1
|
Wu J, Zhang F, Li Z, Gan L, Cao H, Cao H, Hao C, Sun Z, Wang W. Multiple omics-based machine learning reveals specific macrophage sub-clusters in renal ischemia-reperfusion injury and constructs predictive models for transplant outcomes. Comput Biol Chem 2025; 117:108421. [PMID: 40086342 DOI: 10.1016/j.compbiolchem.2025.108421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/24/2025] [Accepted: 03/03/2025] [Indexed: 03/16/2025]
Abstract
BACKGROUND Ischemia-reperfusion injury (IRI) is closely associated with numerous severe postoperative complications, including acute rejection, delayed graft function (DGF) and graft failure. Macrophages are central to modulating the aseptic inflammatory response during the IRI process. The objective of this study is to conduct an analysis of the developmental and differentiation characteristics of macrophages in IRI, identify distinct molecules subtypes of IRI, and establish robust predictive strategies for DGF and graft survival. METHOD We analyzed scRNA-Seq data from GEO database to identify macrophage sub-clusters specific to renal IRI, and use the hdWGCNA algorithm to screen gene modules closely associated with this sub-cluster. Integrating these module genes with the results from bulk RNA-Seq differential analysis to obtain hub genes, and delineating the different IRI molecular subtypes through consensus clustering based on the expression profiles of hub genes. Innovatively, the gene expression matrix was transformed into a unique graphic pixel module and applied advanced computer vision processing algorithms to construct a DGF predictive model. Additionally, we also employed 111 combinations of 10 machine learning algorithms to develop a predictive signature for graft survival. Finally, we validated the expression of the key gene ANXA1 in a mouse IRI model using qRT-PCR, WB, and IHC. RESULT This study successfully identified a subset of macrophages closely associated with renal IRI, and cell communication and pseudo-time analysis implied that they may be instrumental in both the maintenance and exacerbation of the IRI process. Utilizing the expression patterns of hub genes, recipients can be clustered into two subtypes (CI and C2) with unique clinical and molecular features. We innovatively applied deep learning algorithms to construct a model for DGF prediction, which can effectively mitigate batch effects among IRI recipients. Compared to other existing models, our model demonstrated superior performance with AUC of 0.816 and 0.845 in the training and validation set. Furthermore, we also used the random survival forest algorithm to develop a high-precision predictive signature for graft failure. The mouse IRI model confirmed a marked upregulation of ANXA1 mRNA and protein expression in renal tissue following IRI. CONCLUSION This study successfully revealed the macrophage sub-cluster closely associated with renal IRI. Two distinct IRI subgroups with different characteristics were identified and robust strategies were constructed for predicting DGF and graft survival, which can offer potential therapeutic targets for the treatment of IRI and reference for early prevention of various postoperative complications.
Collapse
Affiliation(s)
- Jiyue Wu
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China; Institute of Urology, Capital Medical University, Beijing, China
| | - Feilong Zhang
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China; Institute of Urology, Capital Medical University, Beijing, China
| | - Zhen Li
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China; Institute of Urology, Capital Medical University, Beijing, China
| | - Lijian Gan
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China; Institute of Urology, Capital Medical University, Beijing, China
| | - Haoyuan Cao
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China; Institute of Urology, Capital Medical University, Beijing, China
| | - Huawei Cao
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China; Institute of Urology, Capital Medical University, Beijing, China
| | - Changzhen Hao
- Department of Urology, Peking University International Hospital, Beijing, China.
| | - Zejia Sun
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China; Institute of Urology, Capital Medical University, Beijing, China.
| | - Wei Wang
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China; Institute of Urology, Capital Medical University, Beijing, China.
| |
Collapse
|
2
|
Yao P, Ju H, Song A, Wang Y, Xin G, Wang G, Ma J, Guo M. Ruxolitinib suppresses tumor growth in PTEN-deficient glioblastoma by inhibiting the STAT3-PDL1 axis-mediated the M2 polarization of macrophages. Int Immunopharmacol 2025; 155:114629. [PMID: 40239334 DOI: 10.1016/j.intimp.2025.114629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/29/2025] [Accepted: 04/05/2025] [Indexed: 04/18/2025]
Abstract
BACKGROUND Glioblastoma (GBM) is the most malignant form of brain tumor, and GBM patients with poorer prognosis and highly immunosuppressive tumor microenvironment (TME) often exhibit PTEN deficiency in their tumor tissues. Therefore, new therapeutic strategies targeting immunosuppressive TME maybe useful in PTEN-deficient GBM. METHODS Bioinformatics was used to assess gene expression, survival time and immunoinfiltration in PTEN-deficient GBM. CRISPR-Cas9 was used to construct gene knockout cell lines. C57BL/6 mouse orthotopic GBM models were used to conduct survival analysis and evaluate treatment effect of Ruxolitinib. Flow cytometry, immunohistochemistry, immunofluorescence and quantitative real-time PCR (qRT-PCR) to detect the polarization of macrophages. Immunoblotting, immunohistochemistry, qRT-PCR, enzyme linked immunosorbent assay, and dual-luciferase reporter assay were used to conduct mechanism research. RESULTS We identified that the elevated levels of phosphorylated STAT3 (p-STAT3) in PTEN-deficient GBM facilitate PDL1 transcription, which subsequently drives M2 polarization of macrophages. Furthermore, PTEN deficiency, along with high expression levels of STAT3 and PDL1, are associated with a shorter survival time in GBM patients. Notably, in orthotopic mouse models of GBM with PTEN deficiency, Ruxolitinib therapy reduces the levels of p-STAT3 and PDL1, inhibits the infiltration of M2 macrophages, and suppresses tumor growth. CONCLUSIONS The STAT3-PDL1 axis plays a crucial role in the M2 polarization of macrophages in PTEN-deficient GBM. The blockade of the STAT3-PDL1 axis by Ruxolitinib regulates the anti-tumor immune response and curtails tumor progression in PTEN-deficient GBM, highlighting its significant clinical implications.
Collapse
Affiliation(s)
- Penglei Yao
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Huanyu Ju
- Department of Immunology, Harbin Medical University, Harbin, China
| | - Aohua Song
- Department of Immunology, Harbin Medical University, Harbin, China
| | - Yue Wang
- Department of Immunology, Harbin Medical University, Harbin, China
| | - Guoshun Xin
- Department of Immunology, Harbin Medical University, Harbin, China
| | - Guangzhi Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Jian Ma
- Department of Immunology, Harbin Medical University, Harbin, China; Department of Hepatopancreatobiliary, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Mian Guo
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
3
|
Dai F, Li J, Liu Y. Phosphatase and tensin homolog deficiency induces M2 macrophage polarization by promoting glycolytic activity in endometrial stromal cells. Biol Reprod 2025; 112:640-650. [PMID: 40037921 DOI: 10.1093/biolre/ioaf016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 12/30/2024] [Accepted: 03/02/2025] [Indexed: 03/06/2025] Open
Abstract
Endometriosis is a common gynecological disorder, whose pathogenesis remains incompletely understood. Macrophages, a key type of immune cell, are pivotal in the context of endometriosis. This study seeks to explore the interactions between endometriotic cells and macrophages. Quantitative real-time PCR (qRT-PCR) and Western blot experiments were employed to detect phosphatase and tensin homolog (PTEN) expression. Glucose consumption, lactate production, extracellular acidification rate, and oxygen consumption rate levels were used to assess cellular glycolytic capacity. The interaction between conditioned media from ectopic endometrial stromal cells (EESCs) and macrophages was investigated through co-culture experiments. The expression of M2 macrophage marker proteins and inflammatory factors was detected via qRT-PCR, immunofluorescence staining, and enzyme-linked immunosorbent assay. Cellular functions were evaluated using Cell Counting Kit-8, 5-Ethynyl-2'-deoxyuridine (EdU), and wound healing assays. We found that PTEN deficiency promoted the glycolytic activity of EESCs. Simultaneously, it significantly promoted the macrophages' polarization toward the M2 phenotype, demonstrated by increased expression of M2 markers (differentiation 206 (CD206), CD163, and (C-C motif) ligand 22 (CCL22)). Further studies revealed that PTEN-deficient EESCs increased the level of CCL2 via promoting glycolytic activity, which was reversed by glycolytic inhibitor. Moreover, lactate and conditioned media from overexpressed CCL2 EESCs facilitated M2 polarization of macrophages, while 2-deoxy-d-glucose reversed the promoting effect. Furthermore, lactate-facilitated macrophages promoted the proliferation and migration abilities of EESCs. PTEN deficiency induces M2 macrophage polarization by promoting glycolytic activity in EESCs, which deepens the knowledge of the pathophysiology of endometriosis and provides novel insights into its treatment.
Collapse
Affiliation(s)
- Fengqin Dai
- Department of Gynaecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jinjin Li
- Department of Gynaecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yingwei Liu
- Department of Gynaecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
4
|
Wang H, Gan Z, Wang Y, Hu D, Zhang L, Ye F, Duan P. A Noninvasive Menstrual Blood-Based Diagnostic Platform for Endometriosis Using Digital Droplet Enzyme-Linked Immunosorbent Assay and Single-Cell RNA Sequencing. RESEARCH (WASHINGTON, D.C.) 2025; 8:0652. [PMID: 40171018 PMCID: PMC11961069 DOI: 10.34133/research.0652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 02/27/2025] [Accepted: 03/08/2025] [Indexed: 04/03/2025]
Abstract
Endometriosis is marked by the ectopic growth, spread, and invasion of endometrial tissue beyond the uterus, resulting in recurrent bleeding, pain, reproductive challenges, and the formation of nodules or masses. Despite advancements in detection methods like ultrasound and laparoscopy, these techniques remain limited by low specificity and invasiveness, underscoring the need for a highly specific, noninvasive in vitro diagnostic method. This study investigates the potential of using menstrual blood as a noninvasive diagnostic sample for endometriosis by targeting genetic and inflammatory markers associated with endometriosis lesions. A novel digital droplet enzyme-linked immunosorbent assay (ddELISA) was developed, leveraging SiO2 nanoparticles for the femtomolar-sensitive detection of inflammatory cytokines (OPN, IL-10, IL-6) in menstrual blood. Single-cell RNA sequencing revealed differentiation patterns across endometrial tissues and menstrual blood, affirming that menstrual blood replicates key inflammatory and immune properties of endometriosis. Furthermore, endometriosis menstrual blood endometrial cells derived from human menstrual blood displayed similar properties to endometrial stromal cells in endometriosis lesions, validating menstrual blood as a suitable in vitro diagnostic sample. In contrast to traditional ELISA, ddELISA supports multi-target detection with enhanced sensitivity and reduced processing time, allowing precise biomarker analysis from minimal sample volumes. Our ddELISA-based approach shows promise as a rapid, accessible, and accurate diagnostic tool for endometriosis, with potential for practical clinical application.
Collapse
Affiliation(s)
- Han Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Oncology Discipline Group,
The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Zhouyi Gan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Oncology Discipline Group,
The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yueyue Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Oncology Discipline Group,
The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Dingmeng Hu
- Joint Centre of Translational Medicine,
The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), Wenzhou Institute,
University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Lexiang Zhang
- Joint Centre of Translational Medicine,
The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), Wenzhou Institute,
University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Fangfu Ye
- Joint Centre of Translational Medicine,
The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), Wenzhou Institute,
University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics,
Chinese Academy of Sciences, Beijing 100190, China
| | - Ping Duan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Oncology Discipline Group,
The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| |
Collapse
|
5
|
Li P, Fan Z, Huang Y, Luo L, Wu X. Mitochondrial dynamics at the intersection of macrophage polarization and metabolism. Front Immunol 2025; 16:1520814. [PMID: 40196123 PMCID: PMC11973336 DOI: 10.3389/fimmu.2025.1520814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 03/04/2025] [Indexed: 04/09/2025] Open
Abstract
Macrophages are vital sentinels in innate immunity, and their functions cannot be performed without internal metabolic reprogramming. Mitochondrial dynamics, especially mitochondrial fusion and fission, contributes to the maintenance of mitochondrial homeostasis. The link between mitochondrial dynamics and macrophages in the past has focused on the immune function of macrophages. We innovatively summarize and propose a link between mitochondrial dynamics and macrophage metabolism. Among them, fusion-related FAM73b, MTCH2, SLP-2 (Stomatin-like protein 2), and mtSIRT, and fission-related Fis1 and MTP18 may be the link between mitochondrial dynamics and macrophage metabolism association. Furthermore, post-translational modifications (PTMs) of mtSIRT play prominent roles in mitochondrial dynamics-macrophage metabolism connection, such as deacetylates and hypersuccinylation. MicroRNAs such as miR-150, miR-15b, and miR-125b are also possible entry points. The metabolic reprogramming of macrophages through the regulation of mitochondrial dynamics helps improve their adaptability and resistance to adverse environments and provides therapeutic possibilities for various diseases.
Collapse
Affiliation(s)
- Pan Li
- Department of Environment and Safety Engineering, Taiyuan Institute of Technology, Taiyuan, China
| | - Zhengbo Fan
- People’s Government of Huangshui Town, Shizhu Tujia Autonomous County, Chongqing, China
| | - Yanlan Huang
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Liang Luo
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Xiaoyan Wu
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China
| |
Collapse
|
6
|
Chen K, Li J, Chen Z, Shen C, Li X, Li Y, Song D, Li X, Wang X, Xia Y, Yu X, Wang Y, Shen Y, Tong J. Notoginsenoside R1 alleviates blue light-induced corneal injury and wound healing delay by binding to and inhibiting TRIB1. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 138:156399. [PMID: 39884079 DOI: 10.1016/j.phymed.2025.156399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/30/2024] [Accepted: 01/16/2025] [Indexed: 02/01/2025]
Abstract
BACKGROUND With the escalating use of digital devices, blue light (BL) exposure has emerged as a critical concern due to its potential to cause ocular damage. This study explores the protective effects of notoginsenoside R1 (NR1), a bioactive compound from Panax notoginseng (Burkill) F.H. Chen (Sanqi), against BL-induced corneal epithelial injury. PURPOSE This research aims to investigate the protective effects of NR1 on BL-induced corneal injury and wound healing delay. METHODS Human corneal epithelial cells (hCECs) were pretreated with NR1 (0-50 μM) or N-acetylcysteine (NAC, 10 mM), then exposed to BL (570 μW/cm²) for 24 h. Cell viability, proliferation, migration, and ROS levels were assessed using various techniques. In mice, NR1 (25 μM and 50 μM) and NAC (0.3 %) eye drops were administered during BL exposure. Corneal injury, healing rates, cell proliferation, migration, ROS, and inflammation were evaluated. RNA-sequencing, bioinformatics, and molecular binding validation identified tribbles homolog 1 (TRIB1) as a key molecule mitigating BL damage with NR1. Functional studies via gene silencing, overexpression, and pharmacological modulation further explored TRIB1's role in BL exposure. RESULTS NR1 significantly reduced BL-induced inflammation, ROS production, and inhibited migration and proliferation in hCECs and murine corneas. It also alleviated BL-induced corneal injury and delayed healing in mice. NR1 inhibited TRIB1 upregulation, a marker of BL-induced injury and healing delay. Overexpression of TRIB1 negated NR1's therapeutic effects on hCECs, while TRIB1 silencing mitigated functional impairment. In mice, increased Trib1 expression caused corneal injury and delayed healing, reversed by NR1 treatment. CONCLUSION NR1 shows potential as a therapeutic agent by inhibiting TRIB1 elevation in response to BL exposure, providing a novel promising target for corneal injury and wound healing delay induced by BL, and offering a comprehensive strategy for clinical pharmacological intervention.
Collapse
Affiliation(s)
- Kuangqi Chen
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China; State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, School of Ophthalmology, Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), Eye Institute of Shandong First Medical University, Shandong First Medical University, Jinan, Shandong, China
| | - Jiafeng Li
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhitong Chen
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Chang Shen
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiang Li
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Yuanyuan Li
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Dongjie Song
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiuyi Li
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Xinglin Wang
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Yutong Xia
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Xin Yu
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Yinhao Wang
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China.
| | - Ye Shen
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China.
| | - Jianping Tong
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
7
|
Fu Z, Liu H, Kuang Y, Yang J, Luo M, Cao L, Zheng W. β-elemene, a sesquiterpene constituent from Curcuma phaeocaulis inhibits the development of endometriosis by inducing ferroptosis via the MAPK and STAT3 signaling pathways. JOURNAL OF ETHNOPHARMACOLOGY 2025; 341:119344. [PMID: 39800242 DOI: 10.1016/j.jep.2025.119344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/04/2025] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The rhizome of Curcuma phaeocaulis Valeton, Curcuma wenyujin Y.H. Chen & C. Ling, or Curcuma kwangsiensis S. G. Lee et C. F. Liang, commonly known as Wen-E-Zhu and E'zhu, has been utilized in traditional Chinese medicine for the treatment of cancer and gynecological diseases since antiquity. This traditional medicinal herb is highly esteemed for its efficacy in promoting blood circulation, dissolving blood stasis, reducing swelling, and alleviating pain. β-Elemene (β-ELE), a sesquiterpene compound derived from Curcuma phaeocaulis, has demonstrated potential in inhibiting tumor cell proliferation and inducing ferroptosis, which have been extensively studied in various malignant neoplasms. Previous studies have confirmed that Sparganium stoloniferum-Curcuma phaeocaulis containing β-ELE may possess anti-endometriotic properties. However, the exact mechanism underlying β-ELE's anti-endometriosis activity remains largely unknown and requires further research and investigation. AIM OF THE STUDY To identify the anti-endometriosis target of β-ELE and elucidate the underlying molecular mechanism of β-ELE in endometriosis, focusing on inducing ferroptosis. MATERIALS AND METHODS The target pathway of β-ELE in endometriosis treatment was predicted through network pharmacology and bioinformatics analysis. Surface plasmon resonance-high performance liquid chromatography-protein mass spectrometry (SPR-HPLC-MS) and molecular docking were used to further identify the potential targets of β-ELE in endometriosis. The immortalized endometriosis epithelial cell line 12Z was used for in vitro study. The effect of β-ELE on cell proliferation and migration was detected by CCK-8, EdU and wound healing assay, and ultrastructural changes were examined via transmission electron microscopy. The effect of β-ELE-induced ferroptosis was determined by western blot, immunohistochemistry staining and flow cytometry. SPR affinity analysis was performed to specific the direct interaction between β-ELE and FTH1, FTL, GPX4, STAT3 and MAPK14. To establish a mouse model of endometriosis and to assess the inhibitory effects of β-ELE and ELE injection on endometriosis in vivo as well as safety profile of administration, and investigate the effects and underlying mechanisms of β-ELE and ELE injection on ferroptosis in ectopic lesions. RESULTS SPR-HPLC-MS was employed to identify 76 potential targets of β-ELE for endometriosis treatment, closely linked to ferroptosis. Molecular docking revealed that glutathione peroxidase 4 (GPX4), ferritin heavy chain 1 (FTH1), ferritin light chain (FTL), signal transducer and activator of transcription 3 (STAT3), and mitogen-activated protein kinase 14 (MAPK14) are key action targets of β-ELE in endometriosis. Further investigations revealed that β-ELE inhibited the proliferation and migration of endometriotic cells in vitro while inducing ferroptosis, as evidenced by increased levels of iron, reactive oxygen species (ROS), and lipid peroxidation. In a mouse model, β-ELE inhibited the growth of endometriotic lesions, induced ferroptosis, suppressed fibrosis, and exhibited anti-endometriotic effects. Mechanistically, β-ELE downregulates the expression levels of GPX4, FTH1, and FTL and inhibited the phosphorylation of STAT3 and MAPK14, which may elucidate its underlying molecular mechanisms. CONCLUSION This study demonstrates that the inhibitory effect of β-ELE on endometriosis by inducing ferroptosis in vitro and in vivo. Our results revealed that β-ELE exerts anti-endometriosis effects by inducing ferroptosis via the MAPK and STAT3 signaling pathways.
Collapse
Affiliation(s)
- Zhiyi Fu
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| | - Hao Liu
- The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, Guangdong, China.
| | - Yanqi Kuang
- The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, Guangdong, China.
| | - Jiumei Yang
- The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, Guangdong, China.
| | - Meicheng Luo
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| | - Lixing Cao
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| | - Weilin Zheng
- The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, Guangdong, China.
| |
Collapse
|
8
|
Li P, Lin Y, Ma H, Zhang J, Zhang Q, Yan R, Fan Y. Epigenetic regulation in female reproduction: the impact of m6A on maternal-fetal health. Cell Death Discov 2025; 11:43. [PMID: 39904996 PMCID: PMC11794895 DOI: 10.1038/s41420-025-02324-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 01/09/2025] [Accepted: 01/24/2025] [Indexed: 02/06/2025] Open
Abstract
With the development of public health, female diseases have become the focus of current concern. The unique reproductive anatomy of women leads to the development of gynecological diseases gradually become an important part of the socio-economic burden. Epigenetics plays an irreplaceable role in gynecologic diseases. As an important mRNA modification, m6A is involved in the maturation of ovum cells and maternal-fetal microenvironment. At present, researchers have found that m6A is involved in the regulation of gestational diabetes and other reproductive system diseases, but the specific mechanism is not clear. In this manuscript, we summarize the components of m6A, the biological function of m6A, the progression of m6A in the maternal-fetal microenvironment and a variety of gynecological diseases as well as the progression of targeted m6A treatment-related diseases, providing a new perspective for clinical treatment-related diseases.
Collapse
Affiliation(s)
- Peipei Li
- Department of Obstetrics and Gynecology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, China
| | - Yumeng Lin
- Health Management Center, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Hongyun Ma
- Department of Obstetrics and Gynecology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, China
| | - Jiao Zhang
- Department of Obstetrics and Gynecology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, China
| | - Qiaorui Zhang
- Department of Obstetrics and Gynecology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, China
| | - Ruihua Yan
- Department of Obstetrics and Gynecology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, China
| | - Yang Fan
- Department of Obstetrics and Gynecology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, China.
| |
Collapse
|
9
|
Fan G, Lu Y, Li Y, Zhang J, Wang Y, Lee P, Zhou C, Huang R, Ma B, Yuan Y. Lactobacillus-Loaded Easily Injectable Hydrogel Promotes Endometrial Repair via Long-Term Retention and Microenvironment Modulation. ACS NANO 2025; 19:4440-4451. [PMID: 39823410 DOI: 10.1021/acsnano.4c13593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Regeneration of the injured endometrium, particularly the functional layer, is crucial for the prevention of uterine infertility. At present, clinical treatment using sodium hyaluronate hydrogel injection is limited by its relatively low fluidity, short-term retention, and insufficient bioactive ingredients, so it is necessary to develop an advanced healing-promoting hydrogel. The modulation of the microenvironment by Lactobacillus presents a bioactive component that can facilitate the regeneration of the functional layer. Our study introduces a multifunctional Lactobacillus-loaded poly(N-isopropylacrylamide)-grafted bacterial cellulose (BC-g-PN@L) hydrogel designed with superior injectability and in situ stability. At 25 °C (room temperature), a uniform distribution is achieved with a low injection pressure of only 7.90 kPa. At 37 °C (body temperature), the BC-g-PN@L hydrogel forms a robust three-dimensional nanonetwork, providing space and substance exchange channels for Lactobacillus to maintain its viability and bioactivity. Enhanced by the hydrophobic isopropyl groups in poly(N-isopropylacrylamide) side chains and the rigid bacterial cellulose substrates, the BC-g-PN@L hydrogel exhibits prolonged retention properties in the uterine cavity, persisting for over 21 days. These attributes endow the BC-g-PN@L hydrogel with versatile pro-healing capacity and microenvironment modulation in a rat model of endometrial injury. Our BC-g-PN@L hydrogel promotes the development of advanced injectable hydrogels to facilitate both histological and functional repair of the injured endometrium.
Collapse
Affiliation(s)
- Guoqing Fan
- Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Department of Gynecology & Obstetrics, Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China
| | - Yuheng Lu
- The Eighth Affiliated Hospital, Sun Yat-sen University, Guangzhou 518033, PR China
| | - Yubin Li
- Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Department of Gynecology & Obstetrics, Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China
| | - Jian Zhang
- Department of Surgery, Changzheng Hospital, Naval Medical University, Shanghai 200433, PR China
| | - Yuanbin Wang
- Department of General Surgery (Colorectal Surgery), Guangdong Institute of Gastroenterology, Biomedical Innovation Center, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, PR China
| | - Pingyin Lee
- Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Department of Gynecology & Obstetrics, Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China
| | - Canquan Zhou
- Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Department of Gynecology & Obstetrics, Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China
| | - Rongkang Huang
- Department of General Surgery (Colorectal Surgery), Guangdong Institute of Gastroenterology, Biomedical Innovation Center, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, PR China
| | - Binghua Ma
- Translational Medicine Research Center, Naval Medical University, Shanghai 200433, PR China
| | - Yuan Yuan
- Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Department of Gynecology & Obstetrics, Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China
| |
Collapse
|
10
|
Chen C, Liang Z, He Y, Gao Y, Ouyang S, Wang L, Liu J, Cao J. Bacteroides Fragilis Exacerbates T2D Vascular Calcification by Secreting Extracellular Vesicles to Induce M2 Macrophages. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410495. [PMID: 39665119 PMCID: PMC11791993 DOI: 10.1002/advs.202410495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/27/2024] [Indexed: 12/13/2024]
Abstract
Vascular calcification (VC) in type 2 diabetes (T2D) poses a serious threat to the life and health of patients. However, its pathogenesis remains unclear, resulting in a lack of effective treatment for the root cause. It is found that both intestinal Bacteroides fragilis (BF) and peripheral M2 monocytes/macrophages are significantly elevated in patients with T2D VC. M2 macrophages are identified as a significant risk factor for T2D VC. Both BF and their extracellular vesicles (EV) promote T2D VC and facilitate macrophage M2 polarization. Macrophages clearance significantly antagonized BF EV-induced T2D VC in mice. Mechanistically, EV-rich double-stranded DNA (dsDNA) activates stimulator of interferon response cGAMP interactor 1 (Sting), promotes myocyte enhancer factor 2D (Mef2d) phosphorylation, upregulates tribbles pseudokinase 1 (Trib1) expression, and induces macrophage M2 polarization. Concurrently, Mef2d activated by the EV targets and upregulates the expression of pro-calcification factor Serpine1, thereby exacerbating T2D VC. Clinical studies have shown that Serpine1 is significantly elevated in the peripheral blood of patients with T2D VC and is closely associated with T2D VC. In summary, this study reveals that intestinal BF promotes Trib1 expression through the EV-Sting-Mef2d pathway to induce macrophage M2 polarization and upregulates serpin family E member 1 (Serpine1) expression, thereby aggravating T2D VC. The findings provide a new theoretical and experimental bases for optimizing the strategies for prevention and treatment of T2D VC.
Collapse
Affiliation(s)
- Cong Chen
- The First Affiliated HospitalDepartment of Laboratory MedicineHengyang Medical SchoolUniversity of South ChinaHengyangHunan421001China
- School of Pharmaceutical ScienceHengyang Medical SchoolUniversity of South ChinaHengyangHunan421001China
| | - Zhengfeng Liang
- The First Affiliated HospitalInstitute of Endocrinology and metabolismCenter for Clinical Research in DiabetesHengyang Medical SchoolUniversity of South ChinaHengyangHunan421001China
| | - Yuqi He
- The First Affiliated HospitalDepartment of Laboratory MedicineHengyang Medical SchoolUniversity of South ChinaHengyangHunan421001China
| | - Yan Gao
- The First Affiliated HospitalInstitute of Endocrinology and metabolismCenter for Clinical Research in DiabetesHengyang Medical SchoolUniversity of South ChinaHengyangHunan421001China
| | - Shuhui Ouyang
- The First Affiliated HospitalInstitute of Endocrinology and metabolismCenter for Clinical Research in DiabetesHengyang Medical SchoolUniversity of South ChinaHengyangHunan421001China
| | - Lili Wang
- School of Pharmaceutical ScienceHengyang Medical SchoolUniversity of South ChinaHengyangHunan421001China
| | - Jianghua Liu
- The First Affiliated HospitalInstitute of Endocrinology and metabolismCenter for Clinical Research in DiabetesHengyang Medical SchoolUniversity of South ChinaHengyangHunan421001China
| | - Jingsong Cao
- The First Affiliated HospitalInstitute of Endocrinology and metabolismCenter for Clinical Research in DiabetesHengyang Medical SchoolUniversity of South ChinaHengyangHunan421001China
| |
Collapse
|
11
|
Wei X, Su Y, Tian W, Cheng L, Yin L, He X. IGF2BP1 promotes endometriosis by enhancing m6A modification stability of HMGB1. J Obstet Gynaecol Res 2025; 51:e16242. [PMID: 39967010 DOI: 10.1111/jog.16242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 02/05/2025] [Indexed: 02/20/2025]
Abstract
BACKGROUND Endometriosis is a chronic inflammatory condition afflicting women of reproductive age. Our study aims to clarify the function and mechanism of insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) and high mobility group box 1 protein (HMGB1) in endometriosis. METHODS HMGB1 and various N6-methyladenosine (m6A) reader protein levels were assessed in normal, eutopic, and ectopic endometrial tissue, and a correlation analysis was conducted. The impact of IGF2BP1 knockdown on endometriosis was assessed both in vivo in rat models and in vitro in ectopic endometrial stromal cells (eESCs) using methods such as immunoblotting and mRNA quantification. The binding of IGF2BP1 to HMGB1 mRNA in eESCs was assessed using RIP-PCR. Following transfection with sh-IGF2BP1 and oe-HMGB1, the expression of IGF2BP1 and HMGB1, as well as cell proliferation, invasion, and migration abilities, were measured in eESCs. RESULTS In ectopic endometrial tissue, IGF2BP1 and HMGB1 were elevated and positively correlated. Inhibition of IGF2BP1 reduced eESC proliferation, migration, invasion, and glucose intake. Meanwhile, HMGB1, PKM2, and HK2 expression were depressed. In vivo, results were consistent with in vitro. Additionally, in vivo experiments confirmed that inhibition of IGF2BP1 resulted in reduced ectopic endometrial lesion spherical volume, weight, and interstitial lesions. IGF2BP1 bound to HMGB1 mRNA and enhanced its stability by m6A modification. Conversely, when IGF2BP1 was knocked down and HMGB1 was overexpressed, the results were opposite to those observed previously. CONCLUSION IGF2BP1 promotes endometriosis progression by enhancing m6A modification stability of HMGB1. This study provides a theoretical basis for identifying therapeutic targets for endometriosis.
Collapse
Affiliation(s)
- Xin Wei
- Department of Obstetrics and Gynecology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
| | - Yanlin Su
- Department of Obstetrics and Gynecology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
| | - Wencai Tian
- Department of Obstetrics and Gynecology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
| | - Li Cheng
- Department of Obstetrics and Gynecology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
| | - Ling Yin
- Department of Obstetrics and Gynecology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
| | - Xiaoxia He
- Department of Ultrasound, Joint Logistics Support Force 921 Hospital, Changsha, China
| |
Collapse
|
12
|
Zheng W, Fu Z, Tan X, Liang X, Cao L. Bioinformatic Analysis of m6A Regulator-Mediated RNA Methylation Modification Patterns and Immune Microenvironment Characterization in Endometriosis. Biochem Genet 2025; 63:433-464. [PMID: 38451401 DOI: 10.1007/s10528-024-10725-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 01/29/2024] [Indexed: 03/08/2024]
Abstract
Epigenetic regulation plays an essential role in immunity and inflammation in endometriosis. In this study, we aimed to explore differences in m6A regulators between endometriosis patients and normal women and analyze the effect of m6A modification on immune and inflammatory microenvironment. The samples for analysis were downloaded from the Gene Expression Omnibus database, including ectopic endometrium (EC), eutopic endometrium (EU), and normal eutopic endometrium (NM) samples from non-endometriosis women. The validation process involved utilizing our previous RNA-sequencing data. Subsequently, a correlation analysis was performed to ascertain the relationship between m6A and the inflammatory microenvironment profile, encompassing infiltrating immunocytes, immune-inflammation reaction gene sets, and human leukocyte antigen genes. LASSO analyses were used to develop risk signature. The findings of this study indicate that the m6A regulators FTO were observed to be significantly up-regulated, while YTHDF2, CBLL1, and METTL3 were down-regulated in endometriosis tissues. The CIBERSORT analysis revealed that the local inflammatory microenvironment of ectopic lesions plays a crucial role in the development of endometriosis. Notably, M2 macrophages exhibited a significant difference between the EC and NM groups. Moreover, M2 macrophages demonstrated a positive correlation with FTO (0.39) and a negative correlation with CBLL1 (- 0.35). Furthermore, consistent clustering of EC and EU samples resulted in the identification of three distinct cell subtypes. Among different cell subtypes, significant differences were in immunoinfiltrating cells, plasma cells, naive CD4 T cells, memory activated CD4 T cells, gamma delta T cells, resting NK cells and activated NK cells but not in macrophages. Furthermore, the identification of various compounds capable of targeting these m6A genes was achieved. In conclusions, our integrated bioinformatics analysis results demonstrated that m6A-related genes METTL3, CBLL1 and YTHDF2 may be useful biomarkers for endometriosis in ectopic endometrium. The potential therapeutic approach of targeting m6A regulators holds promise for the treatment of endometriosis.
Collapse
Affiliation(s)
- Weilin Zheng
- Guangdong Second Provincial General Hospital, Guangzhou, 510000, Guangdong, China
| | - Zhiyi Fu
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510000, Guangdong, China
| | - Xi Tan
- Guangdong Second Provincial General Hospital, Guangzhou, 510000, Guangdong, China
| | - Xuefang Liang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510000, Guangdong, China
| | - Lixing Cao
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510000, Guangdong, China.
| |
Collapse
|
13
|
Liu Y, Tan H, Dai J, Lin J, Zhao K, Hu H, Zhong C. Targeting macrophages in cancer immunotherapy: Frontiers and challenges. J Adv Res 2025:S2090-1232(24)00622-2. [PMID: 39778768 DOI: 10.1016/j.jare.2024.12.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 12/28/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Cancer immunotherapy has emerged as a groundbreaking approach in cancer treatment, primarily realized through the manipulation of immune cells, notably T cell adoption and immune checkpoint blockade. Nevertheless, the manipulation of T cells encounters formidable hurdles. Macrophages, serving as the pivotal link between innate and adaptive immunity, play crucial roles in phagocytosis, cytokine secretion, and antigen presentation. Consequently, macrophage-targeted therapies have garnered significant attention. AIM OF REVIEW We aim to provide the most cutting-edge insights and future perspectives for macrophage-targeted therapies, fostering the development of novel and effective cancer treatments. KEY SCIENTIFIC CONCEPTS OF REVIEW To date, the forefront strategies for macrophage targeting encompass: altering their plasticity, harnessing CAR-macrophages, and targeting phagocytosis checkpoints. Macrophages are characterized by their remarkable diversity and plasticity, offering a unique therapeutic target. In this context, we critically analyze the innovative strategies aimed at transforming macrophages from their M2 (tumor-promoting) to M1 (tumor-suppressing) phenotype. Furthermore, we delve into the design principles, developmental progress, and advantages of CAR-macrophages. Additionally, we illuminate the challenges encountered in targeting phagocytosis checkpoints on macrophages and propose potential strategies to overcome these obstacles.
Collapse
Affiliation(s)
- Yu'e Liu
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China; Department of Pediatric Hematology-Oncology, Boston Children's Hospital, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA.
| | - Huabing Tan
- Department of Infectious Diseases, Hepatology Institute, Renmin Hospital, Hubei University of Medicine, Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan, Hubei Province 442000, China; General internal medicine, Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430048, China
| | - Jingyuan Dai
- School of Computer Science and Information Systems, Northwest Missouri State University, Maryville, MO 64468, USA
| | - Jianghua Lin
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Kaijun Zhao
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China.
| | - Haibo Hu
- Department of Cardiothoracic Surgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu, China.
| | - Chunlong Zhong
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China.
| |
Collapse
|
14
|
Song L, Yang C, Ji G, Hu R. The role and potential treatment of macrophages in patients with infertility and endometriosis. J Reprod Immunol 2024; 166:104384. [PMID: 39442472 DOI: 10.1016/j.jri.2024.104384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 10/04/2024] [Accepted: 10/12/2024] [Indexed: 10/25/2024]
Abstract
Endometriosis is characterized as a macrophage-related ailment due to its strong link with immune dysfunction. Understanding the status of macrophage polarization in the context of endometriosis-related infertility is crucial for advancing diagnostic and therapeutic strategies. Our comprehensive review delves into the foundational understanding of macrophages and their profound influence on both endometriosis and infertility. Additionally, we illuminate the complex role of macrophages in infertility and endometriosis specifically. Finally, we focused on four critical dimensions: follicular fluid, the intraperitoneal environment, endometrial receptivity, and strategies for managing endometriosis. It is clear that throughout the progression of endometriosis, the diverse polarization states of macrophages play a pivotal role in the internal reproductive environment of infertile individuals grappling with this condition. Modulating macrophage polarization in the reproductive environment of endometriosis patients could address infertility challenges more effectively, offering a promising pathway for treating infertility associated with endometriosis.
Collapse
Affiliation(s)
- Linlin Song
- Department of Gynecology, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China; Reproductive Medicine Center, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China; Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Caihong Yang
- Department of Gynecology, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China; Reproductive Medicine Center, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Guiyi Ji
- Reproductive Medicine Center, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China; Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China; Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Rong Hu
- Reproductive Medicine Center, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China; Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China; Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia, 750004, China.
| |
Collapse
|
15
|
Su C, Yang J, Ding J, Ding H. Differential diagnosis of ovarian endometriosis cyst versus ovarian cystadenoma based on serum lactate dehydrogenase combined with CA-125 and CA19-9: A retrospective cohort study. Medicine (Baltimore) 2024; 103:e40776. [PMID: 39612391 DOI: 10.1097/md.0000000000040776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2024] Open
Abstract
This study aims to construct and validate a nomogram for the differential diagnosis of ovarian endometriosis cyst versus ovarian cystadenoma. We retrospectively studied the clinical characteristics of patients with ovarian endometriosis cysts and ovarian cystadenomas from January 1, 2021, to June 1, 2022. Independent risk factors for differential diagnosis were investigated using univariate and multivariate logistic regression analyses. Based on these factors, a differential diagnosis of ovarian endometriosis cyst versus ovarian cystadenoma was established. The performance of the nomogram model was assessed by internal validation using bootstrapping resampling. Decision curve analysis (DCA) was performed to evaluate the net clinical benefit of the model. Immunohistochemistry showed that lactate dehydrogenase (LDH) A was overexpressed in ectopic endometrial tissues compared to that in normal endometrial tissues. In multivariate analysis, LDH, CA-125, and CA19-9 were identified as independent risk factors for the differential diagnosis of ovarian endometriosis cyst versus ovarian cystadenoma. LDH levels >135.50 U/L combined with CA-125 levels >25.20 U/mL and CA19-9 levels >13.59 U/mL as single covariates had a high value in the differential diagnosis of ovarian endometriosis cysts versus ovarian cystadenoma. The area under the receiver operating characteristic curve (ROC) of the nomogram constructed using LDH, CA-125, and CA19-9 expression data was 0.873 (95% CI, 0.827-0.920), and the bootstrap-validated concordance index (C-index) was 0.871. Decision curve analysis confirmed that the nomogram model had excellent clinical utility. Based on serum lactate dehydrogenase combined with CA-125 and CA19-9, we constructed and validated a nomogram for the differential diagnosis of ovarian endometriosis cyst versus ovarian cystadenoma to help physicians formulate the optimal treatment strategy.
Collapse
Affiliation(s)
- Chang Su
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wannan Medical College, Anhui, Wuhu, China
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Anhui, Wuhu, China
| | - Jian Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wannan Medical College, Anhui, Wuhu, China
| | - Jin Ding
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wannan Medical College, Anhui, Wuhu, China
| | - Huafeng Ding
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wannan Medical College, Anhui, Wuhu, China
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Anhui, Wuhu, China
| |
Collapse
|
16
|
Hosseinirad H, Rahman MS, Jeong JW. Targeting TET3 in macrophages provides a concept strategy for the treatment of endometriosis. J Clin Invest 2024; 134:e185421. [PMID: 39484721 PMCID: PMC11527433 DOI: 10.1172/jci185421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024] Open
Abstract
Endometriosis, characterized by the presence of endometrial-like tissue outside the uterus, is a condition associated with pain and infertility. In this issue of the JCI, Lv et al. illuminate the critical pathophysiological role of the ten-eleven translocation 3 (TET3) in endometriosis. TET3 expression levels were higher in macrophages of endometriotic lesions compared with control endometrial tissue, implicating TET3 as a contributing factor in the chronic inflammation that occurs in endometriosis. TGF-β1 and MCP1 are present in the peritoneal cavity of women with endometriosis, and macrophage exposure to these factors resulted in upregulation of TET3, thereby promoting their survival. Notably, Bobcat339, a selective TET inhibitor, induced apoptosis in these macrophages. Further, myeloid-specific TET3 loss reduced endometriosis in mice. RNA-Seq analysis following TET3 knockdown revealed alterations in cytokine signaling and cell-death pathways, underscoring the therapeutic potential of targeting TET3 in macrophages as a strategy for managing endometriosis.
Collapse
|
17
|
Cai J, Song L, Zhang F, Wu S, Zhu G, Zhang P, Chen S, Du J, Wang B, Cai Y, Yang Y, Wan J, Zhou J, Fan J, Dai Z. Targeting SRSF10 might inhibit M2 macrophage polarization and potentiate anti-PD-1 therapy in hepatocellular carcinoma. Cancer Commun (Lond) 2024; 44:1231-1260. [PMID: 39223929 PMCID: PMC11570766 DOI: 10.1002/cac2.12607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 08/18/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND The efficacy of immune checkpoint blockade therapy in patients with hepatocellular carcinoma (HCC) remains poor. Although serine- and arginine-rich splicing factor (SRSF) family members play crucial roles in tumors, their impact on tumor immunology remains unclear. This study aimed to elucidate the role of SRSF10 in HCC immunotherapy. METHODS To identify the key genes associated with immunotherapy resistance, we conducted single-nuclear RNA sequencing, multiplex immunofluorescence, and The Cancer Genome Atlas and Gene Expression Omnibus database analyses. We investigated the biological functions of SRSF10 in immune evasion using in vitro co-culture systems, flow cytometry, various tumor-bearing mouse models, and patient-derived organotypic tumor spheroids. RESULTS SRSF10 was upregulated in various tumors and associated with poor prognosis. Moreover, SRSF10 positively regulated lactate production, and SRSF10/glycolysis/ histone H3 lysine 18 lactylation (H3K18la) formed a positive feedback loop in tumor cells. Increased lactate levels promoted M2 macrophage polarization, thereby inhibiting CD8+ T cell activity. Mechanistically, SRSF10 interacted with the 3'-untranslated region of MYB, enhancing MYB RNA stability, and subsequently upregulating key glycolysis-related enzymes including glucose transporter 1 (GLUT1), hexokinase 1 (HK1), lactate dehydrogenase A (LDHA), resulting in elevated intracellular and extracellular lactate levels. Lactate accumulation induced histone lactylation, which further upregulated SRSF10 expression. Additionally, lactate produced by tumors induced lactylation of the histone H3K18la site upon transport into macrophages, thereby activating transcription and enhancing pro-tumor macrophage activity. M2 macrophages, in turn, inhibited the enrichment of CD8+ T cells and the proportion of interferon-γ+CD8+ T cells in the tumor microenvironment (TME), thus creating an immunosuppressive TME. Clinically, SRSF10 could serve as a biomarker for assessing immunotherapy resistance in various solid tumors. Pharmacological targeting of SRSF10 with a selective inhibitor 1C8 enhanced the efficacy of programmed cell death 1 (PD-1) monoclonal antibodies (mAbs) in both murine and human preclinical models. CONCLUSIONS The SRSF10/MYB/glycolysis/lactate axis is critical for triggering immune evasion and anti-PD-1 resistance. Inhibiting SRSF10 by 1C8 may overcome anti-PD-1 tolerance in HCC.
Collapse
Affiliation(s)
- Jialiang Cai
- Liver Cancer InstituteZhongshan HospitalFudan UniversityShanghaiP. R. China
- State Key Laboratory of Genetic EngineeringFudan UniversityShanghaiP. R. China
- Key Laboratory of Carcinogenesis and Cancer InvasionFudan UniversityMinistry of EducationShanghaiP. R. China
| | - Lina Song
- Liver Cancer InstituteZhongshan HospitalFudan UniversityShanghaiP. R. China
- State Key Laboratory of Genetic EngineeringFudan UniversityShanghaiP. R. China
- Key Laboratory of Carcinogenesis and Cancer InvasionFudan UniversityMinistry of EducationShanghaiP. R. China
| | - Feng Zhang
- Department of Gastroenterology and HepatologyZhongshan HospitalFudan University, 180 Fenglin RoadShanghaiP. R. China
- Shanghai Institute of Liver DiseaseShanghaiP. R. China
| | - Suiyi Wu
- Liver Cancer InstituteZhongshan HospitalFudan UniversityShanghaiP. R. China
| | - Guiqi Zhu
- State Key Laboratory of Genetic EngineeringFudan UniversityShanghaiP. R. China
- Department of Liver Surgery and TransplantationZhongshan HospitalFudan UniversityShanghaiP. R. China
- Research Unit of Liver Cancer Recurrence and MetastasisChinese Academy of Medical SciencesBeijingP. R. China
| | - Peiling Zhang
- Liver Cancer InstituteZhongshan HospitalFudan UniversityShanghaiP. R. China
- State Key Laboratory of Genetic EngineeringFudan UniversityShanghaiP. R. China
- Key Laboratory of Carcinogenesis and Cancer InvasionFudan UniversityMinistry of EducationShanghaiP. R. China
| | - Shiping Chen
- Liver Cancer InstituteZhongshan HospitalFudan UniversityShanghaiP. R. China
- State Key Laboratory of Genetic EngineeringFudan UniversityShanghaiP. R. China
- Key Laboratory of Carcinogenesis and Cancer InvasionFudan UniversityMinistry of EducationShanghaiP. R. China
| | - Junxian Du
- Department of general surgeryZhongshan HospitalFudan UniversityShanghaiP. R. China
| | - Biao Wang
- Department of Radiation OncologyZhongshan HospitalFudan UniversityShanghaiP. R. China
| | - Yufan Cai
- Department of general surgeryZhongshan HospitalFudan UniversityShanghaiP. R. China
| | - Yi Yang
- Department of Radiation OncologyZhongshan HospitalFudan UniversityShanghaiP. R. China
| | - Jinglei Wan
- Liver Cancer InstituteZhongshan HospitalFudan UniversityShanghaiP. R. China
- State Key Laboratory of Genetic EngineeringFudan UniversityShanghaiP. R. China
- Key Laboratory of Carcinogenesis and Cancer InvasionFudan UniversityMinistry of EducationShanghaiP. R. China
| | - Jian Zhou
- Department of Liver Surgery and TransplantationZhongshan HospitalFudan UniversityShanghaiP. R. China
- Research Unit of Liver Cancer Recurrence and MetastasisChinese Academy of Medical SciencesBeijingP. R. China
| | - Jia Fan
- Department of Liver Surgery and TransplantationZhongshan HospitalFudan UniversityShanghaiP. R. China
- Research Unit of Liver Cancer Recurrence and MetastasisChinese Academy of Medical SciencesBeijingP. R. China
| | - Zhi Dai
- Liver Cancer InstituteZhongshan HospitalFudan UniversityShanghaiP. R. China
- State Key Laboratory of Genetic EngineeringFudan UniversityShanghaiP. R. China
- Key Laboratory of Carcinogenesis and Cancer InvasionFudan UniversityMinistry of EducationShanghaiP. R. China
| |
Collapse
|
18
|
Lei S, Lai Z, Hou S, Liu Y, Li M, Zhao D. Abnormal HCK/glutamine/autophagy axis promotes endometriosis development by impairing macrophage phagocytosis. Cell Prolif 2024; 57:e13702. [PMID: 38956970 PMCID: PMC11533058 DOI: 10.1111/cpr.13702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/25/2024] [Accepted: 06/13/2024] [Indexed: 07/04/2024] Open
Abstract
The presence of extensive infiltrated macrophages with impaired phagocytosis is widely recognised as a significant regulator for the development of endometriosis (EMs). Nevertheless, the metabolic characteristics and the fundamental mechanism of impaired macrophage phagocytosis are yet to be clarified. Here, we observe that there is the decreased expression of haematopoietic cellular kinase (HCK) in macrophage of peritoneal fluid from EMs patients, which might be attributed to high oestrogen and hypoxia condition. Of note, HCK deficiency resulted in impaired macrophage phagocytosis, and increased number and weight of ectopic lesions in vitro and in vivo. Mechanistically, this process was mediated via regulation of glutamine metabolism, and further upregulation of macrophage autophagy in a c-FOS/c-JUN dependent manner. Additionally, macrophages of EMs patients displayed insufficient HCK, excessive autophagy and phagocytosis dysfunction. In therapeutic studies, supplementation with glutamine-pre-treated macrophage or Bafilomycin A1 (an autophagy inhibitor)-pre-treated macrophage leads to the induction of macrophage phagocytosis and suppression of EMs development. This observation reveals that the aberrant HCK-glutamine-autophagy axis results in phagocytosis obstacle of macrophage and further increase the development risk of Ems. Additionally, it offers potential therapeutic approaches to prevent EMs, especially patients with insufficient HCK and macrophage phagocytosis dysfunction.
Collapse
Affiliation(s)
- Sha‐Ting Lei
- Department of Obstetrics and Gynecology, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and GynecologyFudan UniversityShanghaiChina
- Department of Gynecology, Shanghai First Maternity and Infant HospitalTongji University School of MedicineShanghaiChina
| | - Zhen‐Zhen Lai
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and GynecologyFudan UniversityShanghaiChina
| | - Shu‐Hui Hou
- Department of Obstetrics and Gynecology, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Department of Gynecology, Shanghai First Maternity and Infant HospitalTongji University School of MedicineShanghaiChina
| | - Yu‐Kai Liu
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and GynecologyFudan UniversityShanghaiChina
| | - Ming‐Qing Li
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and GynecologyFudan UniversityShanghaiChina
- Department of Reproductive Immunology, The International Peace Maternity and Child Health Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Dong Zhao
- Department of Obstetrics and Gynecology, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
19
|
Xu S, Xing J, Zheng L, Su H, Zou Y, Niu Y, Di H. Azithromycin regulates Mettl3-mediated NF-κB pathway to enhance M2 polarization of RAW264.7 macrophages and attenuate LPS-triggered cytotoxicity of MLE-12 alveolar cells. Int Immunopharmacol 2024; 137:112426. [PMID: 38878491 DOI: 10.1016/j.intimp.2024.112426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 07/11/2024]
Abstract
BACKGROUND Azithromycin (AZM) has been proposed as a potential therapeutic drug in acute pulmonary injury due to its immunomodulatory and anti-inflammatory properties. However, its therapeutic mechanism remains not fully understood. METHODS LPS was used to stimulate MLE-12 cells and RAW264.7 macrophages. Analyses of viability and apoptosis were performed by CCK-8 assay and flow cytometry, respectively. Protein analysis was performed by immunoblotting, and mRNA expression was tested by quantitative PCR. The secretion levels of TNF-α and IL-6 were detected by ELISA. MDA, GSH, ROS and Fe2+ contents were analyzed using assay kits. RESULTS Administration of AZM or depletion of methyltransferase-like 3 (Mettl3) could attenuate LPS-triggered apoptosis, inflammation and ferroptosis in MLE-12 alveolar cells, as well as enhance M2 polarization of LPS-stimulated RAW264.7 macrophages. In LPS-exposed MLE-12 and RAW264.7 cells, AZM reduced Mettl3 protein expression and inactivated the NF-κB signaling through downregulation of Mettl3. Furthermore, Mettl3 restoration abated AZM-mediated anti-apoptosis, anti-inflammation and anti-ferroptosis effects in LPS-exposed MLE-12 cells and reversed AZM-mediated M2 polarization enhancement of LPS-exposed RAW264.7 macrophages. CONCLUSION Our study indicates that AZM can promote M2 polarization of LPS-exposed RAW264.7 macrophages and attenuate LPS-triggered injury of MLE-12 alveolar cells by inactivating the Mettl3-mediated NF-κB pathway.
Collapse
Affiliation(s)
- Shuna Xu
- Department of Pharmacy, People's Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Jun Xing
- Department of Medical Affairs, People's Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Liang Zheng
- Department of Respiratory and Critical Care Medicine, People's Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Hui Su
- Department of Pharmacy, People's Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yunhong Zou
- Department of Pharmacy, People's Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yanxin Niu
- Department of Pharmacy, People's Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Huifeng Di
- Department of Pharmacy, People's Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| |
Collapse
|
20
|
Li Y, Jin H, Li Q, Shi L, Mao Y, Zhao L. The role of RNA methylation in tumor immunity and its potential in immunotherapy. Mol Cancer 2024; 23:130. [PMID: 38902779 PMCID: PMC11188252 DOI: 10.1186/s12943-024-02041-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 06/10/2024] [Indexed: 06/22/2024] Open
Abstract
RNA methylation, a prevalent post-transcriptional modification, has garnered considerable attention in research circles. It exerts regulatory control over diverse biological functions by modulating RNA splicing, translation, transport, and stability. Notably, studies have illuminated the substantial impact of RNA methylation on tumor immunity. The primary types of RNA methylation encompass N6-methyladenosine (m6A), 5-methylcytosine (m5C), N1-methyladenosine (m1A), and N7-methylguanosine (m7G), and 3-methylcytidine (m3C). Compelling evidence underscores the involvement of RNA methylation in regulating the tumor microenvironment (TME). By affecting RNA translation and stability through the "writers", "erasers" and "readers", RNA methylation exerts influence over the dysregulation of immune cells and immune factors. Consequently, RNA methylation plays a pivotal role in modulating tumor immunity and mediating various biological behaviors, encompassing proliferation, invasion, metastasis, etc. In this review, we discussed the mechanisms and functions of several RNA methylations, providing a comprehensive overview of their biological roles and underlying mechanisms within the tumor microenvironment and among immunocytes. By exploring how these RNA modifications mediate tumor immune evasion, we also examine their potential applications in immunotherapy. This review aims to provide novel insights and strategies for identifying novel targets in RNA methylation and advancing cancer immunotherapy efficacy.
Collapse
Affiliation(s)
- Yan Li
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pathology, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Haoer Jin
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pathology, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Qingling Li
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pathology, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Liangrong Shi
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yitao Mao
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Luqing Zhao
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Department of Pathology, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
21
|
He X, Tang B, Zou P, Song Z, Liu J, Pi Z, Xiao Y, Xiao R. m6A RNA methylation: The latent string-puller in fibrosis. Life Sci 2024; 346:122644. [PMID: 38614300 DOI: 10.1016/j.lfs.2024.122644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/21/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
Fibrosis is a pathological phenomenon characterized by the aberrant accumulation of extracellular matrix (ECM) in tissues. Fibrosis is a universally age-related disease involving that many organs and is the final stage of many chronic inflammatory diseases, which often threaten the patient's health. Undoubtedly, fibrosis has become a serious economic and health burden worldwide, However, the pathogenesis of fibrosis is complex. Further, the key molecules still remain to be unraveled. Hence, so far, there have been no effective treatments designed against the key targets of fibrosis. The methylation modification on the nitrogen atom at position 6 of adenine (m6A) is the most common mRNA modification in mammals. There is increasing evidence that m6A is actively involved in the pathogenesis of fibrosis. This review aims to highlight m6A-associated mechanisms and functions in several organic fibrosis, which implies that m6A is universal and critical for fibrosis and summarize the outlook of m6A in the treatment of fibrosis. This may light up the unknown aspects of this condition for researchers interested to explore fibrosis further.
Collapse
Affiliation(s)
- Xinglan He
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Medical Epigenetics, Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan
| | - Bingsi Tang
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Medical Epigenetics, Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan
| | - Puyu Zou
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Medical Epigenetics, Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan
| | - Zehong Song
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Medical Epigenetics, Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan
| | - Jiani Liu
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Medical Epigenetics, Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan
| | - Zixin Pi
- Department of Medical Genetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Yangfan Xiao
- Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital, Central South University, Changsha, China; Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China.
| | - Rong Xiao
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Medical Epigenetics, Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan.
| |
Collapse
|
22
|
Liu WW, Zheng SQ, Li T, Fei YF, Wang C, Zhang S, Wang F, Jiang GM, Wang H. RNA modifications in cellular metabolism: implications for metabolism-targeted therapy and immunotherapy. Signal Transduct Target Ther 2024; 9:70. [PMID: 38531882 DOI: 10.1038/s41392-024-01777-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 03/28/2024] Open
Abstract
Cellular metabolism is an intricate network satisfying bioenergetic and biosynthesis requirements of cells. Relevant studies have been constantly making inroads in our understanding of pathophysiology, and inspiring development of therapeutics. As a crucial component of epigenetics at post-transcription level, RNA modification significantly determines RNA fates, further affecting various biological processes and cellular phenotypes. To be noted, immunometabolism defines the metabolic alterations occur on immune cells in different stages and immunological contexts. In this review, we characterize the distribution features, modifying mechanisms and biological functions of 8 RNA modifications, including N6-methyladenosine (m6A), N6,2'-O-dimethyladenosine (m6Am), N1-methyladenosine (m1A), 5-methylcytosine (m5C), N4-acetylcytosine (ac4C), N7-methylguanosine (m7G), Pseudouridine (Ψ), adenosine-to-inosine (A-to-I) editing, which are relatively the most studied types. Then regulatory roles of these RNA modification on metabolism in diverse health and disease contexts are comprehensively described, categorized as glucose, lipid, amino acid, and mitochondrial metabolism. And we highlight the regulation of RNA modifications on immunometabolism, further influencing immune responses. Above all, we provide a thorough discussion about clinical implications of RNA modification in metabolism-targeted therapy and immunotherapy, progression of RNA modification-targeted agents, and its potential in RNA-targeted therapeutics. Eventually, we give legitimate perspectives for future researches in this field from methodological requirements, mechanistic insights, to therapeutic applications.
Collapse
Affiliation(s)
- Wei-Wei Liu
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- School of Clinical Medicine, Shandong University, Jinan, China
| | - Si-Qing Zheng
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, China
| | - Tian Li
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, China
| | - Yun-Fei Fei
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, China
| | - Chen Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, China
| | - Shuang Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, China
| | - Fei Wang
- Neurosurgical Department, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Guan-Min Jiang
- Department of Clinical Laboratory, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China.
| | - Hao Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, China.
| |
Collapse
|
23
|
Wu J, Pan J, Zhou W, Ji G, Dang Y. The role of N6-methyladenosine in macrophage polarization: A novel treatment strategy for non-alcoholic steatohepatitis. Biomed Pharmacother 2024; 171:116145. [PMID: 38198958 DOI: 10.1016/j.biopha.2024.116145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/22/2023] [Accepted: 01/05/2024] [Indexed: 01/12/2024] Open
Abstract
RNA methylation modifications, as a widespread type of modification in eukaryotic cells, especially N6-methyladenosine (m6A), are associated with many activities in organisms, including macrophage polarization and progression of non-alcoholic steatohepatitis (NASH). Macrophages in the liver are of diverse origin and complex phenotype, exhibiting different functions in development of NASH. In the review, we discuss the functions of m6A and m6A-related enzymes in macrophage polarization. Furthermore, we retrospect the role of macrophage polarization in NASH. Finally, we discuss the prospects of m6A in macrophages and NASH, and provide guidance for the treatment of NASH.
Collapse
Affiliation(s)
- Jiaxuan Wu
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Jiashu Pan
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Wenjun Zhou
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Guang Ji
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Yanqi Dang
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| |
Collapse
|
24
|
Xu Y, Wu F, Qin C, Lin Y. Paradoxical role of phosphorylated STAT3 in normal fertility and the pathogenesis of adenomyosis and endometriosis†. Biol Reprod 2024; 110:5-13. [PMID: 37930185 DOI: 10.1093/biolre/ioad148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/13/2023] [Accepted: 10/24/2023] [Indexed: 11/07/2023] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3), when phosphorylated at tyrosine 705, plays an important role in endometrial stromal cell decidualization and the receptivity of the endometrial epithelium during embryo implantation. However, the function of phosphorylated STAT3 (p-STAT3) in normal uterine receptivity is distinct from that in adenomyosis and endometriosis. In normal pregnancy, STAT3 phosphorylation in the endometrial epithelium determines the success of embryo implantation by regulating uterine receptivity. Additionally, p-STAT3 promotes cellular proliferation and differentiation during endometrial decidualization, which is crucial for embryonic development. In contrast, excessive STAT3 phosphorylation occurs in adenomyosis and endometriosis, which may lead to disease progression. Therefore, achieving a delicate balance in STAT3 activation is crucial. This review aimed to focus on the current understanding and knowledge gaps regarding the control of p-STAT3 activity in normal and pathological endometrial processes. This topic is important because precise control of p-STAT3 production could alleviate the symptoms of adenomyosis and endometriosis, improve endometrial receptivity, and potentially mitigate infertility without compromising normal fertility processes.
Collapse
Affiliation(s)
- Yichi Xu
- Reproductive Medicine Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fan Wu
- Reproductive Medicine Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chuanmei Qin
- Reproductive Medicine Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Lin
- Reproductive Medicine Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
25
|
Chen Y, Mu Y, Guan Q, Li C, Zhang Y, Xu Y, Zhou C, Guo Y, Ma Y, Zhao M, Ji G, Liu P, Sun D, Sun H, Wu N, Jin Y. RPL22L1, a novel candidate oncogene promotes temozolomide resistance by activating STAT3 in glioblastoma. Cell Death Dis 2023; 14:757. [PMID: 37985768 PMCID: PMC10662465 DOI: 10.1038/s41419-023-06156-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 09/09/2023] [Accepted: 09/15/2023] [Indexed: 11/22/2023]
Abstract
Aggressiveness and drug resistance are major challenges in the clinical treatment of glioblastoma (GBM). Our previously research reported a novel candidate oncogene ribosomal protein L22 like 1 (RPL22L1). The aim of this study was to elucidate the potential role and mechanism of RPL22L1 in progression and temozolomide (TMZ) resistance of GBM. Online database, tissue microarrays and clinical tissue specimens were used to evaluate the expression and clinical implication of RPL22L1 in GBM. We performed cell function assays, orthotopic and subcutaneous xenograft tumor models to evaluate the effects and molecular mechanisms of RPL22L1 on GBM. RPL22L1 expression was significantly upregulated in GBM and associated with poorer prognosis. RPL22L1 overexpression enhanced GBM cell proliferation, migration, invasion, TMZ resistance and tumorigenicity, which could be reduced by RPL22L1 knockdown. Further, we found RPL22L1 promoted mesenchymal phenotype of GBM and the impact of these effects was closely related to EGFR/STAT3 pathway. Importantly, we observed that STAT3 specific inhibitor (Stattic) significantly inhibited the malignant functions of RPL22L1, especially on TMZ resistance. RPL22L1 overexpressed increased combination drug sensitive of Stattic and TMZ both in vitro and in vivo. Moreover, Stattic effectively restored the sensitive of RPL22L1 induced TMZ resistance in vitro and in vivo. Our study identified a novel candidate oncogene RPL22L1 which promoted the GBM malignancy through STAT3 pathway. And we highlighted that Stattic combined with TMZ therapy might be an effective treatment strategy in RPL22L1 high-expressed GBM patients.
Collapse
Affiliation(s)
- Yunping Chen
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
- Key laboratory of preservation of human genetic resources and disease control in China (Harbin Medical University), Ministry of Education, Harbin, 150081, China
- College of Sports and Human Sciences, Harbin Sport University, Harbin, 150008, China
| | - Yu Mu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
- Key laboratory of preservation of human genetic resources and disease control in China (Harbin Medical University), Ministry of Education, Harbin, 150081, China
| | - Qing Guan
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
- Key laboratory of preservation of human genetic resources and disease control in China (Harbin Medical University), Ministry of Education, Harbin, 150081, China
| | - Chenlong Li
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, 150001, China
| | - Yangong Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Yinzhi Xu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
- Key laboratory of preservation of human genetic resources and disease control in China (Harbin Medical University), Ministry of Education, Harbin, 150081, China
| | - Chong Zhou
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
- Key laboratory of preservation of human genetic resources and disease control in China (Harbin Medical University), Ministry of Education, Harbin, 150081, China
| | - Ying Guo
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
- Key laboratory of preservation of human genetic resources and disease control in China (Harbin Medical University), Ministry of Education, Harbin, 150081, China
| | - Yanan Ma
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
- Key laboratory of preservation of human genetic resources and disease control in China (Harbin Medical University), Ministry of Education, Harbin, 150081, China
| | - Meiqi Zhao
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
- Key laboratory of preservation of human genetic resources and disease control in China (Harbin Medical University), Ministry of Education, Harbin, 150081, China
| | - Guohua Ji
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
- Key laboratory of preservation of human genetic resources and disease control in China (Harbin Medical University), Ministry of Education, Harbin, 150081, China
| | - Peng Liu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
- Key laboratory of preservation of human genetic resources and disease control in China (Harbin Medical University), Ministry of Education, Harbin, 150081, China
| | - Donglin Sun
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
- Key laboratory of preservation of human genetic resources and disease control in China (Harbin Medical University), Ministry of Education, Harbin, 150081, China
| | - Haiming Sun
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
- Key laboratory of preservation of human genetic resources and disease control in China (Harbin Medical University), Ministry of Education, Harbin, 150081, China
| | - Nan Wu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China.
- Key laboratory of preservation of human genetic resources and disease control in China (Harbin Medical University), Ministry of Education, Harbin, 150081, China.
| | - Yan Jin
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China.
- Key laboratory of preservation of human genetic resources and disease control in China (Harbin Medical University), Ministry of Education, Harbin, 150081, China.
| |
Collapse
|
26
|
Chen J, Qin P, Sun Y, Han S. Histone lactylation promotes cell proliferation, migration and invasion through targeting HMGB1 in endometriosis. J Biomed Res 2023; 37:470-478. [PMID: 37945340 PMCID: PMC10687535 DOI: 10.7555/jbr.37.20230095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 11/12/2023] Open
Abstract
Endometriosis is defined as a condition with endometrium-like tissues migrating outside of the pelvic cavity. However, the mechanism of endometriosis is still unclear. Lactate can be covalently modified to lysine residues of histones and other proteins, which is called lactylation. The results showed that the higher level of lactate and lactate dehydrogenase A enhanced the histone H3 lysine 18 lactylation (H3K18lac) in ectopic endometrial tissues and ectopic endometrial stromal cells than that in normal endometrial tissues and normal endometrial stromal cells. Lactate promoted cell proliferation, migration, and invasion in endometriosis. Mechanistically, lactate induced H3K18lac to promote the expression of high-mobility group box 1 (HMGB1) in endometriosis, and HMGB1 knockdown significantly reduced the cell proliferation, migration, and invasion of the lactate-treated cells through the phosphorylation of AKT. In conclusion, lactate could induce histone lactylation to promote endometriosis progression by upregulating the expression of HMGB1, which may provide a novel target for the prevention and treatment of endometriosis.
Collapse
Affiliation(s)
- Jie Chen
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu 210004, China
| | - Pengfei Qin
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu 210004, China
| | - Yanli Sun
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu 210004, China
| | - Suping Han
- Department of Gynecology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210004, China
| |
Collapse
|
27
|
Zhang M, Xu T, Tong D, Li S, Yu X, Liu B, Jiang L, Liu K. Research advances in endometriosis-related signaling pathways: A review. Biomed Pharmacother 2023; 164:114909. [PMID: 37210898 DOI: 10.1016/j.biopha.2023.114909] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/17/2023] [Accepted: 05/17/2023] [Indexed: 05/23/2023] Open
Abstract
Endometriosis (EM) is characterized by the existence of endometrial mucosa outside the uterine cavity, which causesinfertility, persistent aches, and a decline in women's quality of life. Both hormone therapies and nonhormone therapies, such as NSAIDs, are ineffective, generic categories of EM drugs. Endometriosis is a benign gynecological condition, yet it shares a number of features with cancer cells, including immune evasion, survival, adhesion, invasion, and angiogenesis. Several endometriosis-related signaling pathways are comprehensively reviewed in this article, including E2, NF-κB, MAPK, ERK, PI3K/Akt/mTOR, YAP, Wnt/β-catenin, Rho/ROCK, TGF-β, VEGF, NO, iron, cytokines and chemokines. To find and develop novel medications for the treatment of EM, it is essential to implicitly determine the molecular pathways that are disordered during EM development. Additionally, research on the shared pathways between EM and tumors can provide hypotheses or suggestions for endometriosis therapeutic targets.
Collapse
Affiliation(s)
- Manlin Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tongtong Xu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Deming Tong
- Department of General Surgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Siman Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaodan Yu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Boya Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lili Jiang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Kuiran Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
28
|
Hu S, Guo W, Shen Y. Potential link between the nerve injury-induced protein (Ninjurin) and the pathogenesis of endometriosis. Int Immunopharmacol 2023; 114:109452. [PMID: 36446236 DOI: 10.1016/j.intimp.2022.109452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/29/2022] [Accepted: 11/10/2022] [Indexed: 11/27/2022]
Abstract
Endometriosis remains a widespread but severe gynecological disease in women of reproductive age, with an unknown etiology and few treatment choices. The menstrual reflux theory is largely accepted as the underlying etiology but does not explain the morbidity or unpleasant pain sensations of endometriosis. The neurological and immune systems are both involved in pain mechanisms of endometriosis, and interlinked through a complex combination of cytokines and neurotransmitters. Numerous pieces of evidence suggest that the nerve injury-inducible protein, Ninjurin, is actively expressed in endometriosis lesions, which contributes to the etiology and development of endometriosis. It may be explored in the future as a novel therapeutic target. The aim of the present review was to elucidate the multifaceted role of Ninjurin. Furthermore, we summarize the association of Ninjurin with the pain mechanism of endometriosis and outline the future research directions. A novel therapeutic pathway can be discovered based on the potential pathogenic variables.
Collapse
Affiliation(s)
- Sijian Hu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Weina Guo
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yi Shen
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|