1
|
Lamenza FF, Roth P, Upadhaya P, Shrestha S, Jagadeesha S, Kazmierowicz N, Horn N, Pracha H, Dasari S, Oghumu S. Efficacy of anti-LAG3 and anti-PD-1 combination checkpoint inhibitor therapy against head and neck squamous cell carcinoma in a genetically engineered mouse model. Oncoimmunology 2025; 14:2477872. [PMID: 40098377 DOI: 10.1080/2162402x.2025.2477872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 03/05/2025] [Accepted: 03/06/2025] [Indexed: 03/19/2025] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) continues to be among the most common malignancies worldwide with limited treatment options for patients. Targeting the PD-1/PDL-1 axis is currently the only FDA approved immune checkpoint inhibitor treatment for HNSCC. Novel therapies targeting other pathways are needed along with testing a combinational approach to find new and more efficient ways to treat this disease. We utilized a tamoxifen inducible TgfβR1/Pten deletion mouse model to explore the efficacy of combined anti-LAG-3 and anti-PD-1 therapy against tongue HNSCC and determine underlying immunological mechanisms. Combined anti-LAG-3/anti-PD-1 therapy was effective at decreasing the tumor burden and lymphatic metastasis compared to anti-LAG-3 treatment but not when compared to the anti-PD-1 treatment alone. Anti-tumoral effects of anti-PD1 and anti-LAG-3/anti-PD-1 combined therapy were associated with increased CD4+ and CD8+ T-cell proliferative responses in secondary lymphoid organs along with increased CD8+ T-cell tumor infiltration. Anti-LAG-3 treatment potentiated the anti-tumoral properties of CD4+ T-cells treated with anti-PD-1, including enhanced systemic IFN-γ production and TNF-α production in the tumor microenvironment. Further, anti-tumoral cytotoxic CD8+ T-cell effector function and granzyme B production were enhanced by anti-PD-1 and combinatorial anti-LAG-3/anti-PD-1 immunotherapy, resulting in greater tumor cell death. Our results demonstrate that anti-LAG-3 has the potential to enhance the efficacy of anti-PD-1 therapy; however, humanized mouse models that better recapitulate the human disease with FDA approved antibodies are needed to further characterize the efficacy of this treatment as a viable treatment option for HNSCC patients.
Collapse
Affiliation(s)
- Felipe F Lamenza
- Department of Pathology, The Ohio State University Comprehensive Cancer Center, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Peyton Roth
- Department of Pathology, The Ohio State University Comprehensive Cancer Center, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Puja Upadhaya
- Department of Pathology, The Ohio State University Comprehensive Cancer Center, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Suvekshya Shrestha
- Department of Pathology, The Ohio State University Comprehensive Cancer Center, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Sushmitha Jagadeesha
- Department of Pathology, The Ohio State University Comprehensive Cancer Center, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Natalie Kazmierowicz
- Department of Pathology, The Ohio State University Comprehensive Cancer Center, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Natalie Horn
- Department of Pathology, The Ohio State University Comprehensive Cancer Center, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Hasan Pracha
- Department of Pathology, The Ohio State University Comprehensive Cancer Center, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Sonali Dasari
- Department of Pathology, The Ohio State University Comprehensive Cancer Center, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Steve Oghumu
- Department of Pathology, The Ohio State University Comprehensive Cancer Center, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
2
|
Kumar P, Krishna P, Maidur R, Chandrashekhar N, Raghavaiah S. Durable complete response after discontinuation of atezolizumab-bevacizumab therapy in patients with hepatocellular carcinoma with portal vein tumor thrombosis: the first report. JOURNAL OF LIVER CANCER 2025; 25:134-137. [PMID: 39506349 PMCID: PMC12010832 DOI: 10.17998/jlc.2024.09.26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/07/2024] [Accepted: 09/26/2024] [Indexed: 11/08/2024]
Abstract
Hepatocellular carcinoma (HCC) with portal vein tumor thrombosis (PVTT) is associated with a dismal prognosis. Atezolizumab plus bevacizumab (atezo-bev) is the recommended palliative treatment, and approximately 10% of the patients may experience a complete response (CR), according to the mRECIST criteria. The treatment duration is until disease progression or unacceptable side effects occur. Long-term continuation can cause potential toxicities and a substantial financial burden, making early treatment discontinuation a viable option. This report describes durable CR after discontinuing atezo-bev treatment in three patients with HCC and PVTT.
Collapse
Affiliation(s)
- Pramod Kumar
- Department of Hepatology, Gleneagles BGS Hospital, Bengaluru, India
| | - Pradeep Krishna
- Department of Liver Transplantation Surgery, Gleneagles BGS Hospital, Bengaluru, India
| | - Rohit Maidur
- Department of Medical Gastroenterology, SDM College of Medical Sciences and Hospital, Dharwad, India
| | | | - Suresh Raghavaiah
- Department of Liver Transplantation Surgery, Gleneagles BGS Hospital, Bengaluru, India
| |
Collapse
|
3
|
Kumar P. Lenvatinib Maintenance Therapy After Complete Response to Atezolizumab Plus Bevacizumab in Hepatocellular Carcinoma and Portal Vein Tumoral Thrombosis: Alternative Strategy in a Resource-limited Setting. J Clin Exp Hepatol 2025; 15:102455. [PMID: 39691823 PMCID: PMC11647599 DOI: 10.1016/j.jceh.2024.102455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 11/06/2024] [Indexed: 12/19/2024] Open
Affiliation(s)
- Pramod Kumar
- Hepatology, Gleneagles BGS Hospital, Bengaluru, Karnataka, India
| |
Collapse
|
4
|
Kuhl GC, Tangney M. Bacterial-Mediated In Situ Engineering of Tumour-Associated Macrophages for Cancer Immunotherapy. Cancers (Basel) 2025; 17:723. [PMID: 40075571 PMCID: PMC11899205 DOI: 10.3390/cancers17050723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/29/2025] [Accepted: 02/12/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND/OBJECTIVES Tumour-associated macrophages (TAMs) are critical components of the tumour microenvironment (TME), significantly influencing cancer progression and treatment resistance. This review aims to explore the innovative use of engineered bacteria to reprogram TAMs, enhancing their anti-tumour functions and improving therapeutic outcomes. METHODS We conducted a systematic review following a predefined protocol. Multiple databases were searched to identify relevant studies on TAMs, their phenotypic plasticity, and the use of engineered bacteria for reprogramming. Inclusion and exclusion criteria were applied to select studies, and data were extracted using standardised forms. Data synthesis was performed to summarise the findings, focusing on the mechanisms and therapeutic benefits of using non-pathogenic bacteria to modify TAMs. RESULTS The review summarises the findings that engineered bacteria can selectively target TAMs, promoting a shift from the tumour-promoting M2 phenotype to the tumour-fighting M1 phenotype. This reprogramming enhances pro-inflammatory responses and anti-tumour activity within the TME. Evidence from various studies indicates significant tumour regression and improved immune responses following bacterial therapy. CONCLUSIONS Reprogramming TAMs using engineered bacteria presents a promising strategy for cancer therapy. This approach leverages the natural targeting abilities of bacteria to modify TAMs directly within the tumour, potentially improving patient outcomes and offering new insights into immune-based cancer treatments. Further research is needed to optimise these methods and assess their clinical applicability.
Collapse
Affiliation(s)
- Gabriela Christina Kuhl
- Cancer Research @UCC, College of Medicine and Health, University College Cork, T12 K8AF Cork, Ireland;
| | - Mark Tangney
- Cancer Research @UCC, College of Medicine and Health, University College Cork, T12 K8AF Cork, Ireland;
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland
| |
Collapse
|
5
|
Jain K, Rathore DK, Ganguly S, Binayke A, Ganguly NK, Awasthi A, Aggarwal S. Correlation of immune profiling and exceptional response to immune checkpoint inhibitor in a patient with head and neck cancer. J Cancer Res Ther 2025; 21:205-209. [PMID: 40214377 DOI: 10.4103/jcrt.jcrt_2339_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 03/27/2023] [Indexed: 04/15/2025]
Abstract
ABSTRACT Immune checkpoint inhibitors (ICIs) have revolutionized the field of cancer therapy and it is a huge step forward in the treatment of various cancers including head and neck cancer. Nivolumab, an anti-PD-1 monoclonal antibody, reportedly has improved overall survival in head and neck cancer, yet only a subset of patient population benefit from it. Tissue-based markers such as PD-L1expression positive, tumor mutation burden-high, and microsatellite instability-high are widely believed to be a biomarker for ICIs such as nivolumab in solid tumors. However, due to the low prevalence of microsatellite instability-high and tumor mutation burden-high in most cancers and PD-L1 negative tumor responding well to ICIs, it tends to be insufficient to identify whether patients should receive ICIs as per this biomarker alone. Mechanism of response to checkpoint inhibitor therapy is unclear and hence studying the role of immune cells and pathways involved is important. The role played by peripheral blood parameters remains ambiguous. Here in, we present a case of an 85-year-old patient with advanced carcinoma buccal mucosa who was treated with Nivolumab after failure of chemotherapy and radiotherapy. Considering the limitations of tissue-based biomarkers to predict response to ICIs, we aimed to identify which blood-based biomarkers correlated with the response to treatment and monitored the immune parameters and serum cytokine levels during the course of Nivolumab. Here in, we also describe the clinical presentation of patient during the course of this therapy. Blood samples were collected pretherapy and post-therapy to monitor the response. Both clinical and immunological differences in the composition of Ki67+ PD-1+ CD8 T cells, Granzyme B+ CD8 T cells, NK and NKT cells, and serum cytokine levels of TNF alpha were observed to be elevated post-ICIs during monitoring of the patient receiving checkpoint inhibitor therapy. Monitoring these circulating peripheral blood markers in wider population of patients receiving ICI therapy, during its course, may provide a perspective in the development of new biomarkers for predicting response and may serve as a basis for personalized treatment. This case report describes valuable insights into evolution of immune markers predicting and monitoring response to Nivolumab in a patient with cancer.
Collapse
Affiliation(s)
- Kriti Jain
- Department of Research, Sir Ganga Ram Hospital, New Delhi, India
| | - Deepak K Rathore
- Immunology Lab, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Surajit Ganguly
- Department of Molecular Medicine, Jamia Hamdard, New Delhi, India
| | - Akshay Binayke
- Immunology Lab, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Nirmal K Ganguly
- Department of Research, Sir Ganga Ram Hospital, New Delhi, India
| | - Amit Awasthi
- Immunology Lab, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Shyam Aggarwal
- Department of Medical Oncology, Sir Ganga Ram Hospital, New Delhi, India
| |
Collapse
|
6
|
Bernabela L, Bermas B. Immune Checkpoint Inhibitor Associated Rheumatoid Arthritis. Curr Rheumatol Rep 2024; 27:3. [PMID: 39589663 DOI: 10.1007/s11926-024-01173-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2024] [Indexed: 11/27/2024]
Abstract
PURPOSE OF THIS REVIEW Immune checkpoint inhibitors (ICI) have revolutionized cancer therapy over the past decade. Unfortunately, immune related adverse events (irAEs) are common, including rheumatologic adverse events. These rheumatologic irAEs include de novo rheumatoid arthritis-like presentations or flares of pre-existing rheumatoid arthritis, collectively called ICI-associated rheumatoid arthritis. In this article we review the different mechanisms of disease activity and management approaches including use of conventional (cs) DMARDs and biologic (b) DMARDs in this patient population. Other forms of ICI-induced inflammatory arthritis e.g., PMR-like or Spondylarthritis-type IA, are beyond the scope of this review. RECENT FINDINGS The heterogeneous presentations of inflammatory arthritis in patients receiving immune checkpoint inhibitors has made this a challenging area to study. Nonetheless, recent studies are providing better understanding on the mechanisms of de novo disease and flares in patients with rheumatoid arthritis. About half of patients with pre-existing rheumatoid arthritis flare after receiving checkpoint inhibitors. Persistent arthritis is often encountered in patients receiving combination immune checkpoint inhibitors. Outcomes on overall survival do not differ in rheumatoid arthritis patients receiving checkpoint inhibitors compared to their non-arthritis counterparts. Rheumatologist play a critical role in the management of active rheumatoid arthritis induced by checkpoint inhibitors. Collaboration with oncology colleagues will continue to be a crucial component in providing quality care to these patients. While the use of glucocorticoids is often the first line therapy for active inflammatory arthritic disease, we recommend earlier consideration of DMARDs just as we inverted the treatment pyramid several decades ago, for rheumatoid arthritis.
Collapse
Affiliation(s)
- Luigino Bernabela
- Division of Rheumatic Diseases, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Bonnie Bermas
- Division of Rheumatic Diseases, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
7
|
Hu Y, Wang Y, Min K, Zhou H, Gao X. The influence of immune checkpoint blockade on the outcomes of allogeneic hematopoietic stem cell transplantation. Front Immunol 2024; 15:1491330. [PMID: 39635535 PMCID: PMC11614800 DOI: 10.3389/fimmu.2024.1491330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024] Open
Abstract
The principle of immune checkpoint blockade therapy is based on the activation of T cells. Immune checkpoint inhibitors (ICIs), such as anti-PD-1/PD-L1 and anti-CTLA-4 antibodies, have demonstrated effectiveness in treating solid tumors by reinvigorating the immune system to recognize and eliminate malignant cells. In recent years, ICIs have shown promise in certain patients with relapsed or refractory lymphoma and myeloid malignancies. Allogeneic hematopoietic stem cell transplant (allo-HCT) currently remains the only curative immunotherapy option for eligible patients with these hematologic malignancies. An increasing number of patients with indications for allo-HCT have received treatment with ICIs either before the procedure or as a therapy for relapse after allo-HCT. Nevertheless, initial reports suggest that patients exposed to immune checkpoint inhibitors either before or after allo-HCT are at an increased risk of developing severe graft-versus-host disease and other immune-related adverse events, likely due to the persistent effects of immune checkpoint blocking. Maximizing therapeutic benefits while minimizing side effects of the combination of checkpoint blockade immunotherapy and allo-HCT is an active area of research aimed at improving the prognosis of relapsed or refractory hematologic malignancies. However, there is still a lack of rational design strategies to optimize the combined use of these two different types of immunotherapies. In this review, we addressed the scientific rationale behind ICIs for treating lymphoma and myeloid malignancies. We also summarized the evidence supporting the use of ICIs as salvage therapy before and after allo-HCT. Additionally, we offered insights into current approaches for preventing and treating graft-versus-host disease and other immune-related adverse events during the procedure.
Collapse
Affiliation(s)
- Yalei Hu
- Senior Department of Hematology, the Fifth Medical Center of PLA General Hospital, Beijing, China
- Graduate School, Chinese PLA General Hospital, Beijing, China
| | - Yuxin Wang
- Senior Department of Hematology, the Fifth Medical Center of PLA General Hospital, Beijing, China
- Graduate School, Chinese PLA General Hospital, Beijing, China
| | - Kaili Min
- Senior Department of Hematology, the Fifth Medical Center of PLA General Hospital, Beijing, China
- Graduate School, Chinese PLA General Hospital, Beijing, China
| | - Huisheng Zhou
- Senior Department of Hematology, the Fifth Medical Center of PLA General Hospital, Beijing, China
- Graduate School, Chinese PLA General Hospital, Beijing, China
| | - Xiaoning Gao
- Senior Department of Hematology, the Fifth Medical Center of PLA General Hospital, Beijing, China
- State Key Laboratory of Experimental Hematology, the Fifth Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
8
|
Leveque E, Battut L, Petitfils C, Valitutti S, Cenac N, Dietrich G, Espinosa E. Alternative activation of mast cells by CD4+ T helper cells. J Leukoc Biol 2024; 116:1127-1141. [PMID: 38916515 DOI: 10.1093/jleuko/qiae139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 05/16/2024] [Accepted: 06/19/2024] [Indexed: 06/26/2024] Open
Abstract
Effector CD4+ T (Teff) lymphocytes infiltrate sites of inflammation and orchestrate the immune response by instructing local leukocytes. Mast cells (MCs) are tissue sentinel cells strategically located near blood vessels and T cell-rich areas. MC/Teff cell interactions shape Teff cell responses, but in turn, Teff cell action on MCs is still poorly understood. Here, we analyzed the human MC/Teff cell interplay through both the application of RNA sequencing and functional assays. We showed that activated Teff cells induce a specific transcriptomic program in MCs including production of both inflammatory cytokines and chemokines, prostaglandin, and a FcεRI-dependent degranulation facilitation, thereby driving them toward an inflammatory phenotype. Moreover, Teff cells induce in MCs the capacity to interact with CD4+ T cells through a wide range of dedicated soluble and membrane ligands and to play the role of antigen-presenting cells.
Collapse
Affiliation(s)
- Edouard Leveque
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche U1037, Centre de Recherche en Cancérologie de Toulouse, 2 Avenue H. Curien, F-31037, France
- Université Toulouse III - Paul Sabatier, 118 route de Narbone, Toulouse F-31062, France
| | - Louise Battut
- Université Toulouse III - Paul Sabatier, 118 route de Narbone, Toulouse F-31062, France
- Institut National de la Santé et de la Recherche Médicale, U1220, Institut de Recherche en Santé Digestive, Institut National de la Recherche Agronomique, Institut National Polytechnique de Toulouse-École Nationale Vétérinaire de Toulouse, CHU Purpan place du Dr Baylac CS 60039, Toulouse F-31024, France
| | - Camille Petitfils
- Université Toulouse III - Paul Sabatier, 118 route de Narbone, Toulouse F-31062, France
- Institut National de la Santé et de la Recherche Médicale, U1220, Institut de Recherche en Santé Digestive, Institut National de la Recherche Agronomique, Institut National Polytechnique de Toulouse-École Nationale Vétérinaire de Toulouse, CHU Purpan place du Dr Baylac CS 60039, Toulouse F-31024, France
| | - Salvatore Valitutti
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche U1037, Centre de Recherche en Cancérologie de Toulouse, 2 Avenue H. Curien, F-31037, France
- Université Toulouse III - Paul Sabatier, 118 route de Narbone, Toulouse F-31062, France
- Department of Pathology, Institut Universitaire du Cancer-Oncopole de Toulouse, Centre Hospitalier Universitaire de Toulouse, 1 avenue Irène Joliot-Curie, Toulouse F-31059, France
| | - Nicolas Cenac
- Université Toulouse III - Paul Sabatier, 118 route de Narbone, Toulouse F-31062, France
- Institut National de la Santé et de la Recherche Médicale, U1220, Institut de Recherche en Santé Digestive, Institut National de la Recherche Agronomique, Institut National Polytechnique de Toulouse-École Nationale Vétérinaire de Toulouse, CHU Purpan place du Dr Baylac CS 60039, Toulouse F-31024, France
| | - Gilles Dietrich
- Université Toulouse III - Paul Sabatier, 118 route de Narbone, Toulouse F-31062, France
- Institut National de la Santé et de la Recherche Médicale, U1220, Institut de Recherche en Santé Digestive, Institut National de la Recherche Agronomique, Institut National Polytechnique de Toulouse-École Nationale Vétérinaire de Toulouse, CHU Purpan place du Dr Baylac CS 60039, Toulouse F-31024, France
| | - Eric Espinosa
- Université Toulouse III - Paul Sabatier, 118 route de Narbone, Toulouse F-31062, France
- Institut National de la Santé et de la Recherche Médicale, U1220, Institut de Recherche en Santé Digestive, Institut National de la Recherche Agronomique, Institut National Polytechnique de Toulouse-École Nationale Vétérinaire de Toulouse, CHU Purpan place du Dr Baylac CS 60039, Toulouse F-31024, France
| |
Collapse
|
9
|
de Arruda Camargo GC, Oliveira G, Santos BNS, Roberto IM, Ávila M, de Souza BR, Alonso JCC, Durán N, Fávaro WJ. Modulation of the tumor microenvironment in non-muscle-invasive bladder cancer by OncoTherad® (MRB-CFI-1) nanoimmunotherapy: effects on tumor-associated macrophages, tumor-infiltrating lymphocytes, and monoamine oxidases. Med Oncol 2024; 41:287. [PMID: 39404781 DOI: 10.1007/s12032-024-02533-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 10/04/2024] [Indexed: 11/14/2024]
Abstract
Non-muscle-invasive bladder cancer (NMIBC) presents management challenges due to its high recurrence rate and a complex tumor microenvironment (TME). This study investigated the effects of OncoTherad® (MRB-CFI1) nanoimmunotherapy on the TME of BCG-unresponsive NMIBC, focusing on alterations in monoamine oxidases (MAO-A and MAO-B) and immune markers: CD163, FOXP3, CD8, and CX3CR1. A comparative analysis of immunoreactivities was made before and after OncoTherad® treatment and an immune score (IS) was established to evaluate the correlation between immunological changes and clinical outcomes. Forty bladder biopsies of twenty patients were divided into 2 groups (n = 20/group): 1 (pre-treatment biopsies); and 2 (post-treatment biopsies). Our results showed stable MAO-A levels but a significant (p < 0.05) decrease in MAO-B immunoreactivity after treatment, suggesting OncoTherad®'s efficacy in targeting the tumor-promoting and immunosuppressive functions of MAO-B. Significant (p < 0.05) reductions in CD163 and FOXP3 immunoreactivities were seen in post-treatment biopsies, indicating a decreased presence of M2 macrophages and Tregs. Corroborating with these results, we observed reductions in tumor histological grading, focality and size, factors that collectively enhanced recurrence-free survival (RFS) and pathological complete response (PCR). Moreover, elevated IFN-γ immunoreactivities in treated biopsies correlated with increased counts of CD8+ T cells and higher CX3CR1 expression, underscoring OncoTherad®'s enhancement of cytotoxic T cell functionality and overall antitumor immunity. The IS revealed improvements in immune responses post-treatment, with higher scores associated with better RFS and PCR outcomes. These findings validate OncoTherad®'s capability to modify the bladder cancer microenvironment favorably, promoting effective immune surveillance and response.
Collapse
Affiliation(s)
- Gabriela Cardoso de Arruda Camargo
- Laboratory of Urogenital Carcinogenesis and Immunotherapy (LCURGIN), Universidade Estadual de Campinas (UNICAMP), CP-6109, Campinas, São Paulo, 13083-865, Brazil.
| | - Gabriela Oliveira
- Laboratory of Urogenital Carcinogenesis and Immunotherapy (LCURGIN), Universidade Estadual de Campinas (UNICAMP), CP-6109, Campinas, São Paulo, 13083-865, Brazil
| | - Bruna Nayara Silva Santos
- Laboratory of Urogenital Carcinogenesis and Immunotherapy (LCURGIN), Universidade Estadual de Campinas (UNICAMP), CP-6109, Campinas, São Paulo, 13083-865, Brazil
| | - Isadora Manzato Roberto
- Laboratory of Urogenital Carcinogenesis and Immunotherapy (LCURGIN), Universidade Estadual de Campinas (UNICAMP), CP-6109, Campinas, São Paulo, 13083-865, Brazil
| | - Monaliza Ávila
- Laboratory of Urogenital Carcinogenesis and Immunotherapy (LCURGIN), Universidade Estadual de Campinas (UNICAMP), CP-6109, Campinas, São Paulo, 13083-865, Brazil
| | - Bianca Ribeiro de Souza
- Laboratory of Urogenital Carcinogenesis and Immunotherapy (LCURGIN), Universidade Estadual de Campinas (UNICAMP), CP-6109, Campinas, São Paulo, 13083-865, Brazil
- Ovarian Cancer Research Group, Obstetrics & Gynecology Department, University of British Columbia, Vancouver, BC, V6Z 2K8, Canada
| | - João Carlos Cardoso Alonso
- Laboratory of Urogenital Carcinogenesis and Immunotherapy (LCURGIN), Universidade Estadual de Campinas (UNICAMP), CP-6109, Campinas, São Paulo, 13083-865, Brazil
- Paulínia Municipal Hospital, Paulínia, São Paulo, 13140-000, Brazil
| | - Nelson Durán
- Laboratory of Urogenital Carcinogenesis and Immunotherapy (LCURGIN), Universidade Estadual de Campinas (UNICAMP), CP-6109, Campinas, São Paulo, 13083-865, Brazil
| | - Wagner José Fávaro
- Laboratory of Urogenital Carcinogenesis and Immunotherapy (LCURGIN), Universidade Estadual de Campinas (UNICAMP), CP-6109, Campinas, São Paulo, 13083-865, Brazil.
| |
Collapse
|
10
|
Chandra DJ, Alber B, Saultz JN. The Immune Resistance Signature of Acute Myeloid Leukemia and Current Immunotherapy Strategies. Cancers (Basel) 2024; 16:2615. [PMID: 39123343 PMCID: PMC11311077 DOI: 10.3390/cancers16152615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/29/2024] [Accepted: 07/11/2024] [Indexed: 08/12/2024] Open
Abstract
Acute myeloid leukemia (AML) is a complex hematopoietic clonal disorder with limited curative options beyond stem cell transplantation. The success of transplant is intimately linked with the graft versus leukemia effect from the alloreactive donor immune cells including, T and NK cells. The immune system plays a dynamic role in leukemia survival and resistance. Despite our growing understanding of the immune microenvironment, responses to immune-based therapies differ greatly between patients. Herein, we review the biology of immune evasion mechanisms in AML, discuss the current landscape of immunotherapeutic strategies, and discuss the implications of therapeutic targets. This review focuses on T and NK cell-based therapy, including modified and non-modified NK cells, CAR-T and CAR-NK cells, antibodies, and checkpoint blockades. Understanding the complex interchange between immune tolerance and the emergence of tumor resistance will improve patient outcomes.
Collapse
Affiliation(s)
- Daniel J. Chandra
- Division of Hematology/Medical Oncology, Oregon Health & Science University, Portland, OR 97239, USA;
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA;
| | - Bernhard Alber
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA;
| | - Jennifer N. Saultz
- Division of Hematology/Medical Oncology, Oregon Health & Science University, Portland, OR 97239, USA;
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA;
| |
Collapse
|
11
|
Chen L, Zhao X, Liu X, Ouyang Y, Xu C, Shi Y. Development of small molecule drugs targeting immune checkpoints. Cancer Biol Med 2024; 21:j.issn.2095-3941.2024.0034. [PMID: 38727005 PMCID: PMC11131045 DOI: 10.20892/j.issn.2095-3941.2024.0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/28/2024] [Indexed: 05/29/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) are used to relieve and refuel anti-tumor immunity by blocking the interaction, transcription, and translation of co-inhibitory immune checkpoints or degrading co-inhibitory immune checkpoints. Thousands of small molecule drugs or biological materials, especially antibody-based ICIs, are actively being studied and antibodies are currently widely used. Limitations, such as anti-tumor efficacy, poor membrane permeability, and unneglected tolerance issues of antibody-based ICIs, remain evident but are thought to be overcome by small molecule drugs. Recent structural studies have broadened the scope of candidate immune checkpoint molecules, as well as innovative chemical inhibitors. By way of comparison, small molecule drug-based ICIs represent superior oral bioavailability and favorable pharmacokinetic features. Several ongoing clinical trials are exploring the synergetic effect of ICIs and other therapeutic strategies based on multiple ICI functions, including immune regulation, anti-angiogenesis, and cell cycle regulation. In this review we summarized the current progression of small molecule ICIs and the mechanism underlying immune checkpoint proteins, which will lay the foundation for further exploration.
Collapse
Affiliation(s)
- Luoyi Chen
- Department of Oncology, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Xinchen Zhao
- Department of Oncology, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Xiaowei Liu
- Institute for Breast Health Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yujie Ouyang
- Acupuncture and Massage College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chuan Xu
- Department of Oncology, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Ying Shi
- Department of Oncology, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China
| |
Collapse
|
12
|
Middha P, Thummalapalli R, Betti MJ, Yao L, Quandt Z, Balaratnam K, Bejan CA, Cardenas E, Falcon CJ, Faleck DM, Gubens MA, Huntsman S, Johnson DB, Kachuri L, Khan K, Li M, Lovly CM, Murray MH, Patel D, Werking K, Xu Y, Zhan LJ, Balko JM, Liu G, Aldrich MC, Schoenfeld AJ, Ziv E. Polygenic risk score for ulcerative colitis predicts immune checkpoint inhibitor-mediated colitis. Nat Commun 2024; 15:2568. [PMID: 38531883 PMCID: PMC10966072 DOI: 10.1038/s41467-023-44512-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 12/15/2023] [Indexed: 03/28/2024] Open
Abstract
Immune checkpoint inhibitor-mediated colitis (IMC) is a common adverse event of treatment with immune checkpoint inhibitors (ICI). We hypothesize that genetic susceptibility to Crohn's disease (CD) and ulcerative colitis (UC) predisposes to IMC. In this study, we first develop a polygenic risk scores for CD (PRSCD) and UC (PRSUC) in cancer-free individuals and then test these PRSs on IMC in a cohort of 1316 patients with ICI-treated non-small cell lung cancer and perform a replication in 873 ICI-treated pan-cancer patients. In a meta-analysis, the PRSUC predicts all-grade IMC (ORmeta=1.35 per standard deviation [SD], 95% CI = 1.12-1.64, P = 2×10-03) and severe IMC (ORmeta=1.49 per SD, 95% CI = 1.18-1.88, P = 9×10-04). PRSCD is not associated with IMC. Furthermore, PRSUC predicts severe IMC among patients treated with combination ICIs (ORmeta=2.20 per SD, 95% CI = 1.07-4.53, P = 0.03). Overall, PRSUC can identify patients receiving ICI at risk of developing IMC and may be useful to monitor patients and improve patient outcomes.
Collapse
Affiliation(s)
- Pooja Middha
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Rohit Thummalapalli
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michael J Betti
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lydia Yao
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Zoe Quandt
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
- Diabetes Center, University of California San Francisco, San Francisco, CA, USA
| | | | - Cosmin A Bejan
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Eduardo Cardenas
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Christina J Falcon
- Fiona and Stanley Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - David M Faleck
- Gastroenterology, Hepatology & Nutrition Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Matthew A Gubens
- Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Scott Huntsman
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Douglas B Johnson
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Linda Kachuri
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University of Medicine, Stanford, CA, USA
| | - Khaleeq Khan
- Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Min Li
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Christine M Lovly
- Department of Medicine, Division of Hematology and Oncology, Vanderbilt University Medical Center and Vanderbilt Ingram Cancer Center, Nashville, TN, USA
| | - Megan H Murray
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Kristin Werking
- Department of Thoracic Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yaomin Xu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Luna Jia Zhan
- Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Justin M Balko
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Geoffrey Liu
- Princess Margaret Cancer Centre, Toronto, ON, Canada
- Temerty School of Medicine, Toronto, ON, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Melinda C Aldrich
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Adam J Schoenfeld
- Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elad Ziv
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA.
- Center for Genes, Environment and Health, University of California San Francisco, San Francisco, CA, USA.
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
13
|
Trivedi P, Jhala G, De George DJ, Chiu C, Selck C, Ge T, Catterall T, Elkerbout L, Boon L, Joller N, Kay TW, Thomas HE, Krishnamurthy B. TIGIT acts as an immune checkpoint upon inhibition of PD1 signaling in autoimmune diabetes. Front Immunol 2024; 15:1370907. [PMID: 38533515 PMCID: PMC10964479 DOI: 10.3389/fimmu.2024.1370907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 02/26/2024] [Indexed: 03/28/2024] Open
Abstract
Introduction Chronic activation of self-reactive T cells with beta cell antigens results in the upregulation of immune checkpoint molecules that keep self-reactive T cells under control and delay beta cell destruction in autoimmune diabetes. Inhibiting PD1/PD-L1 signaling results in autoimmune diabetes in mice and humans with pre-existing autoimmunity against beta cells. However, it is not known if other immune checkpoint molecules, such as TIGIT, can also negatively regulate self-reactive T cells. TIGIT negatively regulates the CD226 costimulatory pathway, T-cell receptor (TCR) signaling, and hence T-cell function. Methods The phenotype and function of TIGIT expressing islet infiltrating T cells was studied in non-obese diabetic (NOD) mice using flow cytometry and single cell RNA sequencing. To determine if TIGIT restrains self-reactive T cells, we used a TIGIT blocking antibody alone or in combination with anti-PDL1 antibody. Results We show that TIGIT is highly expressed on activated islet infiltrating T cells in NOD mice. We identified a subset of stem-like memory CD8+ T cells expressing multiple immune checkpoints including TIGIT, PD1 and the transcription factor EOMES, which is linked to dysfunctional CD8+ T cells. A known ligand for TIGIT, CD155 was expressed on beta cells and islet infiltrating dendritic cells. However, despite TIGIT and its ligand being expressed, islet infiltrating PD1+TIGIT+CD8+ T cells were functional. Inhibiting TIGIT in NOD mice did not result in exacerbated autoimmune diabetes while inhibiting PD1-PDL1 resulted in rapid autoimmune diabetes, indicating that TIGIT does not restrain islet infiltrating T cells in autoimmune diabetes to the same degree as PD1. Partial inhibition of PD1-PDL1 in combination with TIGIT inhibition resulted in rapid diabetes in NOD mice. Discussion These results suggest that TIGIT and PD1 act in synergy as immune checkpoints when PD1 signaling is partially impaired. Beta cell specific stem-like memory T cells retain their functionality despite expressing multiple immune checkpoints and TIGIT is below PD1 in the hierarchy of immune checkpoints in autoimmune diabetes.
Collapse
Affiliation(s)
- Prerak Trivedi
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, VIC, Australia
| | - Gaurang Jhala
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, VIC, Australia
| | - David J De George
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, VIC, Australia
- Department of Medicine, St Vincent's Hospital, The University of Melbourne, Fitzroy, VIC, Australia
| | - Chris Chiu
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, VIC, Australia
| | - Claudia Selck
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, VIC, Australia
- Department of Medicine, St Vincent's Hospital, The University of Melbourne, Fitzroy, VIC, Australia
| | - Tingting Ge
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, VIC, Australia
- Department of Medicine, St Vincent's Hospital, The University of Melbourne, Fitzroy, VIC, Australia
| | - Tara Catterall
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, VIC, Australia
| | - Lorraine Elkerbout
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, VIC, Australia
| | | | - Nicole Joller
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Thomas W Kay
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, VIC, Australia
- Department of Medicine, St Vincent's Hospital, The University of Melbourne, Fitzroy, VIC, Australia
| | - Helen E Thomas
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, VIC, Australia
- Department of Medicine, St Vincent's Hospital, The University of Melbourne, Fitzroy, VIC, Australia
| | - Balasubramanian Krishnamurthy
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, VIC, Australia
- Department of Medicine, St Vincent's Hospital, The University of Melbourne, Fitzroy, VIC, Australia
| |
Collapse
|
14
|
Huang C, Wang X, Wang Y, Feng Y, Wang X, Chen S, Yan P, Liao J, Zhang Q, Mao C, Li Y, Wang L, Wang X, Yi W, Cai W, Chen S, Hong N, He W, Chen J, Jin W. Sirpα on tumor-associated myeloid cells restrains antitumor immunity in colorectal cancer independent of its interaction with CD47. NATURE CANCER 2024; 5:500-516. [PMID: 38200243 DOI: 10.1038/s43018-023-00691-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 11/15/2023] [Indexed: 01/12/2024]
Abstract
Immunosuppressive myeloid cells hinder immunotherapeutic efficacy in tumors, but the precise mechanisms remain undefined. Here, by performing single-cell RNA sequencing in colorectal cancer tissues, we found tumor-associated macrophages and granulocytic myeloid-derived suppressor cells increased most compared to their counterparts in normal tissue and displayed the highest immune-inhibitory signatures among all immunocytes. These cells exhibited significantly increased expression of immunoreceptor tyrosine-based inhibitory motif-bearing receptors, including SIRPA. Notably, Sirpa-/- mice were more resistant to tumor progression than wild-type mice. Moreover, Sirpα deficiency reprogramed the tumor microenvironment through expansion of TAM_Ccl8hi and gMDSC_H2-Q10hi subsets showing strong antitumor activity. Sirpa-/- macrophages presented strong phagocytosis and antigen presentation to enhance T cell activation and proliferation. Furthermore, Sirpa-/- macrophages facilitated T cell recruitment via Syk/Btk-dependent Ccl8 secretion. Therefore, Sirpα deficiency enhances innate and adaptive immune activation independent of expression of CD47 and Sirpα blockade could be a promising strategy to improve cancer immunotherapy efficacy.
Collapse
Affiliation(s)
- Chunliu Huang
- Molecular Imaging Center, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Zhuhai, China
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xuefei Wang
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Yingzhao Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yongyi Feng
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiumei Wang
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Shan Chen
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Peidong Yan
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Jing Liao
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Qi Zhang
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Chengzhou Mao
- Department of Anatomy and Histology, Shenzhen University Health Science Center, Shenzhen, China
| | - Yang Li
- Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Lixiang Wang
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xinyu Wang
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Wei Yi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Weibin Cai
- Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratory Animal Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Shoudeng Chen
- Molecular Imaging Center, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Zhuhai, China
| | - Ni Hong
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
| | - Weiling He
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
- Department of Gastrointestinal Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.
| | - Jun Chen
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
- Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratory Animal Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
- Key Laboratory of Tropical Disease Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, China.
- Jinfeng Laboratory, Chongqing, China.
| | - Wenfei Jin
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
15
|
Schriek AI, Aldon YLT, van Gils MJ, de Taeye SW. Next-generation bNAbs for HIV-1 cure strategies. Antiviral Res 2024; 222:105788. [PMID: 38158130 DOI: 10.1016/j.antiviral.2023.105788] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
Despite the ability to suppress viral replication using anti-retroviral therapy (ART), HIV-1 remains a global public health problem. Curative strategies for HIV-1 have to target and eradicate latently infected cells across the body, i.e. the viral reservoir. Broadly neutralizing antibodies (bNAbs) targeting the HIV-1 envelope glycoprotein (Env) have the capacity to neutralize virions and bind to infected cells to initiate elimination of these cells. To improve the efficacy of bNAbs in terms of viral suppression and viral reservoir eradication, next generation antibodies (Abs) are being developed that address the current limitations of Ab treatment efficacy; (1) low antigen (Env) density on (reactivated) HIV-1 infected cells, (2) high viral genetic diversity, (3) exhaustion of immune cells and (4) short half-life of Abs. In this review we summarize and discuss preclinical and clinical studies in which anti-HIV-1 Abs demonstrated potent viral control, and describe the development of engineered Abs that could address the limitations described above. Next generation Abs with optimized effector function, avidity, effector cell recruitment and immune cell activation have the potential to contribute to an HIV-1 cure or durable control.
Collapse
Affiliation(s)
- A I Schriek
- Amsterdam UMC Location University of Amsterdam, Department of Medical Microbiology, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands.
| | - Y L T Aldon
- Amsterdam UMC Location University of Amsterdam, Department of Medical Microbiology, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
| | - M J van Gils
- Amsterdam UMC Location University of Amsterdam, Department of Medical Microbiology, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
| | - S W de Taeye
- Amsterdam UMC Location University of Amsterdam, Department of Medical Microbiology, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands.
| |
Collapse
|
16
|
Chen Y, Li W, Wang Z, Yu Y, Li J, Ding Y, Hu Z, Liu Q, Yang Z, Gao J. A Transformable Supramolecular Bispecific Cell Engager for Augmenting Natural Killer and T Cell-Based Cancer Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306736. [PMID: 37853568 DOI: 10.1002/adma.202306736] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/21/2023] [Indexed: 10/20/2023]
Abstract
Immune cells are pivotal in cancer immunotherapy, yet their therapeutic effectiveness is often hampered by limited tumor infiltration and inhibitory tumor microenvironments. An alkaline phosphatase (ALP)-responsive and transformable supramolecular bis-specific cell engager (Supra-BiCE) to harness natural killer (NK)/T cells for effective cancer immunotherapy is introduced here. The Supra-BiCE, consisting of both SA-P (a phosphorylated peptide targeting and blocking programmed cell death ligand 1 (PD-L1)) and SA-T (a phosphorylated peptide targeting and blocking T cell immunoglobulin and ITIM domain (TIGIT)) is constructed by a simple co-assembling strategy. Upon intravenous administration, Supra-BiCE self-assembles into nanoribbons and interacts with NK/T cells via TIGIT. Notably, these nanoribbons undergo transformation into long nanofibrils within ALP-overexpressing tumor regions, resulting in enhanced binding affinities of Supra-BiCE to both PD-L1 and TIGIT. Consequently, this leads to the accumulation and retention of NK/T cells within tumor regions. Furthermore, the combinatorial blockade of checkpoints by Supra-BiCE activates infiltrating NK/T cells. Moreover, the adjustable peptide ratio in Supra-BiCE enables customization for optimal therapeutic effects against distinct tumor types. Particularly, Supra-BiCE (T:P = 1:3) achieved 98.27% tumor suppression rate against colon carcinoma model. Overall, this study offers a promising tool for engaging NK and T cells for cancer immunotherapy.
Collapse
Affiliation(s)
- Yumiao Chen
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, and College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - Wei Li
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, and College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - Zhongqiu Wang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, and College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - Yingying Yu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, and College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - Jie Li
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, and College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - Yinghao Ding
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, and College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - Zhiwen Hu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, and College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, P. R. China
| | - Qian Liu
- Department of Urology, Tianjin First Central Hospital, Tianjin, 300192, China
| | - Zhimou Yang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, and College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, P. R. China
| | - Jie Gao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, and College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
17
|
Pandey N, Mandal M, Samanta D, Mukherjee G, Dutta G. A nanobody based ultrasensitive electrochemical biosensor for the detection of soluble CTLA-4 -A candidate biomarker for cancer development and progression. Biosens Bioelectron 2023; 242:115733. [PMID: 37820555 DOI: 10.1016/j.bios.2023.115733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 10/13/2023]
Abstract
A soluble isoform of cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) has been found in the serum of healthy individuals and alterations in its expression level have been linked with the development and progression of various cancers. Conventionally, soluble CTLA-4 (sCTLA-4) has been quantified by techniques such as ELISA, western blot, and flow cytometry, which however are time-consuming, highly expensive and require large sample volumes. Therefore, rapid, cost-effective and real-time monitoring of soluble CTLA-4 levels is much needed to facilitate timely diagnosis of a worsening disease and help patient selection for immunotherapeutic interventions in cancer. Here, for the first time, we report an ultrasensitive, highly selective electrochemical nanobody (NAb) based biosensor for the quantitative detection of soluble CTLA-4 employing poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) and gold nanoparticles modified electrode with attomole sensitivity. Incorporating nanomaterials with conductive polymers enhances the sensitivity of the electrochemical biosensor, while the nanobody's stability, specificity and ease of production make it a suitable choice as a bioreceptor. The proposed NAb-based sensor can detect sCTLA-4 from pure recombinant protein in a wide concentration range of 100 ag mL-1- 500 μg mL-1, with a limit of detection of 1.19 ag mL-1 (+3σ of the blank signal). The sensor's relative standard deviation for reproducibility is less than 0.4% and has effective real sample analytics for cell culture supernatant with no significant difference with pure recombinant protein (p < 0.05). Our proposed nanobody based sensor exhibits stability for up to 2 weeks (<3% variation). Moreover, this nanobody-based sensor presents a future opportunity for quantitative, ultrasensitive, and economical biosensor development that can be adapted to monitor the immune landscape of cancer patients to provide a larger therapeutic window.
Collapse
Affiliation(s)
- Nidhi Pandey
- Immunology and Inflammation Research Lab, School of Medical Sciences and Technology, Indian Institute of Technology, Kharagpur, Kharagpur, 721302, India
| | - Mukti Mandal
- NanoBiosensors and Biodevices Lab, School of Medical Sciences and Technology, Indian Institute of Technology, Kharagpur, Kharagpur, 721302, India
| | - Dibyendu Samanta
- School of Bio Science, Indian Institute of Technology, Kharagpur, Kharagpur, 721302, India
| | - Gayatri Mukherjee
- Immunology and Inflammation Research Lab, School of Medical Sciences and Technology, Indian Institute of Technology, Kharagpur, Kharagpur, 721302, India.
| | - Gorachand Dutta
- NanoBiosensors and Biodevices Lab, School of Medical Sciences and Technology, Indian Institute of Technology, Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|
18
|
Carter R, Alanazi F, Sharp A, Roman J, Luchini A, Liotta L, Paige M, Brown AM, Haymond A. Identification of the functional PD-L1 interface region responsible for PD-1 binding and initiation of PD-1 signaling. J Biol Chem 2023; 299:105353. [PMID: 37858677 PMCID: PMC10663846 DOI: 10.1016/j.jbc.2023.105353] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/22/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023] Open
Abstract
The PD-1/PD-L1 checkpoint pathway is important for regulating immune responses and can be targeted by immunomodulatory drugs to treat a variety of immune disorders. However, the precise protein-protein interactions required for the initiation of PD-1/PD-L1 signaling are currently unknown. Previously, we designed a series of first-generation PD-1 targeting peptides based on the native interface region of programmed death ligand 1 (PD-L1) that effectively reduced PD-1/PD-L1 binding. In this work, we further characterized the previously identified lead peptide, MN1.1, to identify key PD-1 binding residues and design an optimized peptide, MN1.4. We show MN1.4 is significantly more stable than MN1.1 in serum and retains the ability to block PD-1/PD-L1 complex formation. We further characterized the immunomodulatory effects of MN1.4 treatment by measuring markers of T cell activation in a co-culture model with ovarian cancer cells and peripheral blood mononuclear cells. We found MN1.4 treatment reduced cytokine secretion and suppressed T cell responses in a similar manner as recombinant PD-L1. Therefore, the PD-L1 interface region used to design MN1.4 appeared sufficient to initiate PD-1 signaling and likely represents the minimum necessary region of PD-L1 required for PD-1 recognition. We propose a peptide agonist for PD-1, such as MN1.4, could have several applications for treating autoimmune disorders caused by PD-1 deficiencies such as type 1 diabetes, inflammatory arthritis, or autoimmune side effects arising from monoclonal antibody-based cancer immunotherapies.
Collapse
Affiliation(s)
- Rachel Carter
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Fairfax, Virginia, USA.
| | - Fatimah Alanazi
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Fairfax, Virginia, USA
| | - Amanda Sharp
- Program in Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, Virginia, USA
| | - Jessica Roman
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Fairfax, Virginia, USA
| | - Alessandra Luchini
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Fairfax, Virginia, USA
| | - Lance Liotta
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Fairfax, Virginia, USA
| | - Mikell Paige
- Department of Chemistry and Biochemistry, George Mason University, Fairfax, Virginia, USA
| | - Anne M Brown
- Program in Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, Virginia, USA; Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, USA; Data Services, University Libraries, Virginia Tech, Blacksburg, Virginia, USA
| | - Amanda Haymond
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Fairfax, Virginia, USA
| |
Collapse
|
19
|
Small A, Lowe K, Wechalekar MD. Immune checkpoints in rheumatoid arthritis: progress and promise. Front Immunol 2023; 14:1285554. [PMID: 38077329 PMCID: PMC10704353 DOI: 10.3389/fimmu.2023.1285554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/07/2023] [Indexed: 12/18/2023] Open
Abstract
Rheumatoid arthritis (RA) is one of the most prevalent autoimmune inflammatory conditions, and while the mechanisms driving pathogenesis are yet to be completely elucidated, self-reactive T cells and immune checkpoint pathways have a clear role. In this review, we provide an overview of the importance of checkpoint pathways in the T cell response and describe the involvement of these in RA development and progression. We discuss the relationship between immune checkpoint therapy in cancer and autoimmune adverse events, draw parallels with the involvement of immune checkpoints in RA pathobiology, summarise emerging research into some of the lesser-known pathways, and the potential of targeting checkpoint-related pathways in future treatment approaches to RA management.
Collapse
Affiliation(s)
- Annabelle Small
- Department of Rheumatology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Katie Lowe
- Department of Rheumatology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Mihir D Wechalekar
- Department of Rheumatology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
- Department of Rheumatology, Flinders Medical Centre, Adelaide, SA, Australia
| |
Collapse
|
20
|
Rouvinov K, Mazor G, Kozlener E, Meirovitz A, Shrem NS, Abu Saleh O, Shalata S, Yakobson A, Shalata W. Cemiplimab as First Line Therapy in Advanced Penile Squamous Cell Carcinoma: A Real-World Experience. J Pers Med 2023; 13:1623. [PMID: 38003938 PMCID: PMC10672594 DOI: 10.3390/jpm13111623] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/12/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
In the treatment of cancer, immune checkpoint inhibitors (ICIs) have demonstrated significantly greater effectiveness compared to conventional cytotoxic or platinum-based chemotherapies. To assess the efficacy of ICI's in penile squamous cell carcinoma (pSCC) we performed a retrospective observational study. We reviewed electronic medical records of patients with penile squamous cell carcinoma (SCC), diagnosed between January 2020 and February 2023. Nine patients were screened, of whom three were ineligible for chemotherapy and received immunotherapy, cemiplimab, in a first-line setting. Each of the three immunotherapy-treated patients achieved almost a complete response (CR) after only a few cycles of therapy. The first patient had cerebral arteritis during treatment and received a high-dose steroid treatment with resolution of the symptoms of arteritis. After tapering down the steroids dose, the patient continued cemiplimab without further toxicity. The other two patients did not have any toxic side effects of the treatment. To the best of our knowledge, this is the first real world report of near CR with cemiplimab as a first-line treatment in penile SCC.
Collapse
Affiliation(s)
- Keren Rouvinov
- The Legacy Heritage Center & Dr. Larry Norton Institute, Soroka Medical Center and Ben Gurion University, Beer Sheva 84105, Israel
| | - Gal Mazor
- Medical School for International Health, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Ella Kozlener
- Department of Oncology, Bnei Zion Medical Center, Haifa 31048, Israel
| | - Amichay Meirovitz
- The Legacy Heritage Center & Dr. Larry Norton Institute, Soroka Medical Center and Ben Gurion University, Beer Sheva 84105, Israel
| | - Noa Shani Shrem
- The Legacy Heritage Center & Dr. Larry Norton Institute, Soroka Medical Center and Ben Gurion University, Beer Sheva 84105, Israel
| | - Omar Abu Saleh
- Department of Dermatology and Venereology, Emek Medical Centre, Afula 18341, Israel
| | - Sondos Shalata
- Nutrition Unit, Galilee Medical Center, Nahariya 22000, Israel
| | - Alexander Yakobson
- The Legacy Heritage Center & Dr. Larry Norton Institute, Soroka Medical Center and Ben Gurion University, Beer Sheva 84105, Israel
| | - Walid Shalata
- The Legacy Heritage Center & Dr. Larry Norton Institute, Soroka Medical Center and Ben Gurion University, Beer Sheva 84105, Israel
| |
Collapse
|
21
|
Blander JM, Yee Mon KJ, Jha A, Roycroft D. The show and tell of cross-presentation. Adv Immunol 2023; 159:33-114. [PMID: 37996207 DOI: 10.1016/bs.ai.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Cross-presentation is the culmination of complex subcellular processes that allow the processing of exogenous proteins and the presentation of resultant peptides on major histocompatibility class I (MHC-I) molecules to CD8 T cells. Dendritic cells (DCs) are a cell type that uniquely specializes in cross-presentation, mainly in the context of viral or non-viral infection and cancer. DCs have an extensive network of endovesicular pathways that orchestrate the biogenesis of an ideal cross-presentation compartment where processed antigen, MHC-I molecules, and the MHC-I peptide loading machinery all meet. As a central conveyor of information to CD8 T cells, cross-presentation allows cross-priming of T cells which carry out robust adaptive immune responses for tumor and viral clearance. Cross-presentation can be canonical or noncanonical depending on the functional status of the transporter associated with antigen processing (TAP), which in turn influences the vesicular route of MHC-I delivery to internalized antigen and the cross-presented repertoire of peptides. Because TAP is a central node in MHC-I presentation, it is targeted by immune evasive viruses and cancers. Thus, understanding the differences between canonical and noncanonical cross-presentation may inform new therapeutic avenues against cancer and infectious disease. Defects in cross-presentation on a cellular and genetic level lead to immune-related disease progression, recurrent infection, and cancer progression. In this chapter, we review the process of cross-presentation beginning with the DC subsets that conduct cross-presentation, the signals that regulate cross-presentation, the vesicular trafficking pathways that orchestrate cross-presentation, the modes of cross-presentation, and ending with disease contexts where cross-presentation plays a role.
Collapse
Affiliation(s)
- J Magarian Blander
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, United States; Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, United States; Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, United States; Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Cornell University, New York, NY, United States; Immunology and Microbial Pathogenesis Programs, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, United States.
| | - Kristel Joy Yee Mon
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, United States; Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Atimukta Jha
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, United States; Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Dylan Roycroft
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, United States; Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, United States
| |
Collapse
|
22
|
Bakhtiyari M, Liaghat M, Aziziyan F, Shapourian H, Yahyazadeh S, Alipour M, Shahveh S, Maleki-Sheikhabadi F, Halimi H, Forghaniesfidvajani R, Zalpoor H, Nabi-Afjadi M, Pornour M. The role of bone marrow microenvironment (BMM) cells in acute myeloid leukemia (AML) progression: immune checkpoints, metabolic checkpoints, and signaling pathways. Cell Commun Signal 2023; 21:252. [PMID: 37735675 PMCID: PMC10512514 DOI: 10.1186/s12964-023-01282-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/17/2023] [Indexed: 09/23/2023] Open
Abstract
Acute myeloid leukemia (AML) comprises a multifarious and heterogeneous array of illnesses characterized by the anomalous proliferation of myeloid cells in the bone marrow microenvironment (BMM). The BMM plays a pivotal role in promoting AML progression, angiogenesis, and metastasis. The immune checkpoints (ICs) and metabolic processes are the key players in this process. In this review, we delineate the metabolic and immune checkpoint characteristics of the AML BMM, with a focus on the roles of BMM cells e.g. tumor-associated macrophages, natural killer cells, dendritic cells, metabolic profiles and related signaling pathways. We also discuss the signaling pathways stimulated in AML cells by BMM factors that lead to AML progression. We then delve into the roles of immune checkpoints in AML angiogenesis, metastasis, and cell proliferation, including co-stimulatory and inhibitory ICs. Lastly, we discuss the potential therapeutic approaches and future directions for AML treatment, emphasizing the potential of targeting metabolic and immune checkpoints in AML BMM as prognostic and therapeutic targets. In conclusion, the modulation of these processes through the use of directed drugs opens up new promising avenues in combating AML. Thereby, a comprehensive elucidation of the significance of these AML BMM cells' metabolic and immune checkpoints and signaling pathways on leukemic cells can be undertaken in the future investigations. Additionally, these checkpoints and cells should be considered plausible multi-targeted therapies for AML in combination with other conventional treatments in AML. Video Abstract.
Collapse
Affiliation(s)
- Maryam Bakhtiyari
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Mahsa Liaghat
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
- Department of Medical Laboratory Sciences, Faculty of Medical Sciences, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| | - Fatemeh Aziziyan
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hooriyeh Shapourian
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sheida Yahyazadeh
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maedeh Alipour
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Shaghayegh Shahveh
- American Association of Naturopath Physician (AANP), Washington, DC, USA
| | - Fahimeh Maleki-Sheikhabadi
- Department of Hematology and Blood Banking, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Halimi
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Razieh Forghaniesfidvajani
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Hamidreza Zalpoor
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran.
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Majid Pornour
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, MD, USA.
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, Maryland, USA.
| |
Collapse
|
23
|
Huang K, Liu Y, Wen S, Zhao Y, Ding H, Liu H, Kong DX. Binding Mechanism of CD47 with SIRPα Variants and Its Antibody: Elucidated by Molecular Dynamics Simulations. Molecules 2023; 28:4610. [PMID: 37375166 DOI: 10.3390/molecules28124610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/03/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
The intricate complex system of the differentiation 47 (CD47) and the signal-regulatory protein alpha (SIRPα) cluster is a crucial target for cancer immunotherapy. Although the conformational state of the CD47-SIRPα complex has been revealed through crystallographic studies, further characterization is needed to fully understand the binding mechanism and to identify the hot spot residues involved. In this study, molecular dynamics (MD) simulations were carried out for the complexes of CD47 with two SIRPα variants (SIRPαv1, SIRPαv2) and the commercially available anti-CD47 monoclonal antibody (B6H12.2). The calculated binding free energy of CD47-B6H12.2 is lower than that of CD47-SIRPαv1 and CD47-SIRPαv2 in all the three simulations, indicating that CD47-B6H12.2 has a higher binding affinity than the other two complexes. Moreover, the dynamical cross-correlation matrix reveals that the CD47 protein shows more correlated motions when it binds to B6H12.2. Significant effects were observed in the energy and structural analyses of the residues (Glu35, Tyr37, Leu101, Thr102, Arg103) in the C strand and FG region of CD47 when it binds to the SIRPα variants. The critical residues (Leu30, Val33, Gln52, Lys53, Thr67, Arg69, Arg95, and Lys96) were identified in SIRPαv1 and SIRPαv2, which surround the distinctive groove regions formed by the B2C, C'D, DE, and FG loops. Moreover, the crucial groove structures of the SIRPα variants shape into obvious druggable sites. The C'D loops on the binding interfaces undergo notable dynamical changes throughout the simulation. For B6H12.2, the residues Tyr32LC, His92LC, Arg96LC, Tyr32HC, Thr52HC, Ser53HC, Ala101HC, and Gly102HC in its initial half of the light and heavy chains exhibit obvious energetic and structural impacts upon binding with CD47. The elucidation of the binding mechanism of SIRPαv1, SIRPαv2, and B6H12.2 with CD47 could provide novel perspectives for the development of inhibitors targeting CD47-SIRPα.
Collapse
Affiliation(s)
- Kaisheng Huang
- State Key Laboratory of Agricultural Microbiology, Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Yi Liu
- State Key Laboratory of Agricultural Microbiology, Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuixiu Wen
- State Key Laboratory of Agricultural Microbiology, Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuxin Zhao
- State Key Laboratory of Agricultural Microbiology, Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Hanjing Ding
- School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning 437100, China
| | - Hui Liu
- State Key Laboratory of Agricultural Microbiology, Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - De-Xin Kong
- State Key Laboratory of Agricultural Microbiology, Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
24
|
Nishi W, Wakamatsu E, Machiyama H, Matsushima R, Saito K, Yoshida Y, Nishikawa T, Takehara T, Toyota H, Furuhata M, Nishijima H, Takeuchi A, Azuma M, Suzuki M, Yokosuka T. Evaluation of therapeutic PD-1 antibodies by an advanced single-molecule imaging system detecting human PD-1 microclusters. Nat Commun 2023; 14:3157. [PMID: 37280233 PMCID: PMC10244369 DOI: 10.1038/s41467-023-38512-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 05/04/2023] [Indexed: 06/08/2023] Open
Abstract
With recent advances in immune checkpoint inhibitors (ICIs), immunotherapy has become the standard treatment for various malignant tumors. Their indications and dosages have been determined empirically, taking individually conducted clinical trials into consideration, but without a standard method to evaluate them. Here we establish an advanced imaging system to visualize human PD-1 microclusters, in which a minimal T cell receptor (TCR) signaling unit co-localizes with the inhibitory co-receptor PD-1 in vitro. In these microclusters PD-1 dephosphorylates both the TCR/CD3 complex and its downstream signaling molecules via the recruitment of a phosphatase, SHP2, upon stimulation with the ligand hPD-L1. In this system, blocking antibodies for hPD-1-hPD-L1 binding inhibits hPD-1 microcluster formation, and each therapeutic antibody (pembrolizumab, nivolumab, durvalumab and atezolizumab) is characterized by a proprietary optimal concentration and combinatorial efficiency enhancement. We propose that our imaging system could digitally evaluate PD-1-mediated T cell suppression to evaluate their clinical usefulness and to develop the most suitable combinations among ICIs or between ICIs and conventional cancer treatments.
Collapse
Affiliation(s)
- Wataru Nishi
- Department of Thoracic Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
- Department of Immunology, Tokyo Medical University, Tokyo, 160-8402, Japan
| | - Ei Wakamatsu
- Department of Immunology, Tokyo Medical University, Tokyo, 160-8402, Japan
| | - Hiroaki Machiyama
- Department of Immunology, Tokyo Medical University, Tokyo, 160-8402, Japan
| | - Ryohei Matsushima
- Department of Thoracic Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
- Department of Immunology, Tokyo Medical University, Tokyo, 160-8402, Japan
| | - Kensho Saito
- Department of Immunology, Tokyo Medical University, Tokyo, 160-8402, Japan
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, 192-0392, Japan
| | - Yosuke Yoshida
- Department of Immunology, Tokyo Medical University, Tokyo, 160-8402, Japan
- Department of Nephrology, Tokyo Medical University, Tokyo, 160-8402, Japan
| | - Tetsushi Nishikawa
- Department of Immunology, Tokyo Medical University, Tokyo, 160-8402, Japan
- Department of Dermatology, Tokyo Medical University, Tokyo, 160-0023, Japan
| | - Tomohiro Takehara
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Hiroko Toyota
- Department of Immunology, Tokyo Medical University, Tokyo, 160-8402, Japan
| | - Masae Furuhata
- Department of Immunology, Tokyo Medical University, Tokyo, 160-8402, Japan
| | - Hitoshi Nishijima
- Department of Immunology, Tokyo Medical University, Tokyo, 160-8402, Japan
| | - Arata Takeuchi
- Department of Immunology, Tokyo Medical University, Tokyo, 160-8402, Japan
| | - Miyuki Azuma
- Department of Molecular Immunology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 113-8549, Japan
| | - Makoto Suzuki
- Department of Thoracic Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Tadashi Yokosuka
- Department of Immunology, Tokyo Medical University, Tokyo, 160-8402, Japan.
| |
Collapse
|
25
|
Thurau S, Wildner G, Gamulescu MA. [Ocular side effects of modern oncological therapy : Immunological checkpoint and MEK/BRAF signal transduction inhibitors]. DIE OPHTHALMOLOGIE 2023; 120:559-573. [PMID: 37160621 DOI: 10.1007/s00347-023-01852-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/22/2023] [Indexed: 05/11/2023]
Abstract
In recent years, checkpoint inhibitors have revolutionized the treatment of previously untreatable malignant tumors, significantly improving the life expectancy as well as quality of life in many cases. Checkpoint inhibitors comprise a group of drugs with different mechanisms of action. These include immunological checkpoint inhibitors (iCPI) and intracellular signal transduction inhibitors; however, both substance classes can cause inflammatory or toxic ocular side effects. The frequency of intraocular inflammation (uveitis) is reported to be ca. 1-2%, toxic side effects were observed in up to more than 50% of the patients treated with signal transduction inhibitors. In the following article the main mechanisms of these forms of treatment are characterized. Furthermore, this article presents the currently most frequently used therapeutic agents and their typical ophthalmological side effects to increase awareness and to draw attention to these still rare but increasingly more frequent findings.
Collapse
Affiliation(s)
- Stephan Thurau
- Augenklinik und Poliklinik, Klinikum der Universität München, LMU München, München, Deutschland
| | - Gerhild Wildner
- Augenklinik und Poliklinik, Klinikum der Universität München, LMU München, München, Deutschland
| | - Maria-Andreea Gamulescu
- Klinik und Poliklinik für Augenheilkunde, Universität Regensburg, Franz-Josef-Strauss Allee 11, 93053, Regensburg, Deutschland.
| |
Collapse
|
26
|
Modur V, Muhammad B, Yang JQ, Zheng Y, Komurov K, Guo F. Mechanism of inert inflammation in an immune checkpoint blockade-resistant tumor subtype bearing transcription elongation defects. Cell Rep 2023; 42:112364. [PMID: 37043352 PMCID: PMC10562518 DOI: 10.1016/j.celrep.2023.112364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 08/22/2022] [Accepted: 03/21/2023] [Indexed: 04/13/2023] Open
Abstract
The clinical response to immune checkpoint blockade (ICB) correlates with tumor-infiltrating cytolytic T lymphocytes (CTLs) prior to treatment. However, many of these inflamed tumors resist ICB through unknown mechanisms. We show that tumors with transcription elongation deficiencies (TEdef+), which we previously reported as being resistant to ICB in mouse models and the clinic, have high baseline CTLs. We show that high baseline CTLs in TEdef+ tumors result from aberrant activation of the nucleic acid sensing-TBK1-CCL5/CXCL9 signaling cascade, which results in an immunosuppressive microenvironment with elevated regulatory T cells and exhausted CTLs. ICB therapy of TEdef+ tumors fail to increase CTL infiltration and suppress tumor growth in both experimental and clinical settings, suggesting that TEdef+, along with surrogate markers of tumor immunogenicity such as tumor mutational burden and CTLs, should be considered in the decision process for patient immunotherapy indication.
Collapse
Affiliation(s)
- Vishnu Modur
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Medical Center, and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Belal Muhammad
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Medical Center, and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jun-Qi Yang
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Medical Center, and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Yi Zheng
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Medical Center, and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | | | - Fukun Guo
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Medical Center, and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
27
|
Kao MW, Kuo YH, Hsieh KC, Lee CT, Wu SC, Yang WC. Immune Checkpoint Inhibitor, Nivolumab, Combined with Chemotherapy Improved the Survival of Unresectable Advanced and Metastatic Esophageal Squamous Cell Carcinoma: A Real-World Experience. Int J Mol Sci 2023; 24:ijms24087312. [PMID: 37108474 PMCID: PMC10139434 DOI: 10.3390/ijms24087312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 03/25/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023] Open
Abstract
Patients with advanced esophageal squamous cell carcinoma (SCC) have a poor prognosis when treated with standard chemotherapy. Programmed death ligand 1 (PD-L1) expression in esophageal cancer has been associated with poor survival and more advanced stage. Immune checkpoint inhibitors, such as PD-1 inhibitors, showed benefits in advanced esophageal cancer in clinical trials. We analyzed the prognosis of patients with unresectable esophageal SCC who received nivolumab with chemotherapy, dual immunotherapy (nivolumab and ipilimumab), or chemotherapy with or without radiotherapy. Patients who received nivolumab with chemotherapy had a better overall response rate (ORR) (72% vs. 66.67%, p = 0.038) and longer overall survival (OS) (median OS: 609 days vs. 392 days, p = 0.04) than those who received chemotherapy with or without radiotherapy. In patients receiving nivolumab with chemotherapy, the duration of the treatment response was similar regardless of the treatment line they received. According to clinical parameters, liver and distant lymph nodes metastasis showed a trend of negative and positive impacts, respectively, on treatment response in the whole cohort and in the immunotherapy-containing regimen cohort. Nivolumab add-on treatment showed less gastrointestinal and hematological adverse effects, compare with chemotherapy. Here, we showed that nivolumab combined with chemotherapy is a better choice for patients with unresectable esophageal SCC.
Collapse
Affiliation(s)
- Ming-Wei Kao
- Division of Thoracic Surgery, Department of Surgery, E-DA Hospital, Kaohsiung 824, Taiwan
- Faculty of School of Medicine, College of Medicine, I-Shou University, Kaohsiung 824, Taiwan
| | - Yao-Hung Kuo
- Department of Radiation Oncology, E-DA Hospital, Kaohsiung 824, Taiwan
| | - Kun-Chou Hsieh
- Division of Thoracic Surgery, Department of Surgery, E-DA Hospital, Kaohsiung 824, Taiwan
| | - Ching-Tai Lee
- Department of Gastroenterology, E-DA Hospital, Kaohsiung 824, Taiwan
| | - Shih-Chi Wu
- Trauma and Emergency Center, China Medical University Hospital, Taichung 404, Taiwan
- Graduate Institute of Clinical Medical Science, China Medical University College of Medicine, Taichung 404, Taiwan
| | - Wen-Chi Yang
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Pingtung Christian Hospital, Pingtung 900, Taiwan
| |
Collapse
|
28
|
Syed M, Cagely M, Dogra P, Hollmer L, Butner JD, Cristini V, Koay EJ. Immune-checkpoint inhibitor therapy response evaluation using oncophysics-based mathematical models. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1855. [PMID: 36148978 PMCID: PMC11824897 DOI: 10.1002/wnan.1855] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 06/10/2022] [Accepted: 08/23/2022] [Indexed: 11/08/2022]
Abstract
The field of oncology has transformed with the advent of immunotherapies. The standard of care for multiple cancers now includes novel drugs that target key checkpoints that function to modulate immune responses, enabling the patient's immune system to elicit an effective anti-tumor response. While these immune-based approaches can have dramatic effects in terms of significantly reducing tumor burden and prolonging survival for patients, the therapeutic approach remains active only in a minority of patients and is often not durable. Multiple biological investigations have identified key markers that predict response to the most common form of immunotherapy-immune checkpoint inhibitors (ICI). These biomarkers help enrich patients for ICI but are not 100% predictive. Understanding the complex interactions of these biomarkers with other pathways and factors that lead to ICI resistance remains a major goal. Principles of oncophysics-the idea that cancer can be described as a multiscale physical aberration-have shown promise in recent years in terms of capturing the essence of the complexities of ICI interactions. Here, we review the biological knowledge of mechanisms of ICI action and how these are incorporated into modern oncophysics-based mathematical models. Building on the success of oncophysics-based mathematical models may help to discover new, rational methods to engineer immunotherapy for patients in the future. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Mustafa Syed
- Department of Gastrointestinal Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Matthew Cagely
- Department of Gastrointestinal Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Prashant Dogra
- Mathematics in Medicine Program, Houston Methodist Research Institute, Houston, Texas, USA
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York, USA
| | - Lauren Hollmer
- Department of Gastrointestinal Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Joseph D. Butner
- Mathematics in Medicine Program, Houston Methodist Research Institute, Houston, Texas, USA
| | - Vittorio Cristini
- Mathematics in Medicine Program, Houston Methodist Research Institute, Houston, Texas, USA
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Physiology, Biophysics, and Systems Biology Program, Graduate School of Medical Sciences, Weill Cornell Medicine, New York, New York, USA
| | - Eugene J. Koay
- Department of Gastrointestinal Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
29
|
Lu Y, Wu F, Xu Y, He C, Luo S, Sun X. Triple functional mild photothermal improves gene editing of PD-L1 for enhanced antitumor immunity. J Control Release 2023; 354:57-68. [PMID: 36581262 DOI: 10.1016/j.jconrel.2022.12.052] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/23/2022] [Accepted: 12/25/2022] [Indexed: 12/31/2022]
Abstract
Traditional photothermal therapy ablates tumor cells by a high temperature (> 50 °C). Although it has shown good anti-tumor effect in animal models, the potential damages to healthy tissues and the unnecessary inflammatory reactions caused by the high temperature have hindered the clinical transitions of traditional photothermal therapy. In this study, we used polydopamine (PDA) as a mild photothermal material and control the maximum temperature below 45 °C, which not only avoided the side effects caused by a high temperature, but also ablated a fraction of tumor cells and produced tumor antigens. Meanwhile, the near-infrared (NIR) light also served as a "switch" to trigger the release of CRISPR/Cas9 RNP from Fe3O4 nanoparticles (Fe3O4 NPs) after their accumulation to tumor sites via magnetic targeting. The triple functional mild photothermal therapy achieved significant PD-L1 gene knockout efficiency in the tumor-bearing mice, reversed the condition of immunosuppression in the tumor microenvironment, led to a higher level of anti-tumor immune responses and effectively inhibited the growth of melanoma. We anticipate that this triple functional mild photothermal therapy would provide a potential new approach for the treatment of malignant tumors.
Collapse
Affiliation(s)
- Yi Lu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Fuhua Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yanhua Xu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Chunting He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Shuang Luo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xun Sun
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
30
|
Gao X, Lei G, Wang B, Deng Z, Karges J, Xiao H, Tan D. Encapsulation of Platinum Prodrugs into PC7A Polymeric Nanoparticles Combined with Immune Checkpoint Inhibitors for Therapeutically Enhanced Multimodal Chemotherapy and Immunotherapy by Activation of the STING Pathway. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205241. [PMID: 36504435 PMCID: PMC9896041 DOI: 10.1002/advs.202205241] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Tumor immunotherapy has emerged as one of the most promising therapeutic methods to treat cancer. Despite its clinical application, the immunosuppressive tumor microenvironment compromises the therapeutic efficiency of this technique. To overcome this limitation, many research efforts have been devoted to the development of agents that reprogram the immunosuppressive tumor microenvironment through novel mechanisms. Over the last decade, compounds that intervene through the immunogenic stimulator of interferon genes (STING) pathway have emerged with potential for clinical development. Herein, the encapsulation of chemotherapeutic platinum complexes with a polymer with a cyclic seven-membered ring (PC7A)-based polymer into pH-responsive nanoparticles for multimodal therapeutically enhanced chemotherapy and immunotherapy is presented. This study represents the first nanomaterial with a dual activation mechanism of the STING pathway through DNA fragmentation as well as PC7A binding. The combination of these nanoparticles with immune checkpoint inhibitors demonstrates to nearly fully eradicate a colorectal tumor inside the mouse model by chemotherapy and immunotherapy using the STING pathway.
Collapse
Affiliation(s)
- Xiangjie Gao
- Affiliated Hospital of Xiangnan UniversityChenzhouHunan Province423000China
- Xiangnan UniversityChenzhouHunan Province423000China
- Key Laboratory of Medical Imaging and Artificial Intelligence of Hunan ProvinceChenzhouHunan Province423000China
- Hunan Engineering Research Center of Advanced Embedded Computing and Intelligent Medical Systems, Xiangnan UniversityChenzhouHunan Province423000China
| | - Guanxiong Lei
- Affiliated Hospital of Xiangnan UniversityChenzhouHunan Province423000China
- Xiangnan UniversityChenzhouHunan Province423000China
- Key Laboratory of Medical Imaging and Artificial Intelligence of Hunan ProvinceChenzhouHunan Province423000China
- Hunan Engineering Research Center of Advanced Embedded Computing and Intelligent Medical Systems, Xiangnan UniversityChenzhouHunan Province423000China
| | - Bin Wang
- Beijing National Laboratory for Molecular SciencesState Key Laboratory of Polymer Physics and ChemistryInstitute of ChemistryChinese Academy of SciencesBeijing100190China
| | - Zhong Deng
- Affiliated Hospital of Xiangnan UniversityChenzhouHunan Province423000China
- Xiangnan UniversityChenzhouHunan Province423000China
- Key Laboratory of Medical Imaging and Artificial Intelligence of Hunan ProvinceChenzhouHunan Province423000China
- Hunan Engineering Research Center of Advanced Embedded Computing and Intelligent Medical Systems, Xiangnan UniversityChenzhouHunan Province423000China
| | - Johannes Karges
- Faculty of Chemistry and BiochemistryRuhr‐University BochumUniversitätsstrasse 15044780BochumGermany
| | - Haihua Xiao
- Beijing National Laboratory for Molecular SciencesState Key Laboratory of Polymer Physics and ChemistryInstitute of ChemistryChinese Academy of SciencesBeijing100190China
| | - Donghui Tan
- Affiliated Hospital of Xiangnan UniversityChenzhouHunan Province423000China
- Xiangnan UniversityChenzhouHunan Province423000China
- Key Laboratory of Medical Imaging and Artificial Intelligence of Hunan ProvinceChenzhouHunan Province423000China
- Hunan Engineering Research Center of Advanced Embedded Computing and Intelligent Medical Systems, Xiangnan UniversityChenzhouHunan Province423000China
| |
Collapse
|
31
|
Wang H, Yang H, Zhou X, Zhang X. Hepatotoxicity Associated with Immune Checkpoint Inhibitors in Clinical Practice: A Study Leveraging Data from the US Food and Drug Administration's Adverse Event Reporting System. Clin Ther 2023; 45:151-159. [PMID: 36682994 DOI: 10.1016/j.clinthera.2023.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/13/2022] [Accepted: 01/03/2023] [Indexed: 01/21/2023]
Abstract
PURPOSE Immune checkpoint inhibitors (ICIs) are a promising option for the treatment of patients with various cancers. Emerging case reports have raised awareness on hepatotoxicity, a potentially fatal adverse event (AE) that may be associated with the use of ICIs. This study assessed the potential association between ICIs and hepatotoxicity through the mining of data from the US Food and Drug Administration's AE Reporting System (FAERS). METHODS A total of 9,217,181 AEs reported in the period from quarter 1 of 2004 to quarter 3 of 2021 were assessed. Information components (ICs) and reporting odds ratios (RORs) were used to evaluate the association between the use of ICIs and hepatotoxicity. FINDINGS A total of 52,463 AE reports listed ICIs, used alone or in combination, as a suspected drug. Of these, 1481 cases were related to both ICIs and hepatotoxicity. The use of ICIs was significantly associated with hepatotoxicity compared to all other drugs, making it a safety signal (IC = 1.43 [95% CI, 1.36-1.51]; ROR = 2.78 [95% CI, 2.64-2.93]). With monotherapy, all ICIs, except tremelimumab, were associated with liver damage. The most commonly prescribed combination therapy was nivolumab + ipilimumab (321 cases) with a significant signal detected. Notably, ICI use was significantly associated with hepatic failure (IC = 1.24 [95% CI, 1.06-1.42]; ROR = 2.40 [95% CI, 2.13-2.72]). The risk for ICI-associated hepatotoxicity (including hepatic failure) was greater with ICI combination therapy than with ICI monotherapy. All subgroups by sex and age also showed significant associations between ICI use and hepatotoxicity. IMPLICATIONS A significant association was detected between ICI use and hepatotoxicity. The risk for hepatotoxicity (including hepatic failure) was greater with ICI combination therapy compared with ICI monotherapy. (Clin Ther. 2023;45:XXX-XXX) © 2023 Elsevier Inc.
Collapse
Affiliation(s)
- Haozhou Wang
- Institute of Uro-nephrology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Hui Yang
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Xiaoguang Zhou
- Institute of Uro-nephrology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Xiaodong Zhang
- Institute of Uro-nephrology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
32
|
Review to Understand the Crosstalk between Immunotherapy and Tumor Metabolism. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020862. [PMID: 36677919 PMCID: PMC9863813 DOI: 10.3390/molecules28020862] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023]
Abstract
Immune checkpoint inhibitors have ushered in a new era of cancer treatment by increasing the likelihood of long-term survival for patients with metastatic disease and by introducing fresh therapeutic indications in cases where the disease is still in its early stages. Immune checkpoint inhibitors that target the proteins cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) or programmed death-1/programmed death ligand-1 have significantly improved overall survival in patients with certain cancers and are expected to help patients achieve complete long-lasting remissions and cures. Some patients who receive immune checkpoint inhibitors, however, either experience therapeutic failure or eventually develop immunotherapy resistance. Such individuals are common, which necessitates a deeper understanding of how cancer progresses, particularly with regard to nutritional regulation in the tumor microenvironment (TME), which comprises metabolic cross-talk between metabolites and tumor cells as well as intracellular metabolism in immune and cancer cells. Combination of immunotherapy with targeted metabolic regulation might be a focus of future cancer research despite a lack of existing clinical evidence. Here, we reviewed the significance of the tumor microenvironment and discussed the most significant immunological checkpoints that have recently been identified. In addition, metabolic regulation of tumor immunity and immunological checkpoints in the TME, including glycolysis, amino acid metabolism, lipid metabolism, and other metabolic pathways were also incorporated to discuss the possible metabolism-based treatment methods being researched in preclinical and clinical settings. This review will contribute to the identification of a relationship or crosstalk between tumor metabolism and immunotherapy, which will shed significant light on cancer treatment and cancer research.
Collapse
|
33
|
Filippi A, Mocanu MM. Mining TCGA Database for Genes with Prognostic Value in Breast Cancer. Int J Mol Sci 2023; 24:1622. [PMID: 36675137 PMCID: PMC9862022 DOI: 10.3390/ijms24021622] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
The aim of the study was to use transcriptomics data to identify genes associated with advanced/aggressive breast cancer and their effect on survival outcomes. We used the publicly available The Cancer Genome Atlas (TCGA) database to obtain RNA sequence data from patients with less than five years survival (Poor Prognosis, n = 101), patients with greater than five years survival (Good Prognosis, n = 200), as well as unpaired normal tissue data (normal, n = 105). The data analyses performed included differential expression between groups and selection of subsets of genes, gene ontology, cell enrichment analysis, and survival analyses. Gene ontology results showed significantly reduced enrichment in gene sets related to tumor immune microenvironment in Poor Prognosis and cell enrichment analysis confirmed significantly reduced numbers of macrophages M1, CD8 T cells, plasma cells and dendritic cells in samples in the Poor Prognosis samples compared with Good Prognosis. A subset of 742 genes derived from differential expression analysis as well as genes coding for immune checkpoint molecules was evaluated for their effect on overall survival. In conclusion, this study may contribute to the better understanding of breast cancer transcriptomics and provide possible targets for further research and eventual therapeutic interventions.
Collapse
Affiliation(s)
| | - Maria-Magdalena Mocanu
- Department of Biochemistry and Biophysics, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| |
Collapse
|
34
|
Sun Z, Jing C, Zhan H, Guo X, Suo N, Kong F, Tao W, Xiao C, Hu D, Wang H, Jiang S. Identification of tumor antigens and immune landscapes for bladder urothelial carcinoma mRNA vaccine. Front Immunol 2023; 14:1097472. [PMID: 36761744 PMCID: PMC9905425 DOI: 10.3389/fimmu.2023.1097472] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 01/09/2023] [Indexed: 01/26/2023] Open
Abstract
Background Bladder urothelial carcinoma (BLCA) is associated with high mortality and recurrence. Although mRNA-based vaccines are promising treatment strategies for combating multiple solid cancers, their efficacy against BLCA remains unclear. We aimed to identify potential effective antigens of BLCA for the development of mRNA-based vaccines and screen for immune clusters to select appropriate candidates for vaccination. Methods Gene expression microarray data and clinical information were retrieved from The Cancer Genome Atlas and GSE32894, respectively. The mRNA splicing patterns were obtained from the SpliceSeq portal. The cBioPortal for Cancer Genomics was used to visualize genetic alteration profiles. Furthermore, nonsense-mediated mRNA decay (NMD) analysis, correlation analysis, consensus clustering analysis, immune cell infiltration analysis, and weighted co-expression network analysis were conducted. Results Six upregulated and mutated tumor antigens related to NMD, and infiltration of APCs were identified in patients with BLCA, including HP1BP3, OSBPL9, SSH3, ZCCHC8, FANCI, and EIF4A2. The patients were subdivided into two immune clusters (IC1 and IC2) with distinct clinical, cellular and molecular features. Patients in IC1 represented immunologically 'hot' phenotypes, whereas those in IC2 represented immunologically 'cold' phenotypes. Moreover, the survival rate was better in IC2 than in IC1, and the immune landscape of BLCA indicated significant inter-patient heterogeneity. Finally, CALD1, TGFB3, and ANXA6 were identified as key genes of BLCA through WGCNA analysis, and their mRNA expression levels were measured using qRT-PCR. Conclusion HP1BP3, OSBPL9, SSH3, ZCCHC8, FANCI, and EIF4A2 were identified as potential antigens for developing mRNA-based vaccines against BLCA, and patients in IC2 might benefit more from vaccination.
Collapse
Affiliation(s)
- Zhuolun Sun
- Department of Urology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Changying Jing
- Faculty of Medicine, Ludwig Maximilian University of Munich (LMU), Munich, Germany.,Institute of Diabetes and Regeneration, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Hailun Zhan
- Department of Urology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xudong Guo
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ning Suo
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Feng Kong
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Wen Tao
- Department of Urology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chutian Xiao
- Department of Urology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Daoyuan Hu
- Department of Urology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hanbo Wang
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Shaobo Jiang
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
35
|
Giannopoulos S, Bozkus CC, Zografos E, Athanasiou A, Bongiovanni AM, Doulaveris G, Bakoyiannis CN, Theodoropoulos GE, Zografos GC, Witkin SS, Orfanelli T. Targeting Both Autophagy and Immunotherapy in Breast Cancer Treatment. Metabolites 2022; 12:metabo12100966. [PMID: 36295867 PMCID: PMC9607060 DOI: 10.3390/metabo12100966] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022] Open
Abstract
As clinical efforts towards breast-conserving therapy and prolonging survival of those with metastatic breast cancer increase, innovative approaches with the use of biologics are on the rise. Two areas of current focus are cancer immunotherapy and autophagy, both of which have been well-studied independently but have recently been shown to have intertwining roles in cancer. An increased understanding of their interactions could provide new insights that result in novel diagnostic, prognostic, and therapeutic strategies. In this breast cancer-focused review, we explore the interactions between autophagy and two clinically relevant immune checkpoint pathways; the programmed cell death-1 receptor with its ligand (PD-L1)/PD-1 and the cytotoxic T-lymphocyte-associated protein 4 (CTLA-4)/CD80 and CD86 (B7-1 and B7-2). Furthermore, we discuss emerging preclinical and clinical data supporting targeting both immunotherapy and autophagy pathway manipulation as a promising approach in the treatment of breast cancer.
Collapse
Affiliation(s)
- Spyridon Giannopoulos
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Cansu Cimen Bozkus
- Department of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai Hospital, New York, NY 10029, USA
| | - Eleni Zografos
- Department of Clinical Therapeutics, Alexandra Hospital, National and Kapodistrian University of Athens, 15772 Athens, Greece
| | - Aikaterini Athanasiou
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Ann Marie Bongiovanni
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Georgios Doulaveris
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Chris N Bakoyiannis
- First Department of Surgery, Division of Vascular Surgery, Laikon General Hospital, National Kapodistrian University of Athens, 15772 Athens, Greece
| | - Georgios E Theodoropoulos
- First Department of Propaedeutic Surgery, Hippocration General Hospital, National and Kapodistrian University of Athens, 15772 Athens, Greece
| | - Georgios C Zografos
- First Department of Propaedeutic Surgery, Hippocration General Hospital, National and Kapodistrian University of Athens, 15772 Athens, Greece
| | - Steven S Witkin
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Theofano Orfanelli
- First Department of Propaedeutic Surgery, Hippocration General Hospital, National and Kapodistrian University of Athens, 15772 Athens, Greece
| |
Collapse
|
36
|
Thurau S, Engelke H, McCluskey P, Symes RJ, Whist E, Teuchner B, Haas G, Allegri P, Cimino L, Bolletta E, Miserocchi E, Russo M, Li JQ, Heiligenhaus A, Wildner G. Uveitis in Tumor Patients Treated with Immunological Checkpoint- and Signal Transduction Pathway-Inhibitors. Ocul Immunol Inflamm 2022; 30:1588-1594. [PMID: 33983102 DOI: 10.1080/09273948.2021.1910850] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE New tumor therapies like immune checkpoint inhibitors and small molecule inhibitors of MEK and BRAF have increased the patient's survival rate but can be burdened with severe side-effects including uveitis. Here, we show the spectrum, treatment, and outcome of uveitis types induced by tumor treatment. METHODS In this retrospective study, we have included 54 patients from different centers who were developing uveitis under tumor therapy. A 16-item questionnaire was analyzed for type, treatment, and outcome of uveitis and type of tumor treatment, which we have correlated here. RESULTS Irrespective of the tumor treatment, most patients developed anterior uveitis. All patients received corticosteroids and some additional immunosuppressive treatments. Cessation of tumor therapy was necessary only in a minority of cases. CONCLUSIONS Ocular autoimmunity should be differentiated from toxic effects of cancer treatment and timely recognized since it can be generally well controlled by anti-inflammatory treatment, preserving the patient's vision without cessation of the tumor treatment.
Collapse
Affiliation(s)
- Stephan Thurau
- Department of Ophthalmology, University Hospital, LMU Munich, Munich, Germany
| | - Hendrik Engelke
- Department of Ophthalmology, University Hospital, LMU Munich, Munich, Germany
| | - Peter McCluskey
- Ophthalmology, Save Sight Institute, University of Sydney, Sydney, NSW, Australia
| | - Richard J Symes
- Ophthalmology, Save Sight Institute, University of Sydney, Sydney, NSW, Australia
| | - Eline Whist
- Ophthalmology Department, Royal Darwin Hospital, Tiwi, Australia
| | - Barbara Teuchner
- Department of Ophthalmology, Medical University of Innsbruck, Innsbruck, Austria
| | - Gertrud Haas
- Department of Ophthalmology, Medical University of Innsbruck, Innsbruck, Austria
| | - Pia Allegri
- Inflammatory Eye Diseases Referral Center, Rapallo Hospital, Genova, Italy
| | - Luca Cimino
- Ocular Immunology Unit, Azienda USL-IRCCS, Reggio Emilia, Italy
| | - Elena Bolletta
- Ocular Immunology Unit, Azienda USL-IRCCS, Reggio Emilia, Italy
| | - Elisabetta Miserocchi
- Ocular Immunology and Uveitis Service, Department of Ophthalmology, San Raffaele Scientific Institute, University Vita-Salute, Milano, Italy
| | - Marinella Russo
- Ocular Immunology and Uveitis Service, Department of Ophthalmology, San Raffaele Scientific Institute, University Vita-Salute, Milano, Italy
| | - Jeany Q Li
- Department of Ophthalmology, University Hospital Bonn, Bonn, Germany
| | - Arnd Heiligenhaus
- Department of Ophthalmology, St. Franziskus Hospital, Münster, University of Duisburg-Essen, Germany
| | - Gerhild Wildner
- Department of Ophthalmology, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
37
|
Giri A, Bauman JR. Pembrolizumab as monotherapy in locally advanced cutaneous squamous cell carcinoma. Expert Rev Anticancer Ther 2022; 22:1029-1038. [DOI: 10.1080/14737140.2022.2125382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Anshu Giri
- Department of Hematology and Oncology, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
| | - Jessica R. Bauman
- Department of Hematology and Oncology, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
| |
Collapse
|
38
|
Li Z, Wang W, Wu J, Ye X. Identification of N7-methylguanosine related signature for prognosis and immunotherapy efficacy prediction in lung adenocarcinoma. Front Med (Lausanne) 2022; 9:962972. [PMID: 36091687 PMCID: PMC9449120 DOI: 10.3389/fmed.2022.962972] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundLung adenocarcinoma (LUAD) is one of the most frequent causes of tumor-related mortality worldwide. Recently, the role of N7-methylguanosine (m7G) in tumors has begun to receive attention, but no investigation on the impact of m7G on LUAD. This study aims to elucidate the significance of m7G on the prognosis and immunotherapy in LUAD.MethodsConsensus clustering was employed to determine the molecular subtype according to m7G-related regulators extracted from The Cancer Genome Atlas (TCGA) database. Survival, clinicopathological features and tumor mutational burden (TMB) analysis were applied to research molecular characteristics of each subtype. Subsequently, “limma” package was used to screen differentially expressed genes (DEGs) between subtypes. In the TCGA train cohort (n = 245), a prognostic signature was established by univariate Cox regression, lasso regression and multivariate Cox regression analysis according to DEGs and survival analysis was employed to assess the prognosis. Then the prognostic value of the signature was verified by TCGA test cohort (n = 245), TCGA entire cohort (n = 490) and GSE31210 cohort (n = 226). Moreover, the association among immune infiltration, clinical features and the signature was investigated. The immune checkpoints, TMB and tumor immune dysfunction and exclusion (TIDE) were applied to predict the immunotherapy response.ResultsTwo novel molecular subtypes (C1 and C2) of LUAD were identified. Compared to C2 subtype, C1 subtype had poorer prognosis and higher TMB. Subsequently, the signature (called the “m7G score”) was constructed according to four key genes (E2F7, FAM83A, PITX3, and HOXA13). The distribution of m7G score were significantly different between two molecular subtypes. The patients with lower m7G score had better prognosis in TCGA train cohort and three verification cohort. The m7G score was intensively related to immune infiltration. Compared with the lower score, the higher m7G score was related to remarkable upregulation of the PD-1 and PD-L1, the higher TMB and the lower TIDE score.ConclusionThis study established a m7G-related signature for predicting prognosis and immunotherapy in LUAD, which may contribute to the development of new therapeutic strategies for LUAD.
Collapse
|
39
|
Lucia F, Geier M, Schick U, Bourbonne V. Narrative Review of Synergistics Effects of Combining Immunotherapy and Stereotactic Radiation Therapy. Biomedicines 2022; 10:biomedicines10061414. [PMID: 35740435 PMCID: PMC9219862 DOI: 10.3390/biomedicines10061414] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/02/2022] [Accepted: 06/13/2022] [Indexed: 12/24/2022] Open
Abstract
Stereotactic radiotherapy (SRT) has become an attractive treatment modality in full bloom in recent years by presenting itself as a safe, noninvasive alternative to surgery to control primary or secondary malignancies. Although the focus has been on local tumor control as the therapeutic goal of stereotactic radiotherapy, rare but intriguing observations of abscopal (or out-of-field) effects have highlighted the exciting possibility of activating antitumor immunity using high-dose radiation. Furthermore, immunotherapy has revolutionized the treatment of several types of cancers in recent years. However, resistance to immunotherapy often develops. These observations have led researchers to combine immunotherapy with SRT in an attempt to improve outcomes. The benefits of this combination would come from the stimulation and suppression of various immune pathways. Thus, in this review, we will first discuss the immunomodulation induced by SRT with the promising results of preclinical studies on the changes in the immune balance observed after SRT. Then, we will discuss the opportunities and risks of the combination of SRT and immunotherapy with the preclinical and clinical data available in the literature. Furthermore, we will see that many perspectives are conceivable to potentiate the synergistic effects of this combination with the need for prospective studies to confirm the encouraging data.
Collapse
Affiliation(s)
- François Lucia
- Radiation Oncology Department, University Hospital, 29200 Brest, France; (U.S.); (V.B.)
- LaTIM, INSERM, UMR 1101, University of Brest, 29200 Brest, France
- Correspondence:
| | - Margaux Geier
- Medical Oncology Department, University Hospital, 29200 Brest, France;
| | - Ulrike Schick
- Radiation Oncology Department, University Hospital, 29200 Brest, France; (U.S.); (V.B.)
- LaTIM, INSERM, UMR 1101, University of Brest, 29200 Brest, France
| | - Vincent Bourbonne
- Radiation Oncology Department, University Hospital, 29200 Brest, France; (U.S.); (V.B.)
- LaTIM, INSERM, UMR 1101, University of Brest, 29200 Brest, France
| |
Collapse
|
40
|
Yim S, Hwang W, Han N, Lee D. Computational Discovery of Cancer Immunotherapy Targets by Intercellular CRISPR Screens. Front Immunol 2022; 13:884561. [PMID: 35651625 PMCID: PMC9149307 DOI: 10.3389/fimmu.2022.884561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/07/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer immunotherapy targets the interplay between immune and cancer cells. In particular, interactions between cytotoxic T lymphocytes (CTLs) and cancer cells, such as PD-1 (PDCD1) binding PD-L1 (CD274), are crucial for cancer cell clearance. However, immune checkpoint inhibitors targeting these interactions are effective only in a subset of patients, requiring the identification of novel immunotherapy targets. Genome-wide clustered regularly interspaced short palindromic repeats (CRISPR) screening in either cancer or immune cells has been employed to discover regulators of immune cell function. However, CRISPR screens in a single cell type complicate the identification of essential intercellular interactions. Further, pooled screening is associated with high noise levels. Herein, we propose intercellular CRISPR screens, a computational approach for the analysis of genome-wide CRISPR screens in every interacting cell type for the discovery of intercellular interactions as immunotherapeutic targets. We used two publicly available genome-wide CRISPR screening datasets obtained while triple-negative breast cancer (TNBC) cells and CTLs were interacting. We analyzed 4825 interactions between 1391 ligands and receptors on TNBC cells and CTLs to evaluate their effects on CTL function. Intercellular CRISPR screens discovered targets of approved drugs, a few of which were not identifiable in single datasets. To evaluate the method's performance, we used data for cytokines and costimulatory molecules as they constitute the majority of immunotherapeutic targets. Combining both CRISPR datasets improved the recall of discovering these genes relative to using single CRISPR datasets over two-fold. Our results indicate that intercellular CRISPR screens can suggest novel immunotherapy targets that are not obtained through individual CRISPR screens. The pipeline can be extended to other cancer and immune cell types to discover important intercellular interactions as potential immunotherapeutic targets.
Collapse
Affiliation(s)
- Soorin Yim
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea.,Bio-Synergy Research Center, Daejeon, South Korea
| | - Woochang Hwang
- Milner Therapeutics Institute, University of Cambridge, Cambridge, United Kingdom
| | - Namshik Han
- Milner Therapeutics Institute, University of Cambridge, Cambridge, United Kingdom.,Cambridge Centre for AI in Medicine, Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom
| | - Doheon Lee
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea.,Bio-Synergy Research Center, Daejeon, South Korea
| |
Collapse
|
41
|
Kreider EF, Bar KJ. HIV-1 Reservoir Persistence and Decay: Implications for Cure Strategies. Curr HIV/AIDS Rep 2022; 19:194-206. [PMID: 35404007 PMCID: PMC10443186 DOI: 10.1007/s11904-022-00604-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2022] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Despite suppressive antiretroviral therapy (ART), a viral reservoir persists in individuals living with HIV that can reignite systemic replication should treatment be interrupted. Understanding how HIV-1 persists through effective ART is essential to develop cure strategies to induce ART-free virus remission. RECENT FINDINGS The HIV-1 reservoir resides in a pool of CD4-expressing cells as a range of viral species, a subset of which is genetically intact. Recent studies suggest that the reservoir on ART is highly dynamic, with expansion and contraction of virus-infected cells over time. Overall, the intact proviral reservoir declines faster than defective viruses, suggesting enhanced immune clearance or cellular turnover. Upon treatment interruption, rebound viruses demonstrate escape from adaptive and innate immune responses, implicating these selective pressures in restriction of virus reactivation. Cure strategies employing immunotherapy are poised to test whether host immune pressure can be augmented to enhance reservoir suppression or clearance. Alternatively, genomic engineering approaches are being applied to directly eliminate intact viruses and shrink the replication-competent virus pool. New evidence suggests host immunity exerts selective pressure on reservoir viruses and clears HIV-1 infected cells over years on ART. Efforts to build on the detectable, but insufficient, reservoir clearance via empiric testing in clinical trials will inform our understanding of mechanisms of viral persistence and the direction of future cure strategies.
Collapse
Affiliation(s)
- Edward F Kreider
- Perelman School of Medicine, University of Pennsylvania, Stemmler Hall Room 130-150, 3450 Hamilton Walk, Philadelphia, PA, 19104-6073, USA
| | - Katharine J Bar
- Perelman School of Medicine, University of Pennsylvania, 502D Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA, 19104‑0673, USA.
| |
Collapse
|
42
|
Alekseenko IV, Pleshkan VV, Kuzmich AI, Kondratieva SA, Sverdlov ED. Gene-Immune Therapy of Cancer: Approaches and Problems. RUSS J GENET+ 2022; 58:491-506. [DOI: 10.1134/s1022795422040020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/10/2021] [Accepted: 10/14/2021] [Indexed: 01/05/2025]
|
43
|
Picarda E, Galbo PM, Zong H, Rajan MR, Wallenius V, Zheng D, Börgeson E, Singh R, Pessin J, Zang X. The immune checkpoint B7-H3 (CD276) regulates adipocyte progenitor metabolism and obesity development. SCIENCE ADVANCES 2022; 8:eabm7012. [PMID: 35476450 PMCID: PMC9045715 DOI: 10.1126/sciadv.abm7012] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 03/11/2022] [Indexed: 05/09/2023]
Abstract
The immune checkpoint B7-H3 (CD276) is a member of the B7 family that has been studied in the tumor microenvironment and immunotherapy, but its potential role in metabolism remains largely unknown. Here, we show that B7-H3 is highly expressed in mouse and human adipose tissue at steady state, with the highest levels in adipocyte progenitor cells. B7-H3 is rapidly down-regulated upon the initiation of adipocyte differentiation. Combined RNA sequencing and metabolic studies reveal that B7-H3 stimulates glycolytic and mitochondrial activity of adipocyte progenitors. Loss of B7-H3 in progenitors results in impaired oxidative metabolism program and increased lipid accumulation in derived adipocytes. Consistent with these observations, mice knocked out for B7-H3 develop spontaneous obesity, metabolic dysfunction, and adipose tissue inflammation. Our results reveal an unexpected metabolic role for B7-H3 in adipose tissue and open potential new avenues for the treatment of metabolic diseases by targeting the B7-H3 pathway.
Collapse
Affiliation(s)
- Elodie Picarda
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Phillip M. Galbo
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Haihong Zong
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Meenu Rohini Rajan
- Institute of Medicine, Department of Molecular and Clinical Medicine, The Wallenberg Laboratory and Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Ville Wallenius
- Department of Gastrosurgical Research and Education, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Departments of Neurology and Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Emma Börgeson
- Institute of Medicine, Department of Molecular and Clinical Medicine, The Wallenberg Laboratory and Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Physiology, Region Vaestra Goetaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Rajat Singh
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Jeffrey Pessin
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Xingxing Zang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
44
|
Engineering T cells to survive and thrive in the hostile tumor microenvironment. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2022. [DOI: 10.1016/j.cobme.2021.100360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
45
|
Fang W, Shi C, Wang Y, Song J, Zhang L. microRNA-128-3p inhibits CD4+ regulatory T cells enrichment by targeting interleukin 16 in gastric cancer. Bioengineered 2021; 13:1025-1038. [PMID: 34968167 PMCID: PMC8805824 DOI: 10.1080/21655979.2021.2017566] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Previous studies have confirmed that microRNA (miR)-128-3p is expressed at low levels in gastric cancer (GC), and low miR-128-3p expression promotes the growth of GC cells. However, whether the dysregulation of miR-128-3p expression affects tumor-infiltrating lymphocytes (TILs) and leads to immune escape remains unclear. In the present study, predictive bioinformatics approaches showed that miR-128-3p expression was inversely correlated with tumor-infiltrating lymphocyte enrichment. When CD4 + T cells and regulatory T cells (Tregs) were enriched, lower miR-128-3p expression was associated with worse overall survival. However, when numbers of CD8 + T cells were decreased, the upregulation of miR-128-3p expression had a favorable effect on GC prognosis. Dual-luciferase reporter assays and cell biology experiments revealed that interleukin 16 (IL16) was the target of miR-128-3p and was negatively regulated by miR-128-3p. In addition, GC cells were cocultured with T lymphocytes, and the subsequent flow cytometric analysis showed that overexpression of miR-128-3p in tumor cells decreased the percentages of CD4+ CD25+ Foxp3+ Tregs by downregulating IL16 expression in GC, whereas miR-128-3p inhibition had the opposite effect. Moreover, the recombinant IL16 reversed the effects of miR-128-3p overexpression, and a competitive antibody against the IL16 receptor CD4 also reversed the effects of miR-128-3p knockdown. These studies identified the mechanism by which the miR-128-3p/IL16 axis promotes the infiltration of CD4+ Tregs in GC, and this mechanism will be a promising therapeutic target in GC immunotherapy.
Collapse
Affiliation(s)
- Weidan Fang
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Chao Shi
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yiting Wang
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jianping Song
- Department of Oncology, Nanchang First Hospital, Nanchang, Jiangxi, China
| | - Ling Zhang
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
46
|
Papaioannou E, González-Molina MDP, Prieto-Muñoz AM, Gámez-Reche L, González-Martín A. Regulation of Adaptive Tumor Immunity by Non-Coding RNAs. Cancers (Basel) 2021; 13:cancers13225651. [PMID: 34830805 PMCID: PMC8616131 DOI: 10.3390/cancers13225651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer immunology research has mainly focused on the role of protein-coding genes in regulating immune responses to tumors. However, despite more than 70% of the human genome is transcribed, less than 2% encodes proteins. Many non-coding RNAs (ncRNAs), including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), have been identified as critical regulators of immune cell development and function, suggesting that they might play important roles in orchestrating immune responses against tumors. In this review, we summarize the scientific advances on the role of ncRNAs in regulating adaptive tumor immunity, and discuss their potential therapeutic value in the context of cancer immunotherapy.
Collapse
|
47
|
Kiritsy MC, McCann K, Mott D, Holland SM, Behar SM, Sassetti CM, Olive AJ. Mitochondrial respiration contributes to the interferon gamma response in antigen-presenting cells. eLife 2021; 10:e65109. [PMID: 34726598 PMCID: PMC8598164 DOI: 10.7554/elife.65109] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 10/28/2021] [Indexed: 12/22/2022] Open
Abstract
The immunological synapse allows antigen-presenting cells (APCs) to convey a wide array of functionally distinct signals to T cells, which ultimately shape the immune response. The relative effect of stimulatory and inhibitory signals is influenced by the activation state of the APC, which is determined by an interplay between signal transduction and metabolic pathways. While pathways downstream of toll-like receptors rely on glycolytic metabolism for the proper expression of inflammatory mediators, little is known about the metabolic dependencies of other critical signals such as interferon gamma (IFNγ). Using CRISPR-Cas9, we performed a series of genome-wide knockout screens in murine macrophages to identify the regulators of IFNγ-inducible T cell stimulatory or inhibitory proteins MHCII, CD40, and PD-L1. Our multiscreen approach enabled us to identify novel pathways that preferentially control functionally distinct proteins. Further integration of these screening data implicated complex I of the mitochondrial respiratory chain in the expression of all three markers, and by extension the IFNγ signaling pathway. We report that the IFNγ response requires mitochondrial respiration, and APCs are unable to activate T cells upon genetic or chemical inhibition of complex I. These findings suggest a dichotomous metabolic dependency between IFNγ and toll-like receptor signaling, implicating mitochondrial function as a fulcrum of innate immunity.
Collapse
Affiliation(s)
- Michael C Kiritsy
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Katelyn McCann
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical SchoolWorcesterUnited States
- Immunopathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesdaUnited States
| | - Daniel Mott
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Steven M Holland
- Immunopathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesdaUnited States
| | - Samuel M Behar
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Christopher M Sassetti
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Andrew J Olive
- Department of Microbiology & Molecular Genetics, College of Osteopathic Medicine, Michigan State UniversityEast LansingUnited States
| |
Collapse
|
48
|
Voskamp MJ, Li S, van Daalen KR, Crnko S, ten Broeke T, Bovenschen N. Immunotherapy in Medulloblastoma: Current State of Research, Challenges, and Future Perspectives. Cancers (Basel) 2021; 13:5387. [PMID: 34771550 PMCID: PMC8582409 DOI: 10.3390/cancers13215387] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/16/2021] [Accepted: 10/22/2021] [Indexed: 12/17/2022] Open
Abstract
Medulloblastoma (MB), a primary tumor of the central nervous system, is among the most prevalent pediatric neoplasms. The median age of diagnosis is six. Conventional therapies include surgical resection of the tumor with subsequent radiation and chemotherapy. However, these therapies often cause severe brain damage, and still, approximately 75% of pediatric patients relapse within a few years. Because the conventional therapies cause such severe damage, especially in the pediatric developing brain, there is an urgent need for better treatment strategies such as immunotherapy, which over the years has gained accumulating interest. Cancer immunotherapy aims to enhance the body's own immune response to tumors and is already widely used in the clinic, e.g., in the treatment of melanoma and lung cancer. However, little is known about the possible application of immunotherapy in brain cancer. In this review, we will provide an overview of the current consensus on MB classification and the state of in vitro, in vivo, and clinical research concerning immunotherapy in MB. Based on existing evidence, we will especially focus on immune checkpoint inhibition and CAR T-cell therapy. Additionally, we will discuss challenges associated with these immunotherapies and relevant strategies to overcome those.
Collapse
Affiliation(s)
- Marije J. Voskamp
- Department of Pathology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (M.J.V.); (S.L.); (S.C.); (T.t.B.)
| | - Shuang Li
- Department of Pathology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (M.J.V.); (S.L.); (S.C.); (T.t.B.)
| | - Kim R. van Daalen
- Cardiovascular Epidemiology Unit, Department of Public Health & Primary Care, University of Cambridge, Cambridge CB1 8RN, UK;
| | - Sandra Crnko
- Department of Pathology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (M.J.V.); (S.L.); (S.C.); (T.t.B.)
| | - Toine ten Broeke
- Department of Pathology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (M.J.V.); (S.L.); (S.C.); (T.t.B.)
| | - Niels Bovenschen
- Department of Pathology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (M.J.V.); (S.L.); (S.C.); (T.t.B.)
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
49
|
Calì B, Agnellini AHR, Cioccarelli C, Sanchez-Rodriguez R, Predonzani A, Toffolo GI, Viola A, Bronte V, Arrigoni G, Zonta F, Albertoni L, Mescoli C, Marigo I, Molon B. GM-CSF Nitration Is a New Driver of Myeloid Suppressor Cell Activity in Tumors. Front Immunol 2021; 12:718098. [PMID: 34675917 PMCID: PMC8523982 DOI: 10.3389/fimmu.2021.718098] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/16/2021] [Indexed: 11/13/2022] Open
Abstract
Reactive oxygen species, including RNS, contribute to the control of multiple immune cell functions within the tumor microenvironment (TME). Tumor-infiltrating myeloid cells (TIMs) represent the archetype of tolerogenic cells that actively contribute to dismantle effective immunity against cancer. TIMs inhibit T cell functions and promote tumor progression by several mechanisms including the amplification of the oxidative/nitrosative stress within the TME. In tumors, TIM expansion and differentiation is regulated by the granulocyte-macrophage colony-stimulating factor (GM-CSF), which is produced by cancer and immune cells. Nevertheless, the role of GM-CSF in tumors has not yet been fully elucidated. In this study, we show that GM-CSF activity is significantly affected by RNS-triggered post-translational modifications. The nitration of a single tryptophan residue in the sequence of GM-CSF nourishes the expansion of highly immunosuppressive myeloid subsets in tumor-bearing hosts. Importantly, tumors from colorectal cancer patients express higher levels of nitrated tryptophan compared to non-neoplastic tissues. Collectively, our data identify a novel and selective target that can be exploited to remodel the TME and foster protective immunity against cancer.
Collapse
Affiliation(s)
- Bianca Calì
- Department of Biomedical Science, University of Padua, Padua, Italy
| | - Andrielly H R Agnellini
- Department of Biomedical Science, University of Padua, Padua, Italy.,Oncology and Immunology Section, Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Chiara Cioccarelli
- Department of Biomedical Science, University of Padua, Padua, Italy.,Fondazione Istituto di Ricerca Pediatrica - Città della Speranza, Padova, Italy
| | - Ricardo Sanchez-Rodriguez
- Department of Biomedical Science, University of Padua, Padua, Italy.,Fondazione Istituto di Ricerca Pediatrica - Città della Speranza, Padova, Italy
| | | | | | - Antonella Viola
- Department of Biomedical Science, University of Padua, Padua, Italy.,Fondazione Istituto di Ricerca Pediatrica - Città della Speranza, Padova, Italy
| | - Vincenzo Bronte
- Verona University Hospital, Department of Medicine, Verona, Italy
| | - Giorgio Arrigoni
- Department of Biomedical Science, University of Padua, Padua, Italy
| | - Francesco Zonta
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Laura Albertoni
- Department of Medicine, Department of Medicine (DIMED), Surgical Pathology and Cytopathology Unit, University of Padua, Padua, Italy
| | - Claudia Mescoli
- Department of Medicine, Department of Medicine (DIMED), Surgical Pathology and Cytopathology Unit, University of Padua, Padua, Italy
| | - Ilaria Marigo
- Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - Barbara Molon
- Department of Biomedical Science, University of Padua, Padua, Italy.,Fondazione Istituto di Ricerca Pediatrica - Città della Speranza, Padova, Italy
| |
Collapse
|
50
|
Duan Z, Ho M. Targeting the cancer neoantigens p53 and KRAS with TCR mimic antibodies. Antib Ther 2021; 4:208-211. [PMID: 34661061 DOI: 10.1093/abt/tbab021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/08/2021] [Accepted: 09/14/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Zhijian Duan
- Antibody Engineering Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mitchell Ho
- Antibody Engineering Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.,Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|