showed different patterns throughout the sampling times of acute DENV infection. Different distribution of monocyte subsets and their co-stimulatory molecules in the peripheral blood during acute infection might exacerbate immune responses like cytokine storms and ADE, and future studies on intracellular molecular pathways utilized by these monocyte linages are warranted.
Collapse
Affiliation(s)
- Sakaorat Lertjuthaporn
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Nakhon Pathom 73170, Thailand;
| | - Rassamon Keawvichit
- Department of Clinical Pathology, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Bangkok 10300, Thailand;
| | - Korakot Polsrila
- Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand;
| | - Kasama Sukapirom
- Center of Excellence for Microparticle and Exosome in Diseases, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand;
| | - Ampaiwan Chuansumrit
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand;
| | - Kulkanya Chokephaibulkit
- Department of Pediatrics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand;
| | - Aftab A. Ansari
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA;
| | - Ladawan Khowawisetsut
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Correspondence: (L.K.); (K.P.)
| | - Kovit Pattanapanyasat
- Center of Excellence for Microparticle and Exosome in Diseases, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand;
- Correspondence: (L.K.); (K.P.)
| |
Collapse
|
11
|
CyTOF Profiling of Zika and Dengue Virus-Infected Human Peripheral Blood Mononuclear Cells Identifies Phenotypic Signatures of Monotype Subsets and Upregulation of the Interferon-Inducible Protein CD169. mSphere 2021; 6:e0050521. [PMID: 34160241 PMCID: PMC8265667 DOI: 10.1128/msphere.00505-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Zika and dengue virus (ZIKV and DENV) are two flaviviruses responsible for important vector-borne emerging infectious diseases. While there have been multiple DENV epidemics in the last decades, there have been fewer documented epidemics caused by ZIKV until recent years. Thus, our current knowledge about the biology of ZIKV, the disease, and the immune responses in humans is limited. Here, we used mass cytometry (CyTOF) to perform a detailed characterization of the innate immune responses elicited by ZIKV and DENV in human peripheral blood mononuclear cells (PBMCs) from healthy donors infected ex vivo. We found that ZIKV and DENV exposure of human PBMCs induces global phenotypic changes in myeloid cells, characterized mainly by upregulation of costimulatory molecules (CD86 and CD40), CD38, and the type I interferon-inducible protein CD169, a marker for phagocytic function and cross-priming potential in myeloid cells. We also found that ZIKV induces expansion of nonclassical monocytes in cell culture. The analysis of the phenotype of the three monocyte subtypes (classical, intermediate, and nonclassical) at the single-cell level identified differences in their expression of CD86, CD38, CXCL8, and CXCL10 during ZIKV and DENV infection. Overall, using CyTOF, we found that ex vivo infections of PBMCs with ZIKV and DENV reproduced many aspects of the profile found in blood from patients in previously described cohort studies, which highlights the suitability of this system for the study of the human host responses to these viruses. IMPORTANCE Zika and dengue viruses are emergent arboviruses of great public health impact. Both viruses are responsible for important diseases, yet there is currently no vaccine or specific treatment available. Immune cells play critical roles in the virus cycle as well as in the innate and adaptive immune response elicited in the host; therefore, it is critical to understand the changes induced by virus infection in peripheral blood mononuclear cells (PBMCs). In this study, we used a model of ex vivo infection of PBMCs and CyTOF technology to profile the early innate immune changes induced by Zika virus and dengue virus in blood.
Collapse
|
12
|
Trombetta AC, Farias GB, Gomes AMC, Godinho-Santos A, Rosmaninho P, Conceição CM, Laia J, Santos DF, Almeida ARM, Mota C, Gomes A, Serrano M, Veldhoen M, Sousa AE, Fernandes SM. Severe COVID-19 Recovery Is Associated with Timely Acquisition of a Myeloid Cell Immune-Regulatory Phenotype. Front Immunol 2021; 12:691725. [PMID: 34248984 PMCID: PMC8265310 DOI: 10.3389/fimmu.2021.691725] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/31/2021] [Indexed: 01/08/2023] Open
Abstract
After more than one year since the COVID-19 outbreak, patients with severe disease still constitute the bottleneck of the pandemic management. Aberrant inflammatory responses, ranging from cytokine storm to immune-suppression, were described in COVID-19 and no treatment was demonstrated to change the prognosis significantly. Therefore, there is an urgent need for understanding the underlying pathogenic mechanisms to guide therapeutic interventions. This study was designed to assess myeloid cell activation and phenotype leading to recovery in patients surviving severe COVID-19. We evaluated longitudinally patients with COVID-19 related respiratory insufficiency, stratified according to the need of intensive care unit admission (ICU, n = 11, and No-ICU, n = 9), and age and sex matched healthy controls (HCs, n = 11), by flow cytometry and a wide array of serum inflammatory/immune-regulatory mediators. All patients featured systemic immune-regulatory myeloid cell phenotype as assessed by both unsupervised and supervised analysis of circulating monocyte and dendritic cell subsets. Specifically, we observed a reduction of CD14lowCD16+ monocytes, and reduced expression of CD80, CD86, and Slan. Moreover, mDCs, pDCs, and basophils were significantly reduced, in comparison to healthy subjects. Contemporaneously, both monocytes and DCs showed increased expression of CD163, CD204, CD206, and PD-L1 immune-regulatory markers. The expansion of M2-like monocytes was significantly higher at admission in patients featuring detectable SARS-CoV-2 plasma viral load and it was positively correlated with the levels of specific antibodies. In No-ICU patients, we observed a peak of the alterations at admission and a progressive regression to a phenotype similar to HCs at discharge. Interestingly, in ICU patients, the expression of immuno-suppressive markers progressively increased until discharge. Notably, an increase of M2-like HLA-DRhighPD-L1+ cells in CD14++CD16− monocytes and in dendritic cell subsets was observed at ICU discharge. Furthermore, IFN-γ and IL-12p40 showed a decline over time in ICU patients, while high values of IL1RA and IL-10 were maintained. In conclusion, these results support that timely acquisition of a myeloid cell immune-regulatory phenotype might contribute to recovery in severe systemic SARS-CoV-2 infection and suggest that therapeutic agents favoring an innate immune system regulatory shift may represent the best strategy to be implemented at this stage.
Collapse
Affiliation(s)
- Amelia C Trombetta
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Guilherme B Farias
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - André M C Gomes
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Clinica Universitária de Medicina Intensiva, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Ana Godinho-Santos
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Pedro Rosmaninho
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Carolina M Conceição
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Joel Laia
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Diana F Santos
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Afonso R M Almeida
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Catarina Mota
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Serviço de Medicina II, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal
| | - Andreia Gomes
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Marta Serrano
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Marc Veldhoen
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Ana E Sousa
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Susana M Fernandes
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Clinica Universitária de Medicina Intensiva, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Serviço de Medicina Intensiva, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal
| |
Collapse
|
13
|
Sellau J, Puengel T, Hoenow S, Groneberg M, Tacke F, Lotter H. Monocyte dysregulation: consequences for hepatic infections. Semin Immunopathol 2021; 43:493-506. [PMID: 33829283 PMCID: PMC8025899 DOI: 10.1007/s00281-021-00852-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/04/2021] [Indexed: 02/07/2023]
Abstract
Liver disorders due to infections are a substantial health concern in underdeveloped and industrialized countries. This includes not only hepatotropic viruses (e.g., hepatitis B, hepatitis C) but also bacterial and parasitic infections such as amebiasis, leishmaniasis, schistosomiasis, or echinococcosis. Recent studies of the immune mechanisms underlying liver disease show that monocytes play an essential role in determining patient outcomes. Monocytes are derived from the mononuclear phagocyte lineage in the bone marrow and are present in nearly all tissues of the body; these cells function as part of the early innate immune response that reacts to challenge by external pathogens. Due to their special ability to develop into tissue macrophages and dendritic cells and to change from an inflammatory to an anti-inflammatory phenotype, monocytes play a pivotal role in infectious and non-infectious liver diseases: they can maintain inflammation and support resolution of inflammation. Therefore, tight regulation of monocyte recruitment and termination of monocyte-driven immune responses in the liver is prerequisite to appropriate healing of organ damage. In this review, we discuss monocyte-dependent immune mechanisms underlying hepatic infectious disorders. Better understanding of these immune mechanisms may lead to development of new interventions to treat acute liver disease and prevent progression to organ failure.
Collapse
Affiliation(s)
- Julie Sellau
- Department of Molecular Biology and Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Tobias Puengel
- Department of Hepatology and Gastroenterology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Stefan Hoenow
- Department of Molecular Biology and Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Marie Groneberg
- Department of Molecular Biology and Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Hannelore Lotter
- Department of Molecular Biology and Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.
| |
Collapse
|
14
|
Gowri Sankar S, Alwin Prem Anand A. Cytokine IP-10 and GM-CSF are prognostic biomarkers for severity in secondary dengue infection. Hum Immunol 2021; 82:438-445. [PMID: 33766427 DOI: 10.1016/j.humimm.2021.03.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/01/2021] [Accepted: 03/11/2021] [Indexed: 02/07/2023]
Abstract
Dengue virus (DENV) infection is mostly prevalent in tropical and sub-tropical regions of the world. Though most DENV infections are self-limiting febrile like-illness, a small proportion of secondary infection is fatal, if untreated symptomatically. Among various factors involved in severe dengue, immune enhancement by cytokine is the major one. The objective of the study is to elucidate serum cytokine expression among primary and secondary infection and determine if any signature cytokine is correlated with disease severity. Seventy-six serum samples at acute time points were collected during the 2017 DENV outbreak in Madurai, Tamil Nadu. Among the 76 serum samples, 49 belong to primary and 27 to secondary DENV infection. Interestingly, a large number of primary infection presented with DHF/DSS symptoms and, children were found prone to DHF and DSS in secondary infection. The serum samples were analysed for inflammatory cytokines, namely IL-1β, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12, IL-17A, IFN-γ, TNF-α, IP-10 and GM-CSF using ELISA assay as well as mRNA analysis using qPCR. Among the 12 inflammatory cytokines analysed IP-10 and GMCSF mRNA and protein shows significant upregulation in secondary infection. Similarly, a strong correlation was observed between GM-CSF and IP-10 with thrombocytopenia, ascites, serous effusion and spontaneous bleeding. Based on the observations, GM-CSF and IP-10 could be a potential prognostic biomarkers for secondary DENV infection.
Collapse
Affiliation(s)
- S Gowri Sankar
- ICMR-Vector Control Research Center - Field Station, Madurai 625002, Tamil Nadu, India.
| | - A Alwin Prem Anand
- DBT - BIF Centre (Under DBT BTISNet Scheme), Lady Doak College, Madurai 625002, Tamil Nadu, India
| |
Collapse
|
15
|
Kvedaraite E, Hertwig L, Sinha I, Ponzetta A, Hed Myrberg I, Lourda M, Dzidic M, Akber M, Klingström J, Folkesson E, Muvva JR, Chen P, Gredmark-Russ S, Brighenti S, Norrby-Teglund A, Eriksson LI, Rooyackers O, Aleman S, Strålin K, Ljunggren HG, Ginhoux F, Björkström NK, Henter JI, Svensson M. Major alterations in the mononuclear phagocyte landscape associated with COVID-19 severity. Proc Natl Acad Sci U S A 2021; 118:e2018587118. [PMID: 33479167 PMCID: PMC8017719 DOI: 10.1073/pnas.2018587118] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Dendritic cells (DCs) and monocytes are crucial mediators of innate and adaptive immune responses during viral infection, but misdirected responses by these cells may contribute to immunopathology. Here, we performed high-dimensional flow cytometry-analysis focusing on mononuclear phagocyte (MNP) lineages in SARS-CoV-2-infected patients with moderate and severe COVID-19. We provide a deep and comprehensive map of the MNP landscape in COVID-19. A redistribution of monocyte subsets toward intermediate monocytes and a general decrease in circulating DCs was observed in response to infection. Severe disease coincided with the appearance of monocytic myeloid-derived suppressor cell-like cells and a higher frequency of pre-DC2. Furthermore, phenotypic alterations in MNPs, and their late precursors, were cell-lineage-specific and associated either with the general response against SARS-CoV-2 or COVID-19 severity. This included an interferon-imprint in DC1s observed in all patients and a decreased expression of the coinhibitory molecule CD200R in pre-DCs, DC2s, and DC3 subsets of severely sick patients. Finally, unsupervised analysis revealed that the MNP profile, alone, pointed to a cluster of COVID-19 nonsurvivors. This study provides a reference for the MNP response to SARS-CoV-2 infection and unravels mononuclear phagocyte dysregulations associated with severe COVID-19.
Collapse
Affiliation(s)
- Egle Kvedaraite
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, 171 77 Stockholm, Sweden;
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Laura Hertwig
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, 171 77 Stockholm, Sweden
| | - Indranil Sinha
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Andrea Ponzetta
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, 171 77 Stockholm, Sweden
| | - Ida Hed Myrberg
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Magda Lourda
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, 171 77 Stockholm, Sweden
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Majda Dzidic
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, 171 77 Stockholm, Sweden
| | - Mira Akber
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, 171 77 Stockholm, Sweden
| | - Jonas Klingström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, 171 77 Stockholm, Sweden
| | - Elin Folkesson
- Department of Infectious Diseases, Karolinska University Hospital, 171 77 Stockholm, Sweden
| | - Jagadeeswara Rao Muvva
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, 171 77 Stockholm, Sweden
| | - Puran Chen
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, 171 77 Stockholm, Sweden
| | - Sara Gredmark-Russ
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, 171 77 Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, 171 77 Stockholm, Sweden
| | - Susanna Brighenti
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, 171 77 Stockholm, Sweden
| | - Anna Norrby-Teglund
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, 171 77 Stockholm, Sweden
| | - Lars I Eriksson
- Department of Physiology and Pharmacology, Section for Anesthesiology and Intensive Care, Karolinska Institutet, 171 77 Stockholm, Sweden
- Function Perioperative Medicine and Intensive Care, Karolinska University Hospital, 171 77 Stockholm, Sweden
| | - Olav Rooyackers
- Function Perioperative Medicine and Intensive Care, Karolinska University Hospital, 171 77 Stockholm, Sweden
- Division of Anesthesiology and Intensive Care, Department of Clinical Science, Intervention, and Technology, Karolinska Institutet, 141 52 Huddinge, Sweden
| | - Soo Aleman
- Department of Infectious Diseases, Karolinska University Hospital, 171 77 Stockholm, Sweden
- Division of Infectious Diseases, Department of Medicine Huddinge, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Kristoffer Strålin
- Department of Infectious Diseases, Karolinska University Hospital, 171 77 Stockholm, Sweden
- Division of Infectious Diseases, Department of Medicine Huddinge, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Hans-Gustaf Ljunggren
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, 171 77 Stockholm, Sweden
| | - Florent Ginhoux
- Singapore Immunology Network, Agency for Science, Technology and Research, BIOPOLIS, 138648 Singapore, Singapore
- Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, 200240 Shanghai, China
- Translational Immunology Institute, SingHealth Duke-National University of Singapore Academic Medical Centre, 168753 Singapore, Singapore
| | - Niklas K Björkström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, 171 77 Stockholm, Sweden
| | - Jan-Inge Henter
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, 171 77 Stockholm, Sweden
- Pediatric Oncology, Theme of Children's Health, Karolinska University Hospital, 171 77 Stockholm, Sweden
| | - Mattias Svensson
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, 171 77 Stockholm, Sweden
| |
Collapse
|
16
|
Gomes VJ, Nunes PR, Matias ML, Ribeiro VR, Devides AC, Bannwart-Castro CF, Romagnoli GG, Peraçoli JC, Peraçoli MTS, Romao-Veiga M. Silibinin induces in vitro M2-like phenotype polarization in monocytes from preeclamptic women. Int Immunopharmacol 2020; 89:107062. [PMID: 33045562 DOI: 10.1016/j.intimp.2020.107062] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 09/02/2020] [Accepted: 09/28/2020] [Indexed: 12/31/2022]
Abstract
Preeclampsia (PE) is a pregnancy-specific syndrome featuring intense activation of circulating monocytes and an imbalance between pro- and anti-inflammatory cytokines. The present study evaluated the immunomodulatory effect of silibinin (Sb) on the expression of surface markers and the nuclear transcription factor NF-κB signalling pathway of monocytes from preeclamptic women. Monocytes were cultured with or without Sb, and the mean fluorescence intensity of the surface molecules TLR4, CD64, and CD163 as well as the intracellular transcription factors IκB-α and NF-κBp65 was analysed by flow cytometry. The concentration of cytokines in the monocyte culture supernatant was determined by cytometric bead array and ELISA immunoassay. The results showed that the in vitro treatment of monocytes from preeclamptic women with Sb downregulated the endogenous activation of NF-κB and the expression of surface receptors TLR4 and CD64, and reduced the synthesis of the pro-inflammatory cytokines interleukin 1 (IL-1β), IL-6, IL-8, IL-12p70, IL-23, and tumour necrosis factor alpha (TNF-α) compared with cultures not treated with Sb. The presence of this flavonoid in monocyte cultures increased the expression of CD163 and IκBα and the release of IL-10 and transforming growth factor beta (TGF-β) in the culture supernatants, polarising these cells from the M1-like profile to the M2-like profile. The anti-inflammatory activity of Sb on the NF-κB activation pathway and induction of cell polarisation to the M2 profile was confirmed by an in vitro assay using monocytes from healthy, non-pregnant women. Treatment of monocytes from preeclamptic women with Sb polarises the cells to the M2-like phenotype, suggesting that this flavonoid has an immunomodulatory effect on the sterile inflammation characteristic of PE.
Collapse
Affiliation(s)
- Virgínia Juliani Gomes
- Botucatu Medical School, Sao Paulo State University (Unesp), Botucatu, Sao Paulo, Brazil
| | - Priscila Rezeck Nunes
- Botucatu Medical School, Sao Paulo State University (Unesp), Botucatu, Sao Paulo, Brazil
| | - Mariana Letícia Matias
- Botucatu Medical School, Sao Paulo State University (Unesp), Botucatu, Sao Paulo, Brazil
| | - Vanessa Rocha Ribeiro
- Botucatu Medical School, Sao Paulo State University (Unesp), Botucatu, Sao Paulo, Brazil
| | | | | | - Graziela Gorete Romagnoli
- Department Health Science, Oeste Paulista University (UNOESTE), Jau, Sao Paulo, Brazil; Institute of Biosciences of Botucatu, Sao Paulo State University (Unesp), Botucatu, Sao Paulo, Brazil
| | - José Carlos Peraçoli
- Botucatu Medical School, Sao Paulo State University (Unesp), Botucatu, Sao Paulo, Brazil
| | | | - Mariana Romao-Veiga
- Botucatu Medical School, Sao Paulo State University (Unesp), Botucatu, Sao Paulo, Brazil.
| |
Collapse
|
17
|
Schulte-Schrepping J, Reusch N, Paclik D, Baßler K, Schlickeiser S, Zhang B, Krämer B, Krammer T, Brumhard S, Bonaguro L, De Domenico E, Wendisch D, Grasshoff M, Kapellos TS, Beckstette M, Pecht T, Saglam A, Dietrich O, Mei HE, Schulz AR, Conrad C, Kunkel D, Vafadarnejad E, Xu CJ, Horne A, Herbert M, Drews A, Thibeault C, Pfeiffer M, Hippenstiel S, Hocke A, Müller-Redetzky H, Heim KM, Machleidt F, Uhrig A, Bosquillon de Jarcy L, Jürgens L, Stegemann M, Glösenkamp CR, Volk HD, Goffinet C, Landthaler M, Wyler E, Georg P, Schneider M, Dang-Heine C, Neuwinger N, Kappert K, Tauber R, Corman V, Raabe J, Kaiser KM, Vinh MT, Rieke G, Meisel C, Ulas T, Becker M, Geffers R, Witzenrath M, Drosten C, Suttorp N, von Kalle C, Kurth F, Händler K, Schultze JL, Aschenbrenner AC, Li Y, Nattermann J, Sawitzki B, Saliba AE, Sander LE. Severe COVID-19 Is Marked by a Dysregulated Myeloid Cell Compartment. Cell 2020; 182:1419-1440.e23. [PMID: 32810438 PMCID: PMC7405822 DOI: 10.1016/j.cell.2020.08.001] [Citation(s) in RCA: 1047] [Impact Index Per Article: 209.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/13/2020] [Accepted: 07/31/2020] [Indexed: 02/07/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is a mild to moderate respiratory tract infection, however, a subset of patients progress to severe disease and respiratory failure. The mechanism of protective immunity in mild forms and the pathogenesis of severe COVID-19 associated with increased neutrophil counts and dysregulated immune responses remain unclear. In a dual-center, two-cohort study, we combined single-cell RNA-sequencing and single-cell proteomics of whole-blood and peripheral-blood mononuclear cells to determine changes in immune cell composition and activation in mild versus severe COVID-19 (242 samples from 109 individuals) over time. HLA-DRhiCD11chi inflammatory monocytes with an interferon-stimulated gene signature were elevated in mild COVID-19. Severe COVID-19 was marked by occurrence of neutrophil precursors, as evidence of emergency myelopoiesis, dysfunctional mature neutrophils, and HLA-DRlo monocytes. Our study provides detailed insights into the systemic immune response to SARS-CoV-2 infection and reveals profound alterations in the myeloid cell compartment associated with severe COVID-19.
Collapse
Affiliation(s)
| | - Nico Reusch
- Life and Medical Sciences (LIMES) Institute, University of Bonn, Germany
| | - Daniela Paclik
- Institute of Medical Immunology, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Kevin Baßler
- Life and Medical Sciences (LIMES) Institute, University of Bonn, Germany
| | - Stephan Schlickeiser
- Institute of Medical Immunology, Charité, Universitätsmedizin Berlin, Berlin, Germany; BIH Center for Regenerative Therapies, Charité, Universitätsmedizin Berlin, and Berlin Institute of Health (BIH) Berlin, Germany
| | - Bowen Zhang
- Centre for Individualised Infection Medicine (CiiM) and TWINCORE, joint ventures between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Benjamin Krämer
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
| | - Tobias Krammer
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Center for Infection Research (HZI), Würzburg, Germany
| | - Sophia Brumhard
- Department of Infectious Diseases and Respiratory Medicine, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Lorenzo Bonaguro
- Life and Medical Sciences (LIMES) Institute, University of Bonn, Germany
| | - Elena De Domenico
- German Center for Neurodegenerative Diseases (DZNE), PRECISE Platform for Genomics and Epigenomics at DZNE, and University of Bonn, Bonn, Germany
| | - Daniel Wendisch
- Department of Infectious Diseases and Respiratory Medicine, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Martin Grasshoff
- Centre for Individualised Infection Medicine (CiiM) and TWINCORE, joint ventures between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | | | - Michael Beckstette
- Centre for Individualised Infection Medicine (CiiM) and TWINCORE, joint ventures between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Tal Pecht
- Life and Medical Sciences (LIMES) Institute, University of Bonn, Germany
| | - Adem Saglam
- German Center for Neurodegenerative Diseases (DZNE), PRECISE Platform for Genomics and Epigenomics at DZNE, and University of Bonn, Bonn, Germany
| | - Oliver Dietrich
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Center for Infection Research (HZI), Würzburg, Germany
| | - Henrik E Mei
- Mass Cytometry Lab, DRFZ Berlin, a Leibniz Institute, Berlin, Germany
| | - Axel R Schulz
- Mass Cytometry Lab, DRFZ Berlin, a Leibniz Institute, Berlin, Germany
| | - Claudia Conrad
- Department of Infectious Diseases and Respiratory Medicine, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Désirée Kunkel
- Flow and Mass Cytometry Core Facility, Charité, Universitätsmedizin Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Ehsan Vafadarnejad
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Center for Infection Research (HZI), Würzburg, Germany
| | - Cheng-Jian Xu
- Centre for Individualised Infection Medicine (CiiM) and TWINCORE, joint ventures between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany; Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Arik Horne
- Life and Medical Sciences (LIMES) Institute, University of Bonn, Germany
| | - Miriam Herbert
- Life and Medical Sciences (LIMES) Institute, University of Bonn, Germany
| | - Anna Drews
- German Center for Neurodegenerative Diseases (DZNE), PRECISE Platform for Genomics and Epigenomics at DZNE, and University of Bonn, Bonn, Germany
| | - Charlotte Thibeault
- Department of Infectious Diseases and Respiratory Medicine, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Moritz Pfeiffer
- Department of Infectious Diseases and Respiratory Medicine, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Stefan Hippenstiel
- Department of Infectious Diseases and Respiratory Medicine, Charité, Universitätsmedizin Berlin, Berlin, Germany; German Center for Lung Research (DZL)
| | - Andreas Hocke
- Department of Infectious Diseases and Respiratory Medicine, Charité, Universitätsmedizin Berlin, Berlin, Germany; German Center for Lung Research (DZL)
| | - Holger Müller-Redetzky
- Department of Infectious Diseases and Respiratory Medicine, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Katrin-Moira Heim
- Department of Infectious Diseases and Respiratory Medicine, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Felix Machleidt
- Department of Infectious Diseases and Respiratory Medicine, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Alexander Uhrig
- Department of Infectious Diseases and Respiratory Medicine, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Laure Bosquillon de Jarcy
- Department of Infectious Diseases and Respiratory Medicine, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Linda Jürgens
- Department of Infectious Diseases and Respiratory Medicine, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Miriam Stegemann
- Department of Infectious Diseases and Respiratory Medicine, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Christoph R Glösenkamp
- Department of Infectious Diseases and Respiratory Medicine, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Hans-Dieter Volk
- Institute of Medical Immunology, Charité, Universitätsmedizin Berlin, Berlin, Germany; BIH Center for Regenerative Therapies, Charité, Universitätsmedizin Berlin, and Berlin Institute of Health (BIH) Berlin, Germany; Department of Immunology, Labor Berlin-Charité Vivantes, Berlin, Germany
| | - Christine Goffinet
- Institute of Virology, Charité Universitätsmedizin Berlin, Berlin, Germany; Berlin Institute of Health (BIH), Berlin, Germany
| | - Markus Landthaler
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Emanuel Wyler
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Philipp Georg
- Department of Infectious Diseases and Respiratory Medicine, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Maria Schneider
- Institute of Medical Immunology, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Chantip Dang-Heine
- Clinical Study Center (CSC), Charité, Universitätsmedizin Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Nick Neuwinger
- Department of Immunology, Labor Berlin-Charité Vivantes, Berlin, Germany; Institute of Laboratory Medicine, Clinical Chemistry, and Pathobiochemistry, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Kai Kappert
- Department of Immunology, Labor Berlin-Charité Vivantes, Berlin, Germany; Institute of Laboratory Medicine, Clinical Chemistry, and Pathobiochemistry, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Rudolf Tauber
- Department of Immunology, Labor Berlin-Charité Vivantes, Berlin, Germany; Institute of Laboratory Medicine, Clinical Chemistry, and Pathobiochemistry, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Victor Corman
- Institute of Virology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Jan Raabe
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
| | - Kim Melanie Kaiser
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
| | - Michael To Vinh
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
| | - Gereon Rieke
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
| | - Christian Meisel
- Institute of Medical Immunology, Charité, Universitätsmedizin Berlin, Berlin, Germany; Department of Immunology, Labor Berlin-Charité Vivantes, Berlin, Germany
| | - Thomas Ulas
- German Center for Neurodegenerative Diseases (DZNE), PRECISE Platform for Genomics and Epigenomics at DZNE, and University of Bonn, Bonn, Germany
| | - Matthias Becker
- German Center for Neurodegenerative Diseases (DZNE), PRECISE Platform for Genomics and Epigenomics at DZNE, and University of Bonn, Bonn, Germany
| | - Robert Geffers
- Genome Analytics, Helmholtz-Center for Infection Research (HZI), Braunschweig, Germany
| | - Martin Witzenrath
- Department of Infectious Diseases and Respiratory Medicine, Charité, Universitätsmedizin Berlin, Berlin, Germany; German Center for Lung Research (DZL)
| | - Christian Drosten
- Institute of Virology, Charité Universitätsmedizin Berlin, Berlin, Germany; German Center for Infection Research (DZIF)
| | - Norbert Suttorp
- Department of Infectious Diseases and Respiratory Medicine, Charité, Universitätsmedizin Berlin, Berlin, Germany; German Center for Lung Research (DZL)
| | - Christof von Kalle
- Clinical Study Center (CSC), Charité, Universitätsmedizin Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Florian Kurth
- Department of Infectious Diseases and Respiratory Medicine, Charité, Universitätsmedizin Berlin, Berlin, Germany; Department of Tropical Medicine, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany; I. Department of Medicine, University Medical Center, Hamburg-Eppendorf, Hamburg, Germany
| | - Kristian Händler
- German Center for Neurodegenerative Diseases (DZNE), PRECISE Platform for Genomics and Epigenomics at DZNE, and University of Bonn, Bonn, Germany
| | - Joachim L Schultze
- Life and Medical Sciences (LIMES) Institute, University of Bonn, Germany; German Center for Neurodegenerative Diseases (DZNE), PRECISE Platform for Genomics and Epigenomics at DZNE, and University of Bonn, Bonn, Germany.
| | - Anna C Aschenbrenner
- Life and Medical Sciences (LIMES) Institute, University of Bonn, Germany; Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Yang Li
- Centre for Individualised Infection Medicine (CiiM) and TWINCORE, joint ventures between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany; Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jacob Nattermann
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany; German Center for Infection Research (DZIF)
| | - Birgit Sawitzki
- Institute of Medical Immunology, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Antoine-Emmanuel Saliba
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Center for Infection Research (HZI), Würzburg, Germany
| | - Leif Erik Sander
- Department of Infectious Diseases and Respiratory Medicine, Charité, Universitätsmedizin Berlin, Berlin, Germany; German Center for Lung Research (DZL)
| |
Collapse
|
18
|
Mendes-Frias A, Santos-Lima B, Furtado DZS, Ruperez FJ, Assunção NA, Matias MJ, Gomes V, Gaifem J, Barbas C, Castro AG, Capela C, Silvestre R. Dysregulation of glycerophospholipid metabolism during Behçet's disease contributes to a pro-inflammatory phenotype of circulating monocytes. J Transl Autoimmun 2020; 3:100056. [PMID: 32743536 PMCID: PMC7388368 DOI: 10.1016/j.jtauto.2020.100056] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 05/04/2020] [Indexed: 12/15/2022] Open
Abstract
Behçet's disease (BD) is a relapsing, multisystem and inflammatory condition characterized by systemic vasculitis of small and large vessels. Although the etiopathogenesis of BD remains unknown, immune-mediated mechanisms play a major role in the development of the disease. BD patients present leukocyte infiltration in the mucocutaneous lesions as well as neutrophil hyperactivation. In contrast to neutrophils, whose involvement in the pathogenesis of BD has been extensively studied, the biology of monocytes during BD is less well known. In this study, we analyzed the phenotype and function of circulating monocytes of 38 BD patients from Hospital of Braga. In addition, we evaluated the impact of inflammatory and metabolomic plasma environment on monocyte biology. We observed a worsening of mitochondrial function, with lower mitochondrial mass and increased ROS production, on circulating monocytes of BD patients. Incubation of monocytes from healthy donors with the plasma of BD patients mimicked the observed phenotype, strongly suggesting the involvement of serum mediators. BD patients, regardless of their symptoms, had higher serum pro-inflammatory TNF-α and IP-10 levels and IL-1β/IL-1RA ratio. Untargeted metabolomic analysis identified a dysregulation of glycerophospholipid metabolism on BD patients, where a significant reduction of phospholipids was observed concomitantly with an increase of lysophospholipids and fatty acids. These observations converged to an enhanced phospholipase A2 (PLA2) activation. Indeed, inhibition of PLA2 with dexamethasone or the downstream cyclooxygenase (COX) enzyme with ibuprofen was able to significantly revert the mitochondrial dysfunction observed on monocytes of BD patients. Our results show that the plasma inflammatory environment coupled with a dysregulation of glycerophospholipid metabolism in BD patients contribute to a dysfunction of circulating monocytes.
Collapse
Affiliation(s)
- Ana Mendes-Frias
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Bruno Santos-Lima
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Danielle Zildeana Sousa Furtado
- Center for Metabolomics and Bioanalysis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, 28660, Madrid, Spain
- Laboratório de Radicais Livres em Sistemas Biológicos e Bioanalítica, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Brazil
| | - Francisco J. Ruperez
- Center for Metabolomics and Bioanalysis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, 28660, Madrid, Spain
| | - Nilson Antonio Assunção
- Laboratório de Radicais Livres em Sistemas Biológicos e Bioanalítica, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Brazil
| | - Maria João Matias
- Autoimmune Disease Unit, Department of Internal Medicine, Hospital of Braga, Braga, Portugal
- Clinical Academic Center-Braga, Braga, Portugal
| | - Vânia Gomes
- Autoimmune Disease Unit, Department of Internal Medicine, Hospital of Braga, Braga, Portugal
- Clinical Academic Center-Braga, Braga, Portugal
| | - Joana Gaifem
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Coral Barbas
- Center for Metabolomics and Bioanalysis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, 28660, Madrid, Spain
| | - António Gil Castro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Carlos Capela
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga, Guimarães, Portugal
- Autoimmune Disease Unit, Department of Internal Medicine, Hospital of Braga, Braga, Portugal
- Clinical Academic Center-Braga, Braga, Portugal
| | - Ricardo Silvestre
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga, Guimarães, Portugal
| |
Collapse
|
19
|
Zhang S, Huo X, Li M, Hou R, Cong X, Xu X. Oral antimicrobial activity weakened in children with electronic waste lead exposure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:14763-14770. [PMID: 32056098 DOI: 10.1007/s11356-020-08037-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 02/10/2020] [Indexed: 02/05/2023]
Abstract
Environmental lead (Pb) exposure can induce dysbacteriosis, impair oral health, and is associated with the development of dental caries. However, the mechanism is unclear. The aim of this study was to explore the effects of Pb toxicity on oral antimicrobial activity in children in an e-waste area. Results showed higher blood Pb levels in e-waste-exposed group children, accompanied by decreased saliva SAG (salivary agglutinin) concentrations, increased peripheral WBC (white blood cell) counts and monocyte counts, and elevated peripheral monocyte percentage. LnPb (natural logarithmic transformation of blood Pb level) was negatively correlated with saliva SAG concentration, while positively correlated with peripheral monocyte percentage. Saliva SAG concentration played a complete mediating role in the correlation of LnPb to peripheral monocyte percentage. To our knowledge, this is the first study on the relationship of environmental Pb exposure and oral antimicrobial activity in children, showing that environmental Pb exposure may weaken oral antimicrobial activity through reducing saliva SAG concentration, which may raise the risk of oral dysbacteriosis and ultimately pathogen infection.
Collapse
Affiliation(s)
- Shaocheng Zhang
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, 22 Xinling Rd, Shantou, 515041, Guangdong, China
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511486, Guangdong, China
| | - Minghui Li
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, 22 Xinling Rd, Shantou, 515041, Guangdong, China
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, The Netherlands
| | - Ruikun Hou
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, 22 Xinling Rd, Shantou, 515041, Guangdong, China
| | - Xiaowei Cong
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, 22 Xinling Rd, Shantou, 515041, Guangdong, China
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, The Netherlands
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, 22 Xinling Rd, Shantou, 515041, Guangdong, China.
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, 515041, Guangdong, China.
| |
Collapse
|
20
|
Martínez-Rojas PP, Quiroz-García E, Monroy-Martínez V, Agredano-Moreno LT, Jiménez-García LF, Ruiz-Ordaz BH. Participation of Extracellular Vesicles from Zika-Virus-Infected Mosquito Cells in the Modification of Naïve Cells' Behavior by Mediating Cell-to-Cell Transmission of Viral Elements. Cells 2020; 9:cells9010123. [PMID: 31947958 PMCID: PMC7016930 DOI: 10.3390/cells9010123] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/28/2019] [Accepted: 12/31/2019] [Indexed: 12/12/2022] Open
Abstract
To date, no safe vaccine or antivirals for Zika virus (ZIKV) infection have been found. The pathogenesis of severe Zika, where host and viral factors participate, remains unclear. For the control of Zika, it is important to understand how ZIKV interacts with different host cells. Knowledge of the targeted cellular pathways which allow ZIKV to productively replicate and/or establish prolonged viral persistence contributes to novel vaccines and therapies. Monocytes and endothelial vascular cells are the main ZIKV targets. During the infection process, cells are capable of releasing extracellular vesicles (EVs). EVs are mediators of intercellular communication. We found that mosquito EVs released from ZIKV-infected (C6/36) cells carry viral RNA and ZIKV-E protein and are able to infect and activate naïve mosquito and mammalian cells. ZIKV C6/36 EVs promote the differentiation of naïve monocytes and induce a pro-inflammatory state with tumor necrosis factor-alpha (TNF-α) mRNA expression. ZIKV C6/36 EVs participate in endothelial vascular cell damage by inducing coagulation (TF) and inflammation (PAR-1) receptors at the endothelial surface of the cell membranes and promote a pro-inflammatory state with increased endothelial permeability. These data suggest that ZIKV C6/36 EVs may contribute to the pathogenesis of ZIKV infection in human hosts.
Collapse
Affiliation(s)
- Pedro Pablo Martínez-Rojas
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Av. Universidad 3000, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, México; (P.P.M.-R.); (E.Q.-G.); (V.M.-M.)
| | - Elizabeth Quiroz-García
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Av. Universidad 3000, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, México; (P.P.M.-R.); (E.Q.-G.); (V.M.-M.)
| | - Verónica Monroy-Martínez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Av. Universidad 3000, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, México; (P.P.M.-R.); (E.Q.-G.); (V.M.-M.)
| | - Lourdes Teresa Agredano-Moreno
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Av. Universidad 3000, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, México; (L.T.A.-M.); (L.F.J.-G.)
| | - Luis Felipe Jiménez-García
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Av. Universidad 3000, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, México; (L.T.A.-M.); (L.F.J.-G.)
| | - Blanca H. Ruiz-Ordaz
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Av. Universidad 3000, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, México; (P.P.M.-R.); (E.Q.-G.); (V.M.-M.)
- Correspondence: or ; Tel.: +521-55-56228931
| |
Collapse
|
21
|
Naranjo-Gómez JS, Castillo-Ramírez JA, Velilla-Hernández PA, Castaño-Monsalve DM. Inmunopatología del dengue: importancia y participación de los monocitos y sus subpoblaciones. IATREIA 2019. [DOI: 10.17533/udea.iatreia.09] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
El dengue es una infección viral aguda transmitida por la picadura de mosquitos del género Aedes, la cual produce hasta 100 millones de infecciones anuales en el mundo. Una gran proporción de individuos infectados con el virus presentan infecciones asintomáticas. Sin embargo, de los individuos que desarrollan la enfermedad, el 95 % presentan signos y síntomas similares a una virosis común, que por lo general se autoresuelven (dengue con y sin signos de alarma). El 5 % restante puede evolucionar a manifestaciones graves, caracterizadas por hemorragias, daño orgánico, choque hipovolémico e incluso la muerte (dengue grave).Los monocitos son uno de los blancos principales de la infección producida por el virus del dengue (DENV), los cuales participan en la replicación del mismo y en la producción de una gran variedad de citoquinas que contribuyen con el daño de diferentes tejidos y órganos en respuesta a la infección. Los monocitos se dividen en tres subpoblaciones: clásica (CD14++CD16-), no clásica (CD14+CD16++) e intermedia (CD14++CD16+), las cuales poseen respuestas funcionales contrastantes en diferentes procesos inflamatorios, en cuanto a la producción de mediadores solubles e interacción con el endotelio. Los monocitos no clásicos parecen ser los principales productores de mediadores inflamatorios como el TNF-α y la IL-1β en respuesta a la infección por DENV. Por lo tanto, se propone que cada subpoblación de monocitos debe tener un papel diferencial en la inmunopatología de la enfermedad.En esta revisión se recopilan los principales aspectos de la replicación viral y la inmunopatología del dengue, así como los principales hallazgos referentes al papel de los monocitos en esta infección y además, se propone un papel potencial y diferencial de las subpoblaciones de monocitos.
Collapse
|