1
|
Spotlight on CYP4B1. Int J Mol Sci 2023; 24:ijms24032038. [PMID: 36768362 PMCID: PMC9916508 DOI: 10.3390/ijms24032038] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023] Open
Abstract
The mammalian cytochrome P450 monooxygenase CYP4B1 can bioactivate a wide range of xenobiotics, such as its defining/hallmark substrate 4-ipomeanol leading to tissue-specific toxicities. Similar to other members of the CYP4 family, CYP4B1 has the ability to hydroxylate fatty acids and fatty alcohols. Structural insights into the enigmatic role of CYP4B1 with functions in both, xenobiotic and endobiotic metabolism, as well as its unusual heme-binding characteristics are now possible by the recently solved crystal structures of native rabbit CYP4B1 and the p.E310A variant. Importantly, CYP4B1 does not play a major role in hepatic P450-catalyzed phase I drug metabolism due to its predominant extra-hepatic expression, mainly in the lung. In addition, no catalytic activity of human CYP4B1 has been observed owing to a unique substitution of an evolutionary strongly conserved proline 427 to serine. Nevertheless, association of CYP4B1 expression patterns with various cancers and potential roles in cancer development have been reported for the human enzyme. This review will summarize the current status of CYP4B1 research with a spotlight on its roles in the metabolism of endogenous and exogenous compounds, structural properties, and cancer association, as well as its potential application in suicide gene approaches for targeted cancer therapy.
Collapse
|
2
|
Romano V, Belviso I, Sacco AM, Cozzolino D, Nurzynska D, Amarelli C, Maiello C, Sirico F, Di Meglio F, Castaldo C. Human Cardiac Progenitor Cell-Derived Extracellular Vesicles Exhibit Promising Potential for Supporting Cardiac Repair in Vitro. Front Physiol 2022; 13:879046. [PMID: 35669580 PMCID: PMC9163838 DOI: 10.3389/fphys.2022.879046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
Although human Cardiac Progenitor Cells (hCPCs) are not retained by host myocardium they still improve cardiac function when injected into ischemic heart. Emerging evidence supports the hypothesis that hCPC beneficial effects are induced by paracrine action on resident cells. Extracellular vesicles (EVs) are an intriguing mechanism of cell communication based on the transport and transfer of peptides, lipids, and nucleic acids that have the potential to modulate signaling pathways, cell growth, migration, and proliferation of recipient cells. We hypothesize that EVs are involved in the paracrine effects elicited by hCPCs and held accountable for the response of the infarcted myocardium to hCPC-based cell therapy. To test this theory, we collected EVs released by hCPCs isolated from healthy myocardium and evaluated the effects they elicited when administered to resident hCPC and cardiac fibroblasts (CFs) isolated from patients with post-ischemic end-stage heart failure. Evidence emerging from our study indicated that hCPC-derived EVs impacted upon proliferation and survival of hCPCs residing in the ischemic heart and regulated the synthesis and deposition of extracellular-matrix by CFs. These findings suggest that beneficial effects exerted by hCPC injection are, at least to some extent, ascribable to the delivery of signals conveyed by EVs.
Collapse
Affiliation(s)
- Veronica Romano
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Immacolata Belviso
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Anna Maria Sacco
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Domenico Cozzolino
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Daria Nurzynska
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”/DIPMED, University of Salerno, Baronissi, Italy
| | - Cristiano Amarelli
- Department of Cardiovascular Surgery and Transplant, Monaldi Hospital, Naples, Italy
| | - Ciro Maiello
- Department of Cardiovascular Surgery and Transplant, Monaldi Hospital, Naples, Italy
| | - Felice Sirico
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Franca Di Meglio
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Clotilde Castaldo
- Department of Public Health, University of Naples Federico II, Naples, Italy
| |
Collapse
|
3
|
Fung VCW, Rosado-Sánchez I, Levings MK. Transduction of Human T Cell Subsets with Lentivirus. Methods Mol Biol 2021; 2285:227-254. [PMID: 33928557 DOI: 10.1007/978-1-0716-1311-5_19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
Abstract
Lentivirus-mediated gene transfer is an efficient method to introduce a variety of transgenes to human T cells. Here we describe a protocol to transduce human CD4+, CD8+, or CD4+ regulatory T cells. To illustrate the method, we use transduction with lentivirus encoding an HLA-A2-specific chimeric antigen receptor (CAR) and a transduction marker as an example. Methods to isolate, transduce, purify, and expand CD4+ and CD8+ T cells as well as regulatory T cells are provided. We also describe how to carry out cytotoxicity or suppression assays to assess the function of the resulting CAR T cell or CAR regulatory T cells, respectively.
Collapse
Affiliation(s)
- Vivian C W Fung
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada.,BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Isaac Rosado-Sánchez
- BC Children's Hospital Research Institute, Vancouver, BC, Canada.,School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Megan K Levings
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada. .,BC Children's Hospital Research Institute, Vancouver, BC, Canada. .,School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
4
|
Samadani AA, Keymoradzdeh A, Shams S, Soleymanpour A, Rashidy-Pour A, Hashemian H, Vahidi S, Norollahi SE. CAR T-cells profiling in carcinogenesis and tumorigenesis: An overview of CAR T-cells cancer therapy. Int Immunopharmacol 2020; 90:107201. [PMID: 33249047 DOI: 10.1016/j.intimp.2020.107201] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/04/2020] [Accepted: 11/09/2020] [Indexed: 12/15/2022]
Abstract
Immunotherapy of cancer by chimeric antigen receptors (CAR) modified T-cell has a remarkable clinical potential for malignancies. Meaningly, it is a suitable cancer therapy to treat different solid tumors. CAR is a special recombinant protein combination with an antibody targeting structure alongside with signaling domain capacity on order to activate T cells. It is confirmed that the CAR-modified T cells have this ability to terminate and remove B cell malignancies. So, methodologies for investigations the pro risks and also strategies for neutralizing possible off-tumor consequences of are great importance successful protocols and strategies of CAR T-cell therapy can improve the efficacy and safety of this type of cancers. In this review article, we try to classify and illustrate main optimized plans in cancer CAR T-cell therapy.
Collapse
Affiliation(s)
- Ali Akbar Samadani
- Healthy Ageing Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| | - Arman Keymoradzdeh
- Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Shima Shams
- Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Armin Soleymanpour
- Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Ali Rashidy-Pour
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Houman Hashemian
- Pediatrics Diseases Research Center, 17 Shahrivar Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Sogand Vahidi
- Clinical Research Development Unit of Poursina Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Seyedeh Elham Norollahi
- Clinical Research Development Unit of Poursina Hospital, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
5
|
Baboon envelope LVs efficiently transduced human adult, fetal, and progenitor T cells and corrected SCID-X1 T-cell deficiency. Blood Adv 2020; 3:461-475. [PMID: 30755435 DOI: 10.1182/bloodadvances.2018027508] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/13/2019] [Indexed: 01/15/2023] Open
Abstract
T cells represent a valuable tool for treating cancers and infectious and inherited diseases; however, they are mainly short-lived in vivo. T-cell therapies would strongly benefit from gene transfer into long-lived persisting naive T cells or T-cell progenitors. Here we demonstrate that baboon envelope glycoprotein pseudotyped lentiviral vectors (BaEV-LVs) far outperformed other LV pseudotypes for transduction of naive adult and fetal interleukin-7-stimulated T cells. Remarkably, BaEV-LVs efficiently transduced thymocytes and T-cell progenitors generated by culture of CD34+ cells on Delta-like ligand 4 (Dll4). Upon NOD/SCIDγC-/- engraftment, high transduction levels (80%-90%) were maintained in all T-cell subpopulations. Moreover, T-cell lineage reconstitution was accelerated in NOD/SCIDγC-/- recipients after T-cell progenitor injection compared with hematopoietic stem cell transplantation. Furthermore, γC-encoding BaEV-LVs very efficiently transduced Dll4-generated T-cell precursors from a patient with X-linked severe combined immunodeficiency (SCID-X1), which fully rescued T-cell development in vitro. These results indicate that BaEV-LVs are valuable tools for the genetic modification of naive T cells, which are important targets for gene therapy. Moreover, they allowed for the generation of gene-corrected T-cell progenitors that rescued SCID-X1 T-cell development in vitro. Ultimately, the coinjection of LV-corrected T-cell progenitors and hematopoietic stem cells might accelerate T-cell reconstitution in immunodeficient patients.
Collapse
|
6
|
Burns DM, Ryan GB, Harvey CM, Nagy E, Hughes S, Murray PG, Russell NH, Fox CP, Long HM. Non-uniform in vivo Expansion of Epstein-Barr Virus-Specific T-Cells Following Donor Lymphocyte Infusion for Post-transplant Lymphoproliferative Disease. Front Immunol 2019; 10:2489. [PMID: 31736946 PMCID: PMC6828838 DOI: 10.3389/fimmu.2019.02489] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 10/04/2019] [Indexed: 11/18/2022] Open
Abstract
Epstein-Barr virus (EBV)-associated post-transplant lymphoproliferative disease (PTLD) is a life-threatening complication of T-lymphocyte deplete allogeneic hematopoietic stem cell transplantation (allo-HSCT). For patients with PTLD refractory to Rituximab, donor lymphocyte infusion (DLI) is established as a successful option for salvage therapy. However, although in vivo lymphocyte expansion has been correlated with good clinical outcome following DLI, the specificity and functional characteristics of EBV-specific T-cell responses remain poorly characterized. Here we describe two patients with Rituximab-refractory PTLD complicating T-cell deplete allo-HSCT, both of whom were successfully rescued with 1 × 106/Kg unselected stem cell donor-derived DLI. Prospective analyses revealed that complete clinical and radiological responses were associated with in vivo expansion of T and NK cells. Furthermore, EBV MHC tetramer, and interferon gamma analyses revealed a marked increase in EBV-specific T-cell frequency from 4 weeks after DLI. Reactivity was demonstrated against a range of EBV latent and lytic antigens, including those detected in tumor biopsy material. The immunodominant EBV-specific T cell response expanding in vivo following infusion matched the dominant response present in the DLI preparations prior to administration. Furthermore, differences in the repertoire of subdominant antigen-specific T-cells were also detected, suggesting that antigen-encounter in vivo can shape the immune response. These results demonstrate the value of prospectively studying in vivo T-cell responses, by facilitating the identification of important specificities required for clinical efficacy. Applying this approach on a larger scale promises to yield data which may be essential for the optimization of future adoptive immunotherapeutic strategies for PTLD.
Collapse
Affiliation(s)
- David M Burns
- Institute for Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Gordon B Ryan
- Institute for Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom.,Cancer Immunology and Immunotherapy Centre, University of Birmingham, Birmingham, United Kingdom
| | - Caroline M Harvey
- Department of Clinical Haematology, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
| | - Eszter Nagy
- Institute for Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom.,Cancer Immunology and Immunotherapy Centre, University of Birmingham, Birmingham, United Kingdom
| | - Simon Hughes
- Department of Radiology, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
| | - Paul G Murray
- Institute for Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom.,Cancer Immunology and Immunotherapy Centre, University of Birmingham, Birmingham, United Kingdom
| | - Nigel H Russell
- Department of Clinical Haematology, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
| | - Christopher P Fox
- Department of Clinical Haematology, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
| | - Heather M Long
- Institute for Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom.,Cancer Immunology and Immunotherapy Centre, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
7
|
Landoni E, Smith CC, Fucá G, Chen Y, Sun C, Vincent BG, Metelitsa LS, Dotti G, Savoldo B. A High-Avidity T-cell Receptor Redirects Natural Killer T-cell Specificity and Outcompetes the Endogenous Invariant T-cell Receptor. Cancer Immunol Res 2019; 8:57-69. [PMID: 31719055 DOI: 10.1158/2326-6066.cir-19-0134] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 08/27/2019] [Accepted: 11/07/2019] [Indexed: 01/01/2023]
Abstract
T-cell receptor (TCR) gene transfer redirects T cells to target intracellular antigens. However, the potential autoreactivity generated by TCR mispairing and occurrence of graft-versus-host disease in the allogenic setting due to the retention of native TCRs remain major concerns. Natural killer T cells (NKT) have shown promise as a platform for adoptive T-cell therapy in cancer patients. Here, we showed their utility for TCR gene transfer. We successfully engineered and expanded NKTs expressing a functional TCR (TCR NKTs), showing HLA-restricted antitumor activity in xenogeneic mouse models in the absence of graft-versus-mouse reactions. We found that TCR NKTs downregulated the invariant TCR (iTCR), leading to iTCR+TCR+ and iTCR-TCR+ populations. In-depth analyses of these subsets revealed that in iTCR-TCR+ NKTs, the iTCR, although expressed at the mRNA and protein levels, was retained in the cytoplasm. This effect resulted from a competition for binding to CD3 molecules for cell-surface expression by the transgenic TCR. Overall, our results highlight the feasibility and advantages of using NKTs for TCR expression for adoptive cell immunotherapies. NKT-low intrinsic alloreactivity that associated with the observed iTCR displacement by the engineered TCR represents ideal characteristics for "off-the-shelf" products without further TCR gene editing.
Collapse
Affiliation(s)
- Elisa Landoni
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Christof C Smith
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Giovanni Fucá
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Yuhui Chen
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Chuang Sun
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Benjamin G Vincent
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Department of Medicine, Division of Hematology/Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | | | - Gianpietro Dotti
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Barbara Savoldo
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina. .,Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
8
|
Ben Nasr M, D'Addio F, Malvandi AM, Faravelli S, Castillo-Leon E, Usuelli V, Rocchio F, Letizia T, El Essawy AB, Assi E, Mameli C, Giani E, Macedoni M, Maestroni A, Dassano A, Loretelli C, Paroni M, Cannalire G, Biasucci G, Sala M, Biffi A, Zuccotti GV, Fiorina P. Prostaglandin E2 Stimulates the Expansion of Regulatory Hematopoietic Stem and Progenitor Cells in Type 1 Diabetes. Front Immunol 2018; 9:1387. [PMID: 29971065 PMCID: PMC6018202 DOI: 10.3389/fimmu.2018.01387] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 06/04/2018] [Indexed: 12/29/2022] Open
Abstract
Hematopoietic stem and progenitor cells (HSPCs) are multipotent stem cells that have been harnessed as a curative therapy for patients with hematological malignancies. Notably, the discovery that HSPCs are endowed with immunoregulatory properties suggests that HSPC-based therapeutic approaches may be used to treat autoimmune diseases. Indeed, infusion with HSPCs has shown promising results in the treatment of type 1 diabetes (T1D) and remains the only “experimental therapy” that has achieved a satisfactory rate of remission (nearly 60%) in T1D. Patients with newly diagnosed T1D have been successfully reverted to normoglycemia by administration of autologous HSPCs in association with a non-myeloablative immunosuppressive regimen. However, this approach is hampered by a high incidence of adverse effects linked to immunosuppression. Herein, we report that while the use of autologous HSPCs is capable of improving C-peptide production in patients with T1D, ex vivo modulation of HSPCs with prostaglandins (PGs) increases their immunoregulatory properties by upregulating expression of the immune checkpoint-signaling molecule PD-L1. Surprisingly, CXCR4 was upregulated as well, which could enhance HSPC trafficking toward the inflamed pancreatic zone. When tested in murine and human in vitro autoimmune assays, PG-modulated HSPCs were shown to abrogate the autoreactive T cell response. The use of PG-modulated HSPCs may thus provide an attractive and novel treatment of autoimmune diabetes.
Collapse
Affiliation(s)
- Moufida Ben Nasr
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States.,International Center for T1D, Pediatric Clinical Research Center Fondazione Romeo ed Enrica Invernizzi, Department of Biomedical and Clinical Science L. Sacco, University of Milan, Milan, Italy
| | - Francesca D'Addio
- International Center for T1D, Pediatric Clinical Research Center Fondazione Romeo ed Enrica Invernizzi, Department of Biomedical and Clinical Science L. Sacco, University of Milan, Milan, Italy
| | - Amir Mohammad Malvandi
- International Center for T1D, Pediatric Clinical Research Center Fondazione Romeo ed Enrica Invernizzi, Department of Biomedical and Clinical Science L. Sacco, University of Milan, Milan, Italy
| | - Silvia Faravelli
- International Center for T1D, Pediatric Clinical Research Center Fondazione Romeo ed Enrica Invernizzi, Department of Biomedical and Clinical Science L. Sacco, University of Milan, Milan, Italy
| | - Eduardo Castillo-Leon
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Vera Usuelli
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States.,International Center for T1D, Pediatric Clinical Research Center Fondazione Romeo ed Enrica Invernizzi, Department of Biomedical and Clinical Science L. Sacco, University of Milan, Milan, Italy
| | - Francesca Rocchio
- International Center for T1D, Pediatric Clinical Research Center Fondazione Romeo ed Enrica Invernizzi, Department of Biomedical and Clinical Science L. Sacco, University of Milan, Milan, Italy
| | - Teresa Letizia
- International Center for T1D, Pediatric Clinical Research Center Fondazione Romeo ed Enrica Invernizzi, Department of Biomedical and Clinical Science L. Sacco, University of Milan, Milan, Italy
| | | | - Emma Assi
- International Center for T1D, Pediatric Clinical Research Center Fondazione Romeo ed Enrica Invernizzi, Department of Biomedical and Clinical Science L. Sacco, University of Milan, Milan, Italy
| | - Chiara Mameli
- Department of Pediatrics, Buzzi Children Hospital, Milan, Italy.,Pediatric Clinical Research Center Fondazione Romeo ed Enrica Invernizzi, Department of Biomedical and Clinical Science L. Sacco, University of Milan, Milan, Italy.,Department of Pediatrics, Children's Hospital Buzzi, Milan, Italy
| | - Elisa Giani
- Department of Pediatrics, Buzzi Children Hospital, Milan, Italy.,Pediatric Clinical Research Center Fondazione Romeo ed Enrica Invernizzi, Department of Biomedical and Clinical Science L. Sacco, University of Milan, Milan, Italy.,Department of Pediatrics, Children's Hospital Buzzi, Milan, Italy
| | - Maddalena Macedoni
- Department of Pediatrics, Diabetes Service Studies, University of Milan, Ospedale dei Bambini Vittore Buzzi, Milan, Italy
| | - Anna Maestroni
- International Center for T1D, Pediatric Clinical Research Center Fondazione Romeo ed Enrica Invernizzi, Department of Biomedical and Clinical Science L. Sacco, University of Milan, Milan, Italy
| | - Alice Dassano
- International Center for T1D, Pediatric Clinical Research Center Fondazione Romeo ed Enrica Invernizzi, Department of Biomedical and Clinical Science L. Sacco, University of Milan, Milan, Italy
| | - Cristian Loretelli
- International Center for T1D, Pediatric Clinical Research Center Fondazione Romeo ed Enrica Invernizzi, Department of Biomedical and Clinical Science L. Sacco, University of Milan, Milan, Italy
| | - Moira Paroni
- Department of Bioscience, University of Milan, Milan, Italy
| | - Giuseppe Cannalire
- Department of Pediatrics and Neonatology, Ospedale Guglielmo da Saliceto, Piacenza, Italy
| | - Giacomo Biasucci
- Department of Pediatrics and Neonatology, Ospedale Guglielmo da Saliceto, Piacenza, Italy
| | - Marco Sala
- Department of Pediatrics, Tradate Hospital, Tradate, Italy
| | - Alessandra Biffi
- Gene Therapy Program, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States
| | - Gian Vincenzo Zuccotti
- International Center for T1D, Pediatric Clinical Research Center Fondazione Romeo ed Enrica Invernizzi, Department of Biomedical and Clinical Science L. Sacco, University of Milan, Milan, Italy.,Department of Pediatrics, Buzzi Children Hospital, Milan, Italy.,Pediatric Clinical Research Center Fondazione Romeo ed Enrica Invernizzi, Department of Biomedical and Clinical Science L. Sacco, University of Milan, Milan, Italy.,Department of Pediatrics, Children's Hospital Buzzi, Milan, Italy
| | - Paolo Fiorina
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States.,International Center for T1D, Pediatric Clinical Research Center Fondazione Romeo ed Enrica Invernizzi, Department of Biomedical and Clinical Science L. Sacco, University of Milan, Milan, Italy.,Division of Endocrinology, ASST Sacco Fatebenefratelli-Sacco, Milan, Italy
| |
Collapse
|
9
|
Neyrinck K, Breuls N, Holvoet B, Oosterlinck W, Wolfs E, Vanbilloen H, Gheysens O, Duelen R, Gsell W, Lambrichts I, Himmelreich U, Verfaillie CM, Sampaolesi M, Deroose CM. The human somatostatin receptor type 2 as an imaging and suicide reporter gene for pluripotent stem cell-derived therapy of myocardial infarction. Am J Cancer Res 2018; 8:2799-2813. [PMID: 29774076 PMCID: PMC5957010 DOI: 10.7150/thno.22980] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 02/28/2018] [Indexed: 12/12/2022] Open
Abstract
Rationale: Pluripotent stem cells (PSCs) are being investigated as a cell source for regenerative medicine since they provide an infinitive pool of cells that are able to differentiate towards every cell type of the body. One possible therapeutic application involves the use of these cells to treat myocardial infarction (MI), a condition where billions of cardiomyocytes (CMs) are lost. Although several protocols have been developed to differentiate PSCs towards CMs, none of these provide a completely pure population, thereby still posing a risk for neoplastic teratoma formation. Therefore, we developed a strategy to (i) monitor cell behavior noninvasively via site-specific integration of firefly luciferase (Fluc) and the human positron emission tomography (PET) imaging reporter genes, sodium iodide symporter (hNIS) and somatostatin receptor type 2 (hSSTr2), and (ii) perform hSSTr2-mediated suicide gene therapy via the clinically used radiopharmacon 177Lu-DOTATATE. Methods: Human embryonic stem cells (ESCs) were gene-edited via zinc finger nucleases to express Fluc and either hNIS or hSSTr2 in the safe harbor locus, adeno-associated virus integration site 1. Firstly, these cells were exposed to 4.8 MBq 177Lu-DOTATATE in vitro and cell survival was monitored via bioluminescence imaging (BLI). Afterwards, hNIS+ and hSSTr2+ ESCs were transplanted subcutaneously and teratomas were allowed to form. At day 59, baseline 124I and 68Ga-DOTATATE PET and BLI scans were performed. The day after, animals received either saline or 55 MBq 177Lu-DOTATATE. Weekly BLI scans were performed, accompanied by 124I and 68Ga-DOTATATE PET scans at days 87 and 88, respectively. Finally, hSSTr2+ ESCs were differentiated towards CMs and transplanted intramyocardially in the border zone of an infarct that was induced by left anterior descending coronary artery ligation. After transplantation, the animals were monitored via BLI and PET, while global cardiac function was evaluated using cardiac magnetic resonance imaging. Results: Teratoma growth of both hNIS+ and hSSTr2+ ESCs could be followed noninvasively over time by both PET and BLI. After 177Lu-DOTATATE administration, successful cell killing of the hSSTr2+ ESCs was achieved both in vitro and in vivo, indicated by reductions in total tracer lesion uptake, BLI signal and teratoma volume. As undifferentiated hSSTr2+ ESCs are not therapeutically relevant, they were differentiated towards CMs and injected in immune-deficient mice with a MI. Long-term cell survival could be monitored without uncontrolled cell proliferation. However, no improvement in the left ventricular ejection fraction was observed. Conclusion: We developed isogenic hSSTr2-expressing ESCs that allow noninvasive cell monitoring in the context of PSC-derived regenerative therapy. Furthermore, we are the first to use the hSSTr2 not only as an imaging reporter gene, but also as a suicide mechanism for radionuclide therapy in the setting of PSC-derived cell treatment.
Collapse
|
10
|
Falkenburg JHF, Jedema I. Graft versus tumor effects and why people relapse. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2017; 2017:693-698. [PMID: 29222323 PMCID: PMC6142614 DOI: 10.1182/asheducation-2017.1.693] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Graft-versus-tumor (GVT) reactivity mediated by donor T cells in the context of allogeneic stem cell transplantation (alloSCT) is one of the most potent forms of cellular immunotherapy. The antitumor effect against hematologic malignancies is mediated by a polyclonal T-cell response targeting polymorphic antigens expressed on hematopoietic tissues of the recipient, leaving donor hematopoiesis in the patient after transplantation unharmed. Fortunately, hematopoietic tissues (including malignant hematopoietic cell populations) are relatively susceptible to T-cell recognition. If, however, nonhematopoietic tissues of the recipient are targeted as well, graft-versus-host disease (GVHD) will occur. The balance between GVT and GVHD is influenced by the genetic disparity between donor and recipient, the number and origin of professional antigen-presenting cells provoking the immune response, the target antigen specificity, magnitude and diversity of the response, and the in vivo inflammatory environment, whereas inhibitory factors may silence the immune response. Manipulation of each of these factors will determine the balance between GVT and GVHD.
Collapse
Affiliation(s)
| | - Inge Jedema
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
11
|
Mooney R, Abdul Majid A, Batalla J, Annala AJ, Aboody KS. Cell-mediated enzyme prodrug cancer therapies. Adv Drug Deliv Rev 2017; 118:35-51. [PMID: 28916493 DOI: 10.1016/j.addr.2017.09.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 08/15/2017] [Accepted: 09/06/2017] [Indexed: 02/08/2023]
Abstract
Cell-directed gene therapy is a promising new frontier for the field of targeted cancer therapies. Here we discuss the current pre-clinical and clinical use of cell-mediated enzyme prodrug therapy (EPT) directed against solid tumors and avenues for further development. We also discuss some of the challenges encountered upon translating these therapies to clinical trials. Upon sufficient development, cell-mediated enzyme prodrug therapy has the potential to maximize the distribution of therapeutic enzymes within the tumor environment, localizing conversion of prodrug to active drug at the tumor sites thereby decreasing off-target toxicities. New combinatorial possibilities are also promising. For example, when combined with viral gene-delivery vehicles, this may result in new hybrid vehicles that attain heretofore unmatched levels of therapeutic gene expression within the tumor.
Collapse
|
12
|
NY-ESO-1 TCR single edited stem and central memory T cells to treat multiple myeloma without graft-versus-host disease. Blood 2017. [PMID: 28637663 DOI: 10.1182/blood-2016-08-732636] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Transfer of T-cell receptors (TCRs) specific for tumor-associated antigens is a promising approach for cancer immunotherapy. We developed the TCR gene editing technology that is based on the knockout of the endogenous TCR α and β genes, followed by the introduction of tumor-specific TCR genes, and that proved safer and more effective than conventional TCR gene transfer. Although successful, complete editing requires extensive cell manipulation and 4 transduction procedures. Here we propose a novel and clinically feasible TCR "single editing" (SE) approach, based on the disruption of the endogenous TCR α chain only, followed by the transfer of genes encoding for a tumor-specific TCR. We validated SE with the clinical grade HLA-A2 restricted NY-ESO-1157-165-specific TCR. SE allowed the rapid production of high numbers of tumor-specific T cells, with optimal TCR expression and preferential stem memory and central memory phenotype. Similarly to unedited T cells redirected by TCR gene transfer (TCR transferred [TR]), SE T cells efficiently killed NY-ESO-1pos targets; however, although TR cells proved highly alloreactive, SE cells showed a favorable safety profile. Accordingly, when infused in NSG mice previously engrafted with myeloma, SE cells mediated tumor rejection without inducing xenogeneic graft-versus-host disease, thus resulting in significantly higher survival than that observed in mice treated with TR cells. Overall, single TCR gene editing represents a clinically feasible approach that is able to increase the safety and efficacy of cancer adoptive immunotherapy.
Collapse
|
13
|
Vectofusin-1 Promotes RD114-TR-Pseudotyped Lentiviral Vector Transduction of Human HSPCs and T Lymphocytes. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2017; 5:22-30. [PMID: 28480301 PMCID: PMC5415310 DOI: 10.1016/j.omtm.2017.02.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 02/22/2017] [Indexed: 01/06/2023]
Abstract
Ex vivo transduction of human CD34+ hematopoietic stem/progenitor cells (hCD34+ HSPCs) and T lymphocytes is a key process that requires high efficiency and low toxicity to achieve effective clinical results. So far, several enhancers have been used to improve this process. Among them, Retronectin highly meliorates VSV-G and RD114-TR pseudotyped lentiviral vector delivery in hCD34+ HSPCs and T lymphocytes. However, Retronectin is expensive and requires pre-coating of culture dishes or bags before cell seeding, resulting in a cumbersome procedure. Recently, an alternative transduction adjuvant has been developed, named Vectofusin-1, whose effect has been demonstrated on gene delivery to cell lines and primary hCD34+ HSPCs by lentiviral vectors pseudotyped with different envelope glycoproteins. In this study, we have focused our analysis on the effect of Vectofusin-1 on the transduction of hCD34+ HSPCs and T lymphocytes by using mostly RD114-TR pseudotyped lentivectors and clinical transduction protocols. Here, we have proved that Vectofusin-1 reproducibly enhances gene delivery to hCD34+ HSPCs and activated T cells without cell toxicity and with efficacy comparable to that of Retronectin. The use of Vectofusin-1 will therefore help to shorten and simplify clinical cell manipulation, especially if automated systems are planned for transducing large-scale clinical lots.
Collapse
|
14
|
Current status of ex vivo gene therapy for hematological disorders: a review of clinical trials in Japan around the world. Int J Hematol 2016; 104:42-72. [PMID: 27289360 DOI: 10.1007/s12185-016-2030-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 05/22/2016] [Accepted: 05/24/2016] [Indexed: 12/20/2022]
Abstract
Gene therapies are classified into two major categories, namely, in vivo and ex vivo. Clinical trials of human gene therapy began with the ex vivo techniques. Based on the initial successes of gene-therapy clinical trials, these approaches have spread worldwide. The number of gene therapy trials approved worldwide increased gradually starting in 1989, reaching 116 protocols per year in 1999, and a total of 2210 protocols had been approved by 2015. Accumulating clinical evidence has demonstrated the safety and benefits of several types of gene therapy, with the exception of serious adverse events in several clinical trials. These painful experiences were translated backward to basic science, resulting in the development of several new technologies that have influenced the recent development of ex vivo gene therapy in this field. To date, six gene therapies have been approved in a limited number of countries worldwide. In Japan, clinical trials of gene therapy have developed under the strong influence of trials in the US and Europe. Since the initial stages, 50 clinical trials have been approved by the Japanese government. In this review, the history and current status of clinical trials of ex vivo gene therapy for hematological disorders are introduced and discussed.
Collapse
|
15
|
Schirmer D, Grünewald TGP, Klar R, Schmidt O, Wohlleber D, Rubío RA, Uckert W, Thiel U, Bohne F, Busch DH, Krackhardt AM, Burdach S, Richter GHS. Transgenic antigen-specific, HLA-A*02:01-allo-restricted cytotoxic T cells recognize tumor-associated target antigen STEAP1 with high specificity. Oncoimmunology 2016; 5:e1175795. [PMID: 27471654 PMCID: PMC4938321 DOI: 10.1080/2162402x.2016.1175795] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 03/31/2016] [Accepted: 04/01/2016] [Indexed: 12/20/2022] Open
Abstract
Pediatric cancers, including Ewing sarcoma (ES), are only weakly immunogenic and the tumor-patients' immune system often is devoid of effector T cells for tumor elimination. Based on expression profiling technology, targetable tumor-associated antigens (TAA) are identified and exploited for engineered T-cell therapy. Here, the specific recognition and lytic potential of transgenic allo-restricted CD8(+) T cells, directed against the ES-associated antigen 6-transmembrane epithelial antigen of the prostate 1 (STEAP1), was examined. Following repetitive STEAP1(130) peptide-driven stimulations with HLA-A*02:01(+) dendritic cells (DC), allo-restricted HLA-A*02:01(-) CD8(+) T cells were sorted with HLA-A*02:01/peptide multimers and expanded by limiting dilution. After functional analysis of suitable T cell clones via ELISpot, flow cytometry and xCELLigence assay, T cell receptors' (TCR) α- and β-chains were identified, cloned into retroviral vectors, codon optimized, transfected into HLA-A*02:01(-) primary T cell populations and tested again for specificity and lytic capacity in vitro and in a Rag2(-/-)γc(-/-) mouse model. Initially generated transgenic T cells specifically recognized STEAP1(130)-pulsed or transfected cells in the context of HLA-A*02:01 with minimal cross-reactivity as determined by specific interferon-γ (IFNγ) release, lysed cells and inhibited growth of HLA-A*02:01(+) ES lines more effectively than HLA-A*02:01(-) ES lines. In vivo tumor growth was inhibited more effectively with transgenic STEAP1(130)-specific T cells than with unspecific T cells. Our results identify TCRs capable of recognizing and inhibiting growth of STEAP1-expressing HLA-A*02:01(+) ES cells in vitro and in vivo in a highly restricted manner. As STEAP1 is overexpressed in a wide variety of cancers, we anticipate these STEAP1-specific TCRs to be potentially useful for immunotherapy of other STEAP1-expressing tumors.
Collapse
Affiliation(s)
- David Schirmer
- Children's Cancer Research Center and Department of Pediatrics, Klinikum rechts der Isar, Technische Universität München, Munich, Germany and Comprehensive Cancer Center Munich (CCCM), Munich, Germany
| | - Thomas G. P. Grünewald
- Laboratory for Pediatric Sarcoma Biology, Institute of Pathology of the LMU Munich, Munich, Germany
| | - Richard Klar
- Medical Department III, Hematology and Oncology, Munich, Germany
| | - Oxana Schmidt
- Children's Cancer Research Center and Department of Pediatrics, Klinikum rechts der Isar, Technische Universität München, Munich, Germany and Comprehensive Cancer Center Munich (CCCM), Munich, Germany
| | - Dirk Wohlleber
- Institute of Molecular Immunology/Experimental Oncology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Rebeca Alba Rubío
- Laboratory for Pediatric Sarcoma Biology, Institute of Pathology of the LMU Munich, Munich, Germany
| | | | - Uwe Thiel
- Children's Cancer Research Center and Department of Pediatrics, Klinikum rechts der Isar, Technische Universität München, Munich, Germany and Comprehensive Cancer Center Munich (CCCM), Munich, Germany
| | - Felix Bohne
- Institute of Virology, Technische Universität München, Helmholtz Zentrum München, Munich, Germany
| | - Dirk H. Busch
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany
| | | | - Stefan Burdach
- Children's Cancer Research Center and Department of Pediatrics, Klinikum rechts der Isar, Technische Universität München, Munich, Germany and Comprehensive Cancer Center Munich (CCCM), Munich, Germany
| | - Günther H. S. Richter
- Children's Cancer Research Center and Department of Pediatrics, Klinikum rechts der Isar, Technische Universität München, Munich, Germany and Comprehensive Cancer Center Munich (CCCM), Munich, Germany
| |
Collapse
|
16
|
Roellecke K, Virts EL, Einholz R, Edson KZ, Altvater B, Rossig C, von Laer D, Scheckenbach K, Wagenmann M, Reinhardt D, Kramm CM, Rettie AE, Wiek C, Hanenberg H. Optimized human CYP4B1 in combination with the alkylator prodrug 4-ipomeanol serves as a novel suicide gene system for adoptive T-cell therapies. Gene Ther 2016; 23:615-26. [PMID: 27092941 DOI: 10.1038/gt.2016.38] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 03/23/2016] [Accepted: 04/05/2016] [Indexed: 12/18/2022]
Abstract
Engineering autologous or allogeneic T cells to express a suicide gene can control potential toxicity in adoptive T-cell therapies. We recently reported the development of a novel human suicide gene system that is based on an orphan human cytochrome P450 enzyme, CYP4B1, and the naturally occurring alkylator prodrug 4-ipomeanol. The goal of this study was to systematically develop a clinically applicable self-inactivating lentiviral vector for efficient co-expression of CYP4B1 as an ER-located protein with two distinct types of cell surface proteins, either MACS selection genes for donor lymphocyte infusions after allogeneic stem cell transplantation or chimeric antigen receptors for retargeting primary T cells. The U3 region of the myeloproliferative sarcoma virus in combination with the T2A site was found to drive high-level expression of our CYP4B1 mutant with truncated CD34 or CD271 as MACS suitable selection markers. This lentiviral vector backbone was also well suited for co-expression of CYP4B1 with a codon-optimized CD19 chimeric antigen receptor (CAR) construct. Finally, 4-ipomeanol efficiently induced apoptosis in primary T cells that co-express mutant CYP4B1 and the divergently located MACS selection and CAR genes. In conclusion, we here developed a clinically suited lentiviral vector that supports high-level co-expression of cell surface proteins with a potent novel human suicide gene.
Collapse
Affiliation(s)
- K Roellecke
- Department of Otorhinolaryngology and Head/Neck Surgery, Heinrich Heine University, Düsseldorf, Germany
| | - E L Virts
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - R Einholz
- Institute for Organic Chemistry, University of Tübingen, Tübingen, Germany
| | - K Z Edson
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, WA, USA
| | - B Altvater
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany
| | - C Rossig
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany
| | - D von Laer
- Institute for Virology, Innsbruck Medical University, Innsbruck, Austria
| | - K Scheckenbach
- Department of Otorhinolaryngology and Head/Neck Surgery, Heinrich Heine University, Düsseldorf, Germany
| | - M Wagenmann
- Department of Otorhinolaryngology and Head/Neck Surgery, Heinrich Heine University, Düsseldorf, Germany
| | - D Reinhardt
- Department of Pediatrics III, University Children's Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - C M Kramm
- Division of Pediatric Hematology and Oncology, Department of Child and Adolescent Health, University Medical Center Göttingen, Göttingen, Germany
| | - A E Rettie
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, WA, USA
| | - C Wiek
- Department of Otorhinolaryngology and Head/Neck Surgery, Heinrich Heine University, Düsseldorf, Germany
| | - H Hanenberg
- Department of Otorhinolaryngology and Head/Neck Surgery, Heinrich Heine University, Düsseldorf, Germany.,Department of Pediatrics III, University Children's Hospital Essen, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
17
|
Ben Nasr M, Bassi R, Usuelli V, Valderrama-Vasquez A, Tezza S, D'Addio F, Fiorina P. The use of hematopoietic stem cells in autoimmune diseases. Regen Med 2016; 11:395-405. [PMID: 27165670 DOI: 10.2217/rme-2015-0057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Hematopoietic stem cells (HSCs) have been shown recently to hold much promise in curing autoimmune diseases. Newly diagnosed Type 1 diabetes individuals have been successfully reverted to normoglycemia by administration of autologous HSCs in association with a nonmyeloablative regimen (antithymocyte globulin + cyclophasmide). Furthermore, recent trials reported positive results by using HSCs in treatment of systemic sclerosis, multiple sclerosis and rheumatoid arthritis as well. Early data suggested that HSCs possess immunological properties that may be harnessed to alleviate the symptoms of individuals with autoimmune disorders and possibly induce remission of autoimmune diseases. Mechanistically, HSCs may facilitate the generation of regulatory T cells, may inhibit the function of autoreactive T-cell function and may reshape the immune system.
Collapse
Affiliation(s)
- Moufida Ben Nasr
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,Transplant Medicine Division, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Roberto Bassi
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,Transplant Medicine Division, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Vera Usuelli
- Transplant Medicine Division, IRCCS Ospedale San Raffaele, Milan, Italy
| | | | - Sara Tezza
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Francesca D'Addio
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,Transplant Medicine Division, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Paolo Fiorina
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,Transplant Medicine Division, IRCCS Ospedale San Raffaele, Milan, Italy
| |
Collapse
|
18
|
Labenski V, Suerth JD, Barczak E, Heckl D, Levy C, Bernadin O, Charpentier E, Williams DA, Fehse B, Verhoeyen E, Schambach A. Alpharetroviral self-inactivating vectors produced by a superinfection-resistant stable packaging cell line allow genetic modification of primary human T lymphocytes. Biomaterials 2016; 97:97-109. [PMID: 27162078 DOI: 10.1016/j.biomaterials.2016.04.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 04/09/2016] [Accepted: 04/20/2016] [Indexed: 01/06/2023]
Abstract
Primary human T lymphocytes represent an important cell population for adoptive immunotherapies, including chimeric-antigen and T-cell receptor applications, as they have the capability to eliminate non-self, virus-infected and tumor cells. Given the increasing numbers of clinical immunotherapy applications, the development of an optimal vector platform for genetic T lymphocyte engineering, which allows cost-effective high-quality vector productions, remains a critical goal. Alpharetroviral self-inactivating vectors (ARV) have several advantages compared to other vector platforms, including a more random genomic integration pattern and reduced likelihood for inducing aberrant splicing of integrated proviruses. We developed an ARV platform for the transduction of primary human T lymphocytes. We demonstrated functional transgene transfer using the clinically relevant herpes-simplex-virus thymidine kinase variant TK.007. Proof-of-concept of alpharetroviral-mediated T-lymphocyte engineering was shown in vitro and in a humanized transplantation model in vivo. Furthermore, we established a stable, human alpharetroviral packaging cell line in which we deleted the entry receptor (SLC1A5) for RD114/TR-pseudotyped ARVs to prevent superinfection and enhance genomic integrity of the packaging cell line and viral particles. We showed that superinfection can be entirely prevented, while maintaining high recombinant virus titers. Taken together, this resulted in an improved production platform representing an economic strategy for translating the promising features of ARVs for therapeutic T-lymphocyte engineering.
Collapse
Affiliation(s)
- Verena Labenski
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Julia D Suerth
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Elke Barczak
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Dirk Heckl
- Department of Pediatric Hematology & Oncology, Hannover Medical School, Hannover, Germany; Department of Regulation in Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Camille Levy
- CIRI, EVIR Team, Inserm, U1111, CNRS, UMR5308, Université de Lyon-1, ENS de Lyon, Lyon, France
| | - Ornellie Bernadin
- CIRI, EVIR Team, Inserm, U1111, CNRS, UMR5308, Université de Lyon-1, ENS de Lyon, Lyon, France
| | - Emmanuelle Charpentier
- Department of Regulation in Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - David A Williams
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Boris Fehse
- Research Department Cell and Gene Therapy, Dept. of Stem Cell Transplantation, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Els Verhoeyen
- CIRI, EVIR Team, Inserm, U1111, CNRS, UMR5308, Université de Lyon-1, ENS de Lyon, Lyon, France; Inserm, U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), équipe "contrôle métabolique des morts cellulaires", Nice, France
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany; Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
19
|
Abstract
Hematopoietic SCT (HSCT) from HLA haploidentical family donors is a promising therapy for high-risk hematological malignancies. In the past 15 years at San Raffaele Scientific Institute, we investigated several transplant platforms and post transplant cellular-based interventions. We showed that T cell-depleted haploidentical transplantation followed by the infusion of genetically modified donor T cells (TK007 study, Eudract-2005-003587-34) promotes fast and wide immune reconstitution and GvHD control. This approach is currently tested in a phase III multicenter randomized trial (TK008 study, NCT00914628). We targeted patients with advanced leukemia with a sirolimus-based, calcineurin inhibitor-free prophylaxis of GvHD to allow the safe infusion of unmanipulated PBSCs from haploidentical family donors (TrRaMM study, Eudract 2007-5477-54). Results of these approaches are summarized and discussed.
Collapse
|
20
|
Patial S, Curtis AD, Lai WS, Stumpo DJ, Hill GD, Flake GP, Mannie MD, Blackshear PJ. Enhanced stability of tristetraprolin mRNA protects mice against immune-mediated inflammatory pathologies. Proc Natl Acad Sci U S A 2016; 113:1865-70. [PMID: 26831084 PMCID: PMC4763790 DOI: 10.1073/pnas.1519906113] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Tristetraprolin (TTP) is an inducible, tandem zinc-finger mRNA binding protein that binds to adenylate-uridylate-rich elements (AREs) in the 3'-untranslated regions (3'UTRs) of specific mRNAs, such as that encoding TNF, and increases their rates of deadenylation and turnover. Stabilization of Tnf mRNA and other cytokine transcripts in TTP-deficient mice results in the development of a profound, chronic inflammatory syndrome characterized by polyarticular arthritis, dermatitis, myeloid hyperplasia, and autoimmunity. To address the hypothesis that increasing endogenous levels of TTP in an intact animal might be beneficial in the treatment of inflammatory diseases, we generated a mouse model (TTPΔARE) in which a 136-base instability motif in the 3'UTR of TTP mRNA was deleted in the endogenous genetic locus. These mice appeared normal, but cultured fibroblasts and macrophages derived from them exhibited increased stability of the otherwise highly labile TTP mRNA. This resulted in increased TTP protein expression in LPS-stimulated macrophages and increased levels of TTP protein in mouse tissues. TTPΔARE mice were protected from collagen antibody-induced arthritis, exhibited significantly reduced inflammation in imiquimod-induced dermatitis, and were resistant to induction of experimental autoimmune encephalomyelitis, presumably by dampening the excessive production of proinflammatory mediators in all cases. These data suggest that increased systemic levels of TTP, secondary to increased stability of its mRNA throughout the body, can be protective against inflammatory disease in certain models and might be viewed as an attractive therapeutic target for the treatment of human inflammatory diseases.
Collapse
Affiliation(s)
- Sonika Patial
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709
| | - Alan D Curtis
- Department of Microbiology and Immunology, East Carolina University Brody School of Medicine, Greenville, NC 27858
| | - Wi S Lai
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709
| | - Deborah J Stumpo
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709
| | | | - Gordon P Flake
- Cellular and Molecular Pathology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709
| | - Mark D Mannie
- Department of Microbiology and Immunology, East Carolina University Brody School of Medicine, Greenville, NC 27858
| | - Perry J Blackshear
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709; Departments of Medicine and Biochemistry, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
21
|
Engert A, Balduini C, Brand A, Coiffier B, Cordonnier C, Döhner H, de Wit TD, Eichinger S, Fibbe W, Green T, de Haas F, Iolascon A, Jaffredo T, Rodeghiero F, Salles G, Schuringa JJ. The European Hematology Association Roadmap for European Hematology Research: a consensus document. Haematologica 2016; 101:115-208. [PMID: 26819058 PMCID: PMC4938336 DOI: 10.3324/haematol.2015.136739] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 01/27/2016] [Indexed: 01/28/2023] Open
Abstract
The European Hematology Association (EHA) Roadmap for European Hematology Research highlights major achievements in diagnosis and treatment of blood disorders and identifies the greatest unmet clinical and scientific needs in those areas to enable better funded, more focused European hematology research. Initiated by the EHA, around 300 experts contributed to the consensus document, which will help European policy makers, research funders, research organizations, researchers, and patient groups make better informed decisions on hematology research. It also aims to raise public awareness of the burden of blood disorders on European society, which purely in economic terms is estimated at €23 billion per year, a level of cost that is not matched in current European hematology research funding. In recent decades, hematology research has improved our fundamental understanding of the biology of blood disorders, and has improved diagnostics and treatments, sometimes in revolutionary ways. This progress highlights the potential of focused basic research programs such as this EHA Roadmap.The EHA Roadmap identifies nine 'sections' in hematology: normal hematopoiesis, malignant lymphoid and myeloid diseases, anemias and related diseases, platelet disorders, blood coagulation and hemostatic disorders, transfusion medicine, infections in hematology, and hematopoietic stem cell transplantation. These sections span 60 smaller groups of diseases or disorders.The EHA Roadmap identifies priorities and needs across the field of hematology, including those to develop targeted therapies based on genomic profiling and chemical biology, to eradicate minimal residual malignant disease, and to develop cellular immunotherapies, combination treatments, gene therapies, hematopoietic stem cell treatments, and treatments that are better tolerated by elderly patients.
Collapse
Affiliation(s)
| | | | - Anneke Brand
- Leids Universitair Medisch Centrum, Leiden, the Netherlands
| | | | | | | | | | | | - Willem Fibbe
- Leids Universitair Medisch Centrum, Leiden, the Netherlands
| | - Tony Green
- Cambridge Institute for Medical Research, United Kingdom
| | - Fleur de Haas
- European Hematology Association, The Hague, the Netherlands
| | | | | | | | - Gilles Salles
- Hospices Civils de Lyon/Université de Lyon, Pierre-Bénite, France
| | | |
Collapse
|
22
|
Serial Activation of the Inducible Caspase 9 Safety Switch After Human Stem Cell Transplantation. Mol Ther 2015; 24:823-31. [PMID: 26708005 DOI: 10.1038/mt.2015.234] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 12/15/2015] [Indexed: 12/19/2022] Open
Abstract
Activation of the inducible caspase 9 (iC9) safety gene by a dimerizing drug (chemical inducer of dimerization (CID) AP1903) effectively resolves the symptoms and signs of graft-versus-host disease (GvHD) in haploidentical stem cell transplant (HSCT) recipients. However, after CID treatment, 1% of iC9-T cells remain and can regrow over time; although these resurgent T cells do not cause recurrent GvHD, it remains unclear whether repeat CID treatments are a safe and feasible way to further deplete residual gene-modified T cells should any other adverse effects associated with them occur. Here, we report a patient who received an infusion of haploidentical iC9-T cells after HSCT and subsequently received three treatments with AP1903. There was a mild (grade 2) and transient pancytopenia following each AP1903 administration but no non-hematological toxicity. Ninety five percent of circulating iC9-T cells (CD3(+)CD19(+)) were eliminated after the first AP1903 treatment. Three months later, the residual cells had expanded more than eightfold and had a lower level of iC9 expression. Each repeated AP1903 administration eliminated a diminishing percentage of the residual repopulating cells, but elimination could be enhanced by T-cell activation. These data support the safety and efficiency of repeated CID treatments for persistent or recurring toxicity from T-cell therapies.
Collapse
|
23
|
Regan D, Guth A, Coy J, Dow S. Cancer immunotherapy in veterinary medicine: Current options and new developments. Vet J 2015; 207:20-28. [PMID: 26545847 DOI: 10.1016/j.tvjl.2015.10.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 09/24/2015] [Accepted: 10/04/2015] [Indexed: 12/12/2022]
Abstract
Excitement in the field of tumor immunotherapy is being driven by several remarkable breakthroughs in recent years. This review will cover recent advances in cancer immunotherapy, including the use of T cell checkpoint inhibitors, engineered T cells, cancer vaccines, and anti-B cell and T cell antibodies. Inhibition of T cell checkpoint molecules such as PD-1 and CTLA-4 using monoclonal antibodies has achieved notable success against advanced tumors in humans, including melanoma, renal cell carcinoma, and non-small cell lung cancer. Therapy with engineered T cells has also demonstrated remarkable tumor control and regression in human trials. Autologous cancer vaccines have recently demonstrated impressive prolongation of disease-free intervals and survival times in dogs with lymphoma. In addition, caninized monoclonal antibodies targeting CD20 and CD52 just recently received either full (CD20) or conditional (CD52) licensing by the United States Department of Agriculture for clinical use in the treatment of canine B-cell and T-cell lymphomas, respectively. Thus, immunotherapy for cancer is rapidly moving to the forefront of cancer treatment options in veterinary medicine as well as human medicine.
Collapse
Affiliation(s)
- Daniel Regan
- Animal Cancer Center, Department of Clinical Sciences, Colorado State University, Ft. Collins, CO 80523, USA
| | - Amanda Guth
- Animal Cancer Center, Department of Clinical Sciences, Colorado State University, Ft. Collins, CO 80523, USA
| | - Jonathan Coy
- Animal Cancer Center, Department of Clinical Sciences, Colorado State University, Ft. Collins, CO 80523, USA
| | - Steven Dow
- Animal Cancer Center, Department of Clinical Sciences, Colorado State University, Ft. Collins, CO 80523, USA.
| |
Collapse
|
24
|
Hashimoto H, Kitano S, Yamagata S, Miyagi Maeshima A, Ueda R, Ito A, Tada K, Fuji S, Yamashita T, Tomura D, Nukaya I, Mineno J, Fukuda T, Mori S, Takaue Y, Heike Y. Donor lymphocytes expressing the herpes simplex virus thymidine kinase suicide gene: detailed immunological function following add-back after haplo-identical transplantation. Cytotherapy 2015; 17:1820-30. [PMID: 26452983 DOI: 10.1016/j.jcyt.2015.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 08/07/2015] [Accepted: 08/13/2015] [Indexed: 01/26/2023]
Abstract
BACKGROUND AIMS Haplo-identical hematopoietic stem cell transplantation (HSCT) with add-back of donor lymphocytes expressing the herpes simplex virus thymidine kinase suicide gene (TK cells) is one of the most widely applied promising new gene therapy approaches. However, the immunological status of added-back TK cells after HSCT has yet to be well characterized. METHODS We investigated TK cells through the use of flow cytometry, T-cell receptor (TCR) Vβ repertoire spectratyping and linear amplification-mediated polymerase chain reaction followed by insertion site analysis in a patient enrolled in our clinical trial. RESULTS A comparison of onset with remission of acute graft-versus-host disease confirmed that TK cells were predominantly eliminated and that proliferative CD8(+) non-TK cells were also depleted in response to ganciclovir administration. The TCR Vβ-chain repertoire of both TK cells and non-TK cells markedly changed after administration of ganciclovir, and, whereas the TCR repertoire of non-TK cells returned to a normal spectratype long after transplantation, that of TK cells remained skewed. With the long-term prophylactic administration of acyclovir, TK cells oligoclonally expanded and the frequency of spliced variants of TK cells increased. Known cancer-associated genes were not evident near the oligoclonally expanded herpes simplex virus (HSV)-TK insertion sites. CONCLUSIONS We demonstrate obvious differences in immunological status between TK cells and non-TK cells. In addition, we speculate that long-term prophylactic administration of acyclovir increases the risk of oligoclonal expansion of spliced forms of TK cells.
Collapse
Affiliation(s)
- Hisayoshi Hashimoto
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan
| | - Shigehisa Kitano
- Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo, Japan; Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Tokyo, Japan
| | - Shizuka Yamagata
- Department of Hematopoietic Stem Cell Transplantation, National Cancer Center Hospital, Tokyo, Japan
| | - Akiko Miyagi Maeshima
- Division of Pathology and Clinical Laboratories, National Cancer Center Hospital, Tokyo, Japan
| | - Ryosuke Ueda
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan
| | - Ayumu Ito
- Department of Hematopoietic Stem Cell Transplantation, National Cancer Center Hospital, Tokyo, Japan
| | - Kohei Tada
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Tokyo, Japan; Department of Hematopoietic Stem Cell Transplantation, National Cancer Center Hospital, Tokyo, Japan
| | - Shigeo Fuji
- Department of Hematopoietic Stem Cell Transplantation, National Cancer Center Hospital, Tokyo, Japan
| | - Takuya Yamashita
- Department of Hematopoietic Stem Cell Transplantation, National Cancer Center Hospital, Tokyo, Japan
| | - Daisuke Tomura
- Center for Cell and Gene Therapy, Takara Bio Inc, Tokyo, Japan
| | - Ikuei Nukaya
- Center for Cell and Gene Therapy, Takara Bio Inc, Tokyo, Japan
| | - Junichi Mineno
- Center for Cell and Gene Therapy, Takara Bio Inc, Tokyo, Japan
| | - Takahiro Fukuda
- Department of Hematopoietic Stem Cell Transplantation, National Cancer Center Hospital, Tokyo, Japan
| | - Shinichiro Mori
- Department of Hematology and Oncology, St Luke's International University and Hospital, Tokyo, Japan
| | - Yoichi Takaue
- Research Planning and Management Department, St Luke's International University and Hospital, Tokyo, Japan
| | - Yuji Heike
- Immunotherapy and Cell Therapy Service, St Luke's International University and Hospital Tokyo, Japan; Laboratory for Joint Research and Development, St Luke's International University and Hospital, Tokyo, Japan.
| |
Collapse
|
25
|
Pato A, Eisenberg G, Machlenkin A, Margalit A, Cafri G, Frankenburg S, Merims S, Peretz T, Lotem M, Gross G. Messenger RNA encoding constitutively active Toll-like receptor 4 enhances effector functions of human T cells. Clin Exp Immunol 2015. [PMID: 26212048 DOI: 10.1111/cei.12688] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Adoptive T cell therapy of cancer employs a large number of ex-vivo-propagated T cells which recognize their targets either by virtue of their endogenous T cell receptor (TCR) or via genetic reprogramming. However, both cell-extrinsic and intrinsic mechanisms often diminish the in-vivo potency of these therapeutic T cells, limiting their clinical efficacy and broader use. Direct activation of human T cells by Toll-like receptor (TLR) ligands induces T cell survival and proliferation, boosts the production of proinflammatory cytokines and augments resistance to regulatory T cell (Treg) suppression. Removal of the TLR ligand-binding region results in constitutive signalling triggered by the remaining cytosolic Toll/interleukin-1 receptor (TIR) domain. The use of such TIR domains therefore offers an ideal means for equipping anti-tumour T cells with the arsenal of functional attributes required for improving current clinical protocols. Here we show that constitutively active (ca)TLR-4 can be expressed efficiently in human T cells using mRNA electroporation. The mere expression of caTLR-4 mRNA in polyclonal CD8 and CD4 T cells induced the production of interferon (IFN)-γ, triggered the surface expression of CD25, CD69 and 4-1BB and up-regulated a panel of cytokines and chemokines. In tumour-infiltrating lymphocytes prepared from melanoma patients, caTLR-4 induced robust IFN-γ secretion in all samples tested. Furthermore, caTLR-4 enhanced the anti-melanoma cytolytic activity of tumour-infiltrating lymphocytes and augmented the secretion of IFN-γ, tumour necrosis factor (TNF)-α and granulocyte-macrophage colony-stimulating factor (GM-CSF) for at least 4 days post-transfection. Our results demonstrate that caTLR-4 is capable of exerting multiple T cell-enhancing effects and can potentially be used as a genetic adjuvant in adoptive cell therapy.
Collapse
Affiliation(s)
- A Pato
- Laboratory of Immunology, MIGAL - Galilee Research Institute, Kiryat, Shmona.,Sharett Institute of Oncology, Hadassah Hebrew University Hospital, Jerusalem
| | - G Eisenberg
- Sharett Institute of Oncology, Hadassah Hebrew University Hospital, Jerusalem
| | - A Machlenkin
- Sharett Institute of Oncology, Hadassah Hebrew University Hospital, Jerusalem
| | - A Margalit
- Laboratory of Immunology, MIGAL - Galilee Research Institute, Kiryat, Shmona.,Department of Biotechnology, Tel-Hai College, Upper, Galilee
| | - G Cafri
- Laboratory of Immunology, MIGAL - Galilee Research Institute, Kiryat, Shmona.,Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - S Frankenburg
- Sharett Institute of Oncology, Hadassah Hebrew University Hospital, Jerusalem
| | - S Merims
- Sharett Institute of Oncology, Hadassah Hebrew University Hospital, Jerusalem
| | - T Peretz
- Sharett Institute of Oncology, Hadassah Hebrew University Hospital, Jerusalem
| | - M Lotem
- Sharett Institute of Oncology, Hadassah Hebrew University Hospital, Jerusalem
| | - G Gross
- Laboratory of Immunology, MIGAL - Galilee Research Institute, Kiryat, Shmona.,Department of Biotechnology, Tel-Hai College, Upper, Galilee
| |
Collapse
|
26
|
Abstract
Tumors originate from a number of genetic events that deregulate homeostatic mechanisms controlling normal cell behavior. The immune system, devoted to patrol the organism against pathogenic events, can identify transformed cells, and in several cases cause their elimination. It is however clear that several mechanisms encompassing both central and peripheral tolerance limit antitumor immunity, often resulting into progressive diseases. Adoptive T-cell therapy with either allogeneic or autologous T cells can transfer therapeutic immunity. To date, genetic engineering of T cells appears to be a powerful tool for shaping tumor immunity. In this review, we discuss the most recent achievements in the areas of suicide gene therapy, and TCR-modified T cells and chimeric antigen receptor gene-modified T cells. We provide an overview of current strategies aimed at improving the safety and efficacy of these approaches, with an outlook on prospective developments.
Collapse
Affiliation(s)
- Chiara Bonini
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Anna Mondino
- Lymphocyte Activation Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
27
|
Affiliation(s)
- A Dusty Miller
- Fred Hutchinson Cancer Research Center , Seattle, WA 98109
| |
Collapse
|
28
|
Yamada E, Demachi-Okamura A, Kondo S, Akatsuka Y, Suzuki S, Shibata K, Kikkawa F, Kuzushima K. Identification of a naturally processed HLA-Cw7-binding peptide that cross-reacts with HLA-A24-restricted ovarian cancer-specific CTLs. ACTA ACUST UNITED AC 2015. [PMID: 26216489 DOI: 10.1111/tan.12607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Here, we describe an human leukocyte antigen (HLA)-A*24:02-restricted cytotoxic T-lymphocyte (CTL) clone, 1G3, established from naïve CD8(+) T-lymphocytes obtained from a healthy donor stimulated with HLA-modified TOV21G, an ovarian cancer cell line. The 1G3 clone responds not only to ovarian cancer cells in the context of HLA-A*24:02 but also to allogeneic HLA-Cw*07:02 molecules through cross-reactive T-cell receptor recognition. Expression screening using a complementary DNA library constructed from TOV21G messenger RNA revealed that this alloreactivity was mediated through the nine-mer peptide VRTPYTMSY, derived from RNA-binding motif protein 4. To our knowledge, this study presents the first example of the allorecognition of an HLA-Cw molecule by HLA-A-restricted T-cells, thereby revealing a naturally processed epitope peptide. These findings provide the structural bases for the allorecognition of human T-cells. In addition, this study suggests that unexpected alloresponses occur in certain HLA combinations, and further study is needed to understand the mechanisms of alloreactivity for better prediction of alloresponses in clinical settings.
Collapse
Affiliation(s)
- E Yamada
- Division of Immunology, Aichi Cancer Center Research Institute, Nagoya, Japan.,Department of Gynecology, Graduate School of Medicine, Nagoya, Japan
| | - A Demachi-Okamura
- Division of Immunology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - S Kondo
- Department of Gynecologic Oncology, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Y Akatsuka
- Division of Immunology, Aichi Cancer Center Research Institute, Nagoya, Japan.,Department of Hematology & Oncology, Fujita Health University, Toyoake, Japan
| | - S Suzuki
- Department of Gynecology, Graduate School of Medicine, Nagoya, Japan
| | - K Shibata
- Department of Gynecology, Graduate School of Medicine, Nagoya, Japan
| | - F Kikkawa
- Department of Gynecology, Graduate School of Medicine, Nagoya, Japan
| | - K Kuzushima
- Division of Immunology, Aichi Cancer Center Research Institute, Nagoya, Japan.,Department of Cellular Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
29
|
Thomas S, Klobuch S, Podlech J, Plachter B, Hoffmann P, Renzaho A, Theobald M, Reddehase MJ, Herr W, Lemmermann NAW. Evaluating Human T-Cell Therapy of Cytomegalovirus Organ Disease in HLA-Transgenic Mice. PLoS Pathog 2015; 11:e1005049. [PMID: 26181057 PMCID: PMC4504510 DOI: 10.1371/journal.ppat.1005049] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 06/25/2015] [Indexed: 01/05/2023] Open
Abstract
Reactivation of human cytomegalovirus (HCMV) can cause severe disease in recipients of hematopoietic stem cell transplantation. Although preclinical research in murine models as well as clinical trials have provided 'proof of concept' for infection control by pre-emptive CD8 T-cell immunotherapy, there exists no predictive model to experimentally evaluate parameters that determine antiviral efficacy of human T cells in terms of virus control in functional organs, prevention of organ disease, and host survival benefit. We here introduce a novel mouse model for testing HCMV epitope-specific human T cells. The HCMV UL83/pp65-derived NLV-peptide was presented by transgenic HLA-A2.1 in the context of a lethal infection of NOD/SCID/IL-2rg-/- mice with a chimeric murine CMV, mCMV-NLV. Scenarios of HCMV-seropositive and -seronegative human T-cell donors were modeled by testing peptide-restimulated and T-cell receptor-transduced human T cells, respectively. Upon transfer, the T cells infiltrated host tissues in an epitope-specific manner, confining the infection to nodular inflammatory foci. This resulted in a significant reduction of viral load, diminished organ pathology, and prolonged survival. The model has thus proven its potential for a preclinical testing of the protective antiviral efficacy of HCMV epitope-specific human T cells in the evaluation of new approaches to an immunotherapy of CMV disease. Pre-emptive CD8 T-cell therapy of human cytomegalovirus (HCMV) disease in immunocompromised recipients of hematopoietic stem cell transplantation gave promising results in clinical trials, but limited efficacy and the need of HCMV-seropositive memory cell donors has so far prevented adoptive cell transfer from becoming clinical routine. Further development is currently hampered by the lack of experimental animal models that allow preclinical testing of the protective efficacy of human T cells in functional organs. While humanized mouse models with human tissue implants are technically and statistically demanding, and are limited to studying human T-cell activation and local virus control in the implants, a more feasible model for control of systemic infection and prevention of multiple-organ CMV disease is regrettably missing. Here we introduce such a model based on infection of genetically immunocompromised, HLA-A2.1-transgenic NOD/SCID/IL-2rg-/- mice with a chimeric murine CMV engineered to express the HCMV NLV-peptide epitope. Mimicking the scenario of HCMV-unexperienced donors, human T cells transduced with a human T-cell receptor specific for HLA-A.2.1-presented NLV peptide controlled systemic infection and moderated organ disease resulting in a survival benefit. The model promises to become instrumental in defining T-cell properties that determine their protective efficacy for a further development of adoptive immunotherapy of post-transplantation CMV infection.
Collapse
Affiliation(s)
- Simone Thomas
- Department of Internal Medicine III, Hematology and Oncology, University Hospital of Regensburg, Regensburg, Germany
- Regensburg Center of Interventional Immunology, University of Regensburg, Regensburg, Germany
- Department of Internal Medicine III, Hematology, Oncology and Pneumology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- * E-mail:
| | - Sebastian Klobuch
- Department of Internal Medicine III, Hematology and Oncology, University Hospital of Regensburg, Regensburg, Germany
- Department of Internal Medicine III, Hematology, Oncology and Pneumology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Jürgen Podlech
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Bodo Plachter
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Petra Hoffmann
- Department of Internal Medicine III, Hematology and Oncology, University Hospital of Regensburg, Regensburg, Germany
- Regensburg Center of Interventional Immunology, University of Regensburg, Regensburg, Germany
| | - Angelique Renzaho
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Matthias Theobald
- Department of Internal Medicine III, Hematology, Oncology and Pneumology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Matthias J. Reddehase
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Wolfgang Herr
- Department of Internal Medicine III, Hematology and Oncology, University Hospital of Regensburg, Regensburg, Germany
- Regensburg Center of Interventional Immunology, University of Regensburg, Regensburg, Germany
- Department of Internal Medicine III, Hematology, Oncology and Pneumology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Niels A. W. Lemmermann
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
30
|
Toward Clinical Translation of New Gene Targeting Technologies for Correcting Inherited Mutations and Empowering Adoptive Immunotherapy of Cancer (SUPERSIST). HUM GENE THER CL DEV 2015; 26:95-7. [PMID: 26086760 DOI: 10.1089/humc.2015.2529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
31
|
de Witte MA, Kierkels GJJ, Straetemans T, Britten CM, Kuball J. Orchestrating an immune response against cancer with engineered immune cells expressing αβTCRs, CARs, and innate immune receptors: an immunological and regulatory challenge. Cancer Immunol Immunother 2015; 64:893-902. [PMID: 25990073 PMCID: PMC4481298 DOI: 10.1007/s00262-015-1710-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 05/04/2015] [Indexed: 12/20/2022]
Abstract
Over half a century ago, the first allogeneic stem cell transplantation (allo-SCT) initiated cellular immunotherapy. For several decades, little progress was made, and toxicity of allo-SCT remained a major challenge. However, recent breakthroughs have opened new avenues to further develop this modality and to provide less toxic and equally efficient interventions for patients suffering from hematological or solid malignancies. Current novel cellular immune interventions include ex vivo expansion and adoptive transfer of tumor-infiltrating immune cells or administration of drugs which antagonize tolerizing mechanisms. Alternatively, transfer of immune cells engineered to express defined T cell receptors (TCRs) and chimeric antigen receptors (CARs) has shown its potential. A valuable addition to ‘engineered’ adaptive immunity has emerged recently through the improved understanding of how innate immune cells can attack cancer cells without substantial side effects. This has enabled the development of transplantation platforms with limited side effects allowing early immune interventions as well as the design of engineered immune cells expressing innate immune receptors. Here, we focus on innate immune interventions and their orchestration with TCR- and CAR-engineered immune cells. In addition, we discuss how the exploitation of the full potential of cellular immune interventions is influenced by regulatory frameworks. Finally, we highlight and discuss substantial differences in the current landscape of clinical trials in Europe as compared to the USA. The aim is to stimulate international efforts to support regulatory authorities and funding agencies, especially in Europe, to create an environment that will endorse the development of engineered immune cells for the benefit of patients.
Collapse
Affiliation(s)
- Moniek A de Witte
- Department of Hematology, University Medical Center Utrecht, Room Number Q05.4.301, PO Box 85500, 3508, GA, Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
32
|
Greco R, Oliveira G, Stanghellini MTL, Vago L, Bondanza A, Peccatori J, Cieri N, Marktel S, Mastaglio S, Bordignon C, Bonini C, Ciceri F. Improving the safety of cell therapy with the TK-suicide gene. Front Pharmacol 2015; 6:95. [PMID: 25999859 PMCID: PMC4419602 DOI: 10.3389/fphar.2015.00095] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 04/17/2015] [Indexed: 01/07/2023] Open
Abstract
While opening new frontiers for the cure of malignant and non-malignant diseases, the increasing use of cell therapy poses also several new challenges related to the safety of a living drug. The most effective and consolidated cell therapy approach is allogeneic hematopoietic stem cell transplantation (HSCT), the only cure for several patients with high-risk hematological malignancies. The potential of allogeneic HSCT is strictly dependent on the donor immune system, particularly on alloreactive T lymphocytes, that promote the beneficial graft-versus-tumor effect (GvT), but may also trigger the detrimental graft-versus-host-disease (GvHD). Gene transfer technologies allow to manipulate donor T-cells to enforce GvT and foster immune reconstitution, while avoiding or controlling GvHD. The suicide gene approach is based on the transfer of a suicide gene into donor lymphocytes, for a safe infusion of a wide T-cell repertoire, that might be selectively controlled in vivo in case of GvHD. The herpes simplex virus thymidine kinase (HSV-TK) is the suicide gene most extensively tested in humans. Expression of HSV-TK in donor lymphocytes confers lethal sensitivity to the anti-herpes drug, ganciclovir. Progressive improvements in suicide genes, vector technology and transduction protocols have allowed to overcome the toxicity of GvHD while preserving the antitumor efficacy of allogeneic HSCT. Several phase I-II clinical trials in the last 20 years document the safety and the efficacy of HSV-TK approach, able to maintain its clear value over the last decades, in the rapidly progressing horizon of cancer cellular therapy.
Collapse
Affiliation(s)
- Raffaella Greco
- Unit of Hematology and Bone Marrow Transplantation, Division of Regenerative Medicine, Stem Cells and Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan Italy
| | - Giacomo Oliveira
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, Program in Immunology and Bio-immunotherapy of Cancer, IRCCS San Raffaele Scientific Institute, Milan Italy
| | - Maria Teresa Lupo Stanghellini
- Unit of Hematology and Bone Marrow Transplantation, Division of Regenerative Medicine, Stem Cells and Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan Italy
| | - Luca Vago
- Unit of Hematology and Bone Marrow Transplantation, Division of Regenerative Medicine, Stem Cells and Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan Italy ; Unit of Molecular and Functional Immunogenetics, Division of Regenerative Medicine, Stem Cells and Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan Italy
| | - Attilio Bondanza
- Leukemia Immunotherapy Unit, Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan Italy
| | - Jacopo Peccatori
- Unit of Hematology and Bone Marrow Transplantation, Division of Regenerative Medicine, Stem Cells and Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan Italy
| | - Nicoletta Cieri
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, Program in Immunology and Bio-immunotherapy of Cancer, IRCCS San Raffaele Scientific Institute, Milan Italy
| | - Sarah Marktel
- Unit of Hematology and Bone Marrow Transplantation, Division of Regenerative Medicine, Stem Cells and Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan Italy
| | - Sara Mastaglio
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, Program in Immunology and Bio-immunotherapy of Cancer, IRCCS San Raffaele Scientific Institute, Milan Italy
| | | | - Chiara Bonini
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, Program in Immunology and Bio-immunotherapy of Cancer, IRCCS San Raffaele Scientific Institute, Milan Italy
| | - Fabio Ciceri
- Unit of Hematology and Bone Marrow Transplantation, Division of Regenerative Medicine, Stem Cells and Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan Italy
| |
Collapse
|
33
|
Identification of peptide-specific TCR genes by in vitro peptide stimulation and CDR3 length polymorphism analysis. Cancer Lett 2015; 363:83-91. [PMID: 25890221 DOI: 10.1016/j.canlet.2015.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 03/10/2015] [Accepted: 04/05/2015] [Indexed: 12/21/2022]
Abstract
Identification of TCR genes specific for tumor-associated antigens (TAAs) is necessary for TCR gene modification of T cells, which is applied in anti-tumor adoptive T cell therapy (ACT). The usual identification methods are based on isolating single peptide-responding T cells and cloning the TCR gene by in vitro expansion or by single-cell RT-PCR. However, the long and exacting in vitro culture period and demanding operational requirements restrict the application of these methods. Immunoscope is an effective tool that profiles a repertoire of TCRs and identifies significantly expanded clones through CDR3 length analysis. In this study, a survivin-derived mutant peptide optimized for HLA-A2 binding was selected to load DCs and activate T cells. The monoclonal expansion of TCRA and TCRB genes was separately identified by Immunoscope analysis and following sequence identification, the properly paired TCR genes were transferred into T cells. Peptide recognition and cytotoxicity assays indicated that TCR-modified PBMCs could respond to both the mutant and wild type peptides and lyse target cells. These results show that combining Immunoscope with in vitro peptide stimulation provides an alternative and superior method for identifying specific TCR genes, which represents a significant advance for the application of TCR gene-modified T cells.
Collapse
|
34
|
[(18)F]FHBG PET/CT Imaging of CD34-TK75 Transduced Donor T Cells in Relapsed Allogeneic Stem Cell Transplant Patients: Safety and Feasibility. Mol Ther 2015; 23:1110-1122. [PMID: 25807290 DOI: 10.1038/mt.2015.48] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 03/14/2015] [Indexed: 12/17/2022] Open
Abstract
Described herein is a first-in-man attempt to both genetically modify T cells with an imagable suicide gene and track these transduced donor T cells in allogeneic stem cell transplantation recipients using noninvasive positron emission tomography/computerized tomography (PET/CT) imaging. A suicide gene encoding a human CD34-Herpes Simplex Virus-1-thymidine kinase (CD34-TK75) fusion enabled enrichment of retrovirally transduced T cells (TdT), control of graft-versus-host disease and imaging of TdT migration and expansion in vivo in mice and man. Analysis confirmed that CD34-TK75-enriched TdT contained no replication competent γ-retrovirus, were sensitive to ganciclovir, and displayed characteristic retroviral insertion sites (by targeted sequencing). Affinity-purified CD34-TK75(+)-selected donor T cells (1.0-13 × 10(5))/kg were infused into eight patients who relapsed after allogeneic stem cell transplantation. Six patients also were administered 9-[4-((18)F)fluoro-3-hydroxymethyl-butyl]guanine ([(18)F]FHBG) to specifically track the genetically modified donor T cells by PET/CT at several time points after infusion. All patients were assessed for graft-versus-host disease, response to ganciclovir, circulating TdT cells (using both quantitative polymerase chain reaction and [(18)F]FHBG PET/CT imaging), TdT cell clonal expansion, and immune response to the TdT. This phase 1 trial demonstrated that genetically modified T cells and [(18)F]FHBG can be safely infused in patients with relapsed hematologic malignancies after allogeneic stem cell transplantation.
Collapse
|
35
|
Generation of human memory stem T cells after haploidentical T-replete hematopoietic stem cell transplantation. Blood 2015; 125:2865-74. [PMID: 25736310 DOI: 10.1182/blood-2014-11-608539] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 02/22/2015] [Indexed: 01/13/2023] Open
Abstract
Memory stem T cells (TSCM) have been proposed as key determinants of immunologic memory. However, their exact contribution to a mounting immune response, as well as the mechanisms and timing of their in vivo generation, are poorly understood. We longitudinally tracked TSCM dynamics in patients undergoing haploidentical hematopoietic stem cell transplantation (HSCT), thereby providing novel hints on the contribution of this subset to posttransplant immune reconstitution in humans. We found that donor-derived TSCM are highly enriched early after HSCT. We showed at the antigen-specific and clonal level that TSCM lymphocytes can differentiate directly from naive precursors infused within the graft and that the extent of TSCM generation might correlate with interleukin 7 serum levels. In vivo fate mapping through T-cell receptor sequencing allowed defining the in vivo differentiation landscapes of human naive T cells, supporting the notion that progenies of single naive cells embrace disparate fates in vivo and highlighting TSCM as relevant novel players in the diversification of immunological memory after allogeneic HSCT.
Collapse
|
36
|
Drakes ML, Stiff PJ. Harnessing immunosurveillance: current developments and future directions in cancer immunotherapy. Immunotargets Ther 2014; 3:151-65. [PMID: 27471706 PMCID: PMC4918242 DOI: 10.2147/itt.s37790] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Despite improved methods of cancer detection and disease management over the last few decades, cancer remains a major public health problem in many societies. Conventional therapies, such as chemotherapy, radiation, and surgery, are not usually sufficient to prevent disease recurrence. Therefore, efforts have been focused on developing novel therapies to manage metastatic disease and to prolong disease-free and overall survival, by modulating the immune system to alleviate immunosuppression, and to enhance antitumor immunity. This review discusses protumor mechanisms in patients that circumvent host immunosurveillance, and addresses current immunotherapy modalities designed to target these mechanisms. Given the complexity of cancer immunosuppressive mechanisms, we propose that identification of novel disease biomarkers will drive the development of more targeted immunotherapy. Finally, administration of different classes of immunotherapy in combination regimens, will be the ultimate route to impact low survival rates in advanced cancer patients.
Collapse
Affiliation(s)
- Maureen L Drakes
- Department of Medicine, Division of Hematology and Oncology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Patrick J Stiff
- Department of Medicine, Division of Hematology and Oncology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| |
Collapse
|
37
|
Jones BS, Lamb LS, Goldman F, Di Stasi A. Improving the safety of cell therapy products by suicide gene transfer. Front Pharmacol 2014; 5:254. [PMID: 25505885 PMCID: PMC4245885 DOI: 10.3389/fphar.2014.00254] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 10/31/2014] [Indexed: 01/02/2023] Open
Abstract
Adoptive T-cell therapy can involve donor lymphocyte infusion after allogeneic hematopoietic stem cell transplantation, the administration of tumor infiltrating lymphocyte expanded ex-vivo, or more recently the use of T cell receptor or chimeric antigen receptor redirected T cells. However, cellular therapies can pose significant risks, including graft-vs.-host-disease and other on and off-target effects, and therefore strategies need to be implemented to permanently reverse any sign of toxicity. A suicide gene is a genetically encoded molecule that allows selective destruction of adoptively transferred cells. Suicide gene addition to cellular therapeutic products can lead to selective ablation of gene-modified cells, preventing collateral damage to contiguous cells and/or tissues. The “ideal” suicide gene would ensure the safety of gene modified cellular applications by granting irreversible elimination of “all” and “only” the cells responsible for the unwanted toxicity. This review presents the suicide gene safety systems reported to date, with a focus on the state-of-the-art and potential applications regarding two of the most extensively validated suicide genes, including the clinical setting: herpes-simplex-thymidine-kinase and inducible-caspase-9.
Collapse
Affiliation(s)
- Benjamin S Jones
- Bone Marrow Transplantation and Cellular Therapy Unit, Division of Hematology-Oncology, Department of Medicine, The University of Alabama at Birmingham Birmingham, AL, USA
| | - Lawrence S Lamb
- Bone Marrow Transplantation and Cellular Therapy Unit, Division of Hematology-Oncology, Department of Medicine, The University of Alabama at Birmingham Birmingham, AL, USA
| | - Frederick Goldman
- Division of Hematology Oncology, Department of Pediatrics, The University of Alabama at Birmingham Birmingham, AL, USA
| | - Antonio Di Stasi
- Bone Marrow Transplantation and Cellular Therapy Unit, Division of Hematology-Oncology, Department of Medicine, The University of Alabama at Birmingham Birmingham, AL, USA
| |
Collapse
|
38
|
Eissenberg LG, Rettig M, Dehdashti F, Piwnica-Worms D, DiPersio JF. Suicide genes: monitoring cells in patients with a safety switch. Front Pharmacol 2014; 5:241. [PMID: 25414668 PMCID: PMC4222135 DOI: 10.3389/fphar.2014.00241] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 10/22/2014] [Indexed: 12/12/2022] Open
Abstract
Clinical trials increasingly incorporate suicide genes either as direct lytic agents for tumors or as safety switches in therapies based on genetically modified cells. Suicide genes can also be used as non-invasive reporters to monitor the biological consequences of administering genetically modified cells to patients and gather information relevant to patient safety. These genes can monitor therapeutic outcomes addressable by early clinical intervention. As an example, our recent clinical trial used (18)F-9-(4-fluoro-3-hydroxymethylbutyl)guanine ((18)FHBG) and positron emission tomography (PET)/CT scans to follow T cells transduced with herpes simplex virus thymidine kinase after administration to patients. Guided by preclinical data we ultimately hope to discern whether a particular pattern of transduced T cell migration within patients reflects early development of graft vs. host disease. Current difficulties in terms of choice of suicide gene, biodistribution of radiolabeled tracers in humans vs. animal models, and threshold levels of genetically modified cells needed for detection by PET/CT are discussed. As alternative suicide genes are developed, additional radiolabel probes suitable for imaging in patients should be considered.
Collapse
Affiliation(s)
- Linda G Eissenberg
- Department of Internal Medicine, Washington University School of Medicine, St. Louis MO, USA
| | - Michael Rettig
- Department of Internal Medicine, Washington University School of Medicine, St. Louis MO, USA
| | - Farrokh Dehdashti
- Department of Radiology, Washington University School of Medicine, St. Louis MO, USA
| | - David Piwnica-Worms
- Department of Radiology, Washington University School of Medicine, St. Louis MO, USA ; Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center Houston, TX, USA
| | - John F DiPersio
- Department of Internal Medicine, Washington University School of Medicine, St. Louis MO, USA
| |
Collapse
|
39
|
Lymphodepletion followed by infusion of suicide gene-transduced donor lymphocytes to safely enhance their antitumor effect: a phase I/II study. Leukemia 2014; 28:2406-10. [DOI: 10.1038/leu.2014.237] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
40
|
Vonderheide RH, June CH. Engineering T cells for cancer: our synthetic future. Immunol Rev 2014; 257:7-13. [PMID: 24329786 DOI: 10.1111/imr.12143] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Robert H Vonderheide
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | |
Collapse
|
41
|
Cavazzana M. Hematopoietic Stem Cell Gene Therapy: Progress on the Clinical Front. Hum Gene Ther 2014; 25:165-70. [DOI: 10.1089/hum.2014.2504] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Marina Cavazzana
- INSERM U1163, 75654 Paris, France
- Sorbonne Paris Cité, Imagine Institute, Université Paris Descartes, 75270 Paris, France
- Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, Assistance Publique–Hôpitaux de Paris, 75015 Paris, France
| |
Collapse
|
42
|
Vishnubhatla I, Corteling R, Stevanato L, Hicks C, Sinden J. The Development of Stem Cell-Derived Exosomes as a Cell-Free Regenerative Medicine. J Circ Biomark 2014. [DOI: 10.5772/58597] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
| | | | | | | | - John Sinden
- ReNeuron Ltd, Surrey Research Park, Guildford, UK
| |
Collapse
|