1
|
Cheng X, Wan J, Sun D, Zhan Y, Yu J, Li Y, Xiong Y, Liu W. Proteomic Insights into the Effects of Jianweixiaoshi Tablets on Functional Dyspepsia with Spleen Deficiency in Rats. Drug Des Devel Ther 2024; 18:5129-5148. [PMID: 39554757 PMCID: PMC11568854 DOI: 10.2147/dddt.s477034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 11/05/2024] [Indexed: 11/19/2024] Open
Abstract
Background Jianweixiaoshi tablets (JWXS) is widely used in traditional Chinese medicine for treating functional dyspepsia with spleen deficiency (SD-FD) in China. However, the molecular mechanisms underlying the therapeutic effects of JWXS remain incompletely understood. Methods Functional dyspepsia was induced in rats with spleen deficiency by iodoacetamide in combination with the modified multiple platform method. The SD-FD rats were administered JWXS at both low and high doses, as well as domperidone. We conducted a comprehensive evaluation of the treatment effects of JWXS, including body weight, gastrointestinal motility, immune organ index, biochemical analysis, gastrointestinal hormones, and hematological studies. Quantitative proteomic analysis based on data-independent acquisition (DIA) was used to determine the changes in protein profiles of gastric and duodenal tissues in SD-FD rats and JWXS intervention rats. Results The results showed that JWXS effectively alleviated gastrointestinal motility disorders in SD-FD rats, as indicated by accelerated gastric emptying and intestinal propulsion, increased levels of gastrin, motilin, and ghrelin, and reduced levels of cholecystokinin-octapeptide, vasoactive intestinal peptide, and somatostatin. Additionally, JWXS increased the spleen and thymus index, increased %lymphocyte in blood, reduced white blood cell count and %neutrophil, and improved immune function. Through quantitative proteomic analysis of gastric tissues, we identified 333 differentially expressed proteins in the JWXS treatment group and the model group. Notably, the mechanism by which JWXS accelerated gastric emptying may be related to PLC-γ and SERCA2 in the calcium signaling pathway. Furthermore, JWXS treatment altered the expression of 732 proteins in rat duodenal samples. The differentially expressed proteins were enriched in immune-related functions and pathways, including antigen processing and presentation, as well as the intestinal immune network for IgA production. Conclusion In conclusion, JWXS exhibits a multi-faceted impact on various pathways, demonstrating its efficacy in treating SD-FD. These findings provide a foundation for the clinical application of JWXS in managing SD-FD.
Collapse
Affiliation(s)
- Xiaoying Cheng
- State Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Nanchang, 330096, People’s Republic of China
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., Nanchang, 330103, People’s Republic of China
| | - Jianhua Wan
- State Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Nanchang, 330096, People’s Republic of China
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., Nanchang, 330103, People’s Republic of China
| | - Denglong Sun
- State Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Nanchang, 330096, People’s Republic of China
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., Nanchang, 330103, People’s Republic of China
| | - Yang Zhan
- State Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Nanchang, 330096, People’s Republic of China
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., Nanchang, 330103, People’s Republic of China
| | - Jingting Yu
- State Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Nanchang, 330096, People’s Republic of China
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., Nanchang, 330103, People’s Republic of China
| | - Yingmeng Li
- State Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Nanchang, 330096, People’s Republic of China
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., Nanchang, 330103, People’s Republic of China
| | - Yanxia Xiong
- State Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Nanchang, 330096, People’s Republic of China
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., Nanchang, 330103, People’s Republic of China
| | - Wenjun Liu
- State Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Nanchang, 330096, People’s Republic of China
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., Nanchang, 330103, People’s Republic of China
| |
Collapse
|
2
|
Carden H, Harper KL, Mottram TJ, Manners O, Allott KL, Dallas ML, Hughes DJ, Lippiat JD, Mankouri J, Whitehouse A. K v1.3-induced hyperpolarization is required for efficient Kaposi's sarcoma-associated herpesvirus lytic replication. Sci Signal 2024; 17:eadg4124. [PMID: 39012937 DOI: 10.1126/scisignal.adg4124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 06/25/2024] [Indexed: 07/18/2024]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is an oncogenic herpesvirus that is linked directly to the development of Kaposi's sarcoma. KSHV establishes a latent infection in B cells, which can be reactivated to initiate lytic replication, producing infectious virions. Using pharmacological and genetic silencing approaches, we showed that the voltage-gated K+ channel Kv1.3 in B cells enhanced KSHV lytic replication. The KSHV replication and transcription activator (RTA) protein increased the abundance of Kv1.3 and led to enhanced K+ channel activity and hyperpolarization of the B cell membrane. Enhanced Kv1.3 activity promoted intracellular Ca2+ influx, leading to the Ca2+-driven nuclear localization of KSHV RTA and host nuclear factor of activated T cells (NFAT) proteins and subsequently increased the expression of NFAT1 target genes. KSHV lytic replication and infectious virion production were inhibited by Kv1.3 blockers or silencing. These findings highlight Kv1.3 as a druggable host factor that is key to the successful completion of KSHV lytic replication.
Collapse
Affiliation(s)
- Holli Carden
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, LS2 9JT Leeds, UK
| | - Katherine L Harper
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, LS2 9JT Leeds, UK
| | - Timothy J Mottram
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, LS2 9JT Leeds, UK
| | - Oliver Manners
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, LS2 9JT Leeds, UK
| | - Katie L Allott
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, LS2 9JT Leeds, UK
| | - Mark L Dallas
- School of Pharmacy, University of Reading, RG6 6AP Reading, UK
| | - David J Hughes
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, North Haugh, KY16 9ST St Andrews, UK
| | - Jonathan D Lippiat
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, LS2 9JT Leeds, UK
| | - Jamel Mankouri
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, LS2 9JT Leeds, UK
| | - Adrian Whitehouse
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, LS2 9JT Leeds, UK
- Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa
| |
Collapse
|
3
|
Szabó K, Makkai G, Konkoly J, Kormos V, Gaszner B, Berki T, Pintér E. TRPA1 Covalent Ligand JT010 Modifies T Lymphocyte Activation. Biomolecules 2024; 14:632. [PMID: 38927036 PMCID: PMC11202300 DOI: 10.3390/biom14060632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/25/2024] [Accepted: 05/26/2024] [Indexed: 06/28/2024] Open
Abstract
Transient Receptor Potential Ankyrin 1 (TRPA1) is a non-selective cation channel involved in sensitivity to a plethora of irritating agents and endogenous mediators of oxidative stress. TRPA1 influences neuroinflammation and macrophage and lymphocyte functions, but its role is controversial in immune cells. We reported earlier a detectable, but orders-of-magnitude-lower level of Trpa1 mRNA in monocytes and lymphocytes than in sensory neurons by qRT-PCR analyses of cells from lymphoid organs of mice. Our present goals were to (a) further elucidate the expression of Trpa1 mRNA in immune cells by RNAscope in situ hybridization (ISH) and (b) test the role of TRPA1 in lymphocyte activation. RNAscope ISH confirmed that Trpa1 transcripts were detectable in CD14+ and CD4+ cells from the peritoneal cavity of mice. A selective TRPA1 agonist JT010 elevated Ca2+ levels in these cells only at high concentrations. However, a concentration-dependent inhibitory effect of JT010 was observed on T-cell receptor (TcR)-induced Ca2+ signals in CD4+ T lymphocytes, while JT010 neither modified B cell activation nor ionomycin-stimulated Ca2+ level. Based on our present and past findings, TRPA1 activation negatively modulates T lymphocyte activation, but it does not appear to be a key regulator of TcR-stimulated calcium signaling.
Collapse
Affiliation(s)
- Katalin Szabó
- Institute of Pharmacology and Pharmacotherapy, University of Pécs Medical School, H-7624 Pécs, Hungary (E.P.)
| | - Géza Makkai
- Nano-Bio-Imaging Core Facility, University of Pécs Medical School, H-7624 Pécs, Hungary
| | - János Konkoly
- Institute of Pharmacology and Pharmacotherapy, University of Pécs Medical School, H-7624 Pécs, Hungary (E.P.)
| | - Viktória Kormos
- Institute of Pharmacology and Pharmacotherapy, University of Pécs Medical School, H-7624 Pécs, Hungary (E.P.)
| | - Balázs Gaszner
- Research Group for Mood Disorders, Department of Anatomy, University of Pécs Medical School, H-7624 Pécs, Hungary
| | - Tímea Berki
- Department of Immunology and Biotechnology, University of Pécs Clinical Center, H-7624 Pécs, Hungary
| | - Erika Pintér
- Institute of Pharmacology and Pharmacotherapy, University of Pécs Medical School, H-7624 Pécs, Hungary (E.P.)
| |
Collapse
|
4
|
Chen Y, Markov N, Gigon L, Hosseini A, Yousefi S, Stojkov D, Simon HU. The BK Channel Limits the Pro-Inflammatory Activity of Macrophages. Cells 2024; 13:322. [PMID: 38391935 PMCID: PMC10886595 DOI: 10.3390/cells13040322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 01/31/2024] [Accepted: 02/07/2024] [Indexed: 02/24/2024] Open
Abstract
Macrophages play a crucial role in the innate immune response, serving as key effector cells in the defense against pathogens. Although the role of the large-conductance voltage and calcium-activated potassium channel, also known as the KCa1.1 or BK channel, in regulating neurotransmitter release and smooth muscle contraction is well known, its potential involvement in immune regulation remains unclear. We employed BK-knockout macrophages and noted that the absence of a BK channel promotes the polarization of macrophages towards a pro-inflammatory phenotype known as M1 macrophages. Specifically, the absence of the BK channel resulted in a significant increase in the secretion of the pro-inflammatory cytokine IL-6 and enhanced the activity of extracellular signal-regulated kinases 1 and 2 (Erk1/2 kinases), Ca2+/calmodulin-dependent protein kinase II (CaMKII), and the transcription factor ATF-1 within M1 macrophages. Additionally, the lack of the BK channel promoted the activation of the AIM2 inflammasome without affecting the activation of the NLRC4 and NLRP3 inflammasomes. To further investigate the role of the BK channel in regulating AIM2 inflammasome activation, we utilized BK channel inhibitors, such as paxilline and iberiotoxin, along with the BK channel activator NS-11021. Pharmacological inactivation of the BK channel increased, and its stimulation inhibited IL-1β production following AIM2 inflammasome activation in wild-type macrophages. Moreover, wild-type macrophages displayed increased calcium influx when activated with the AIM2 inflammasome, whereas BK-knockout macrophages did not due to the impaired extracellular calcium influx upon activation. Furthermore, under conditions of a calcium-free medium, IL-1β production following AIM2 inflammasome activation was increased in both wild-type and BK-knockout macrophages. This suggests that the BK channel is required for the influx of extracellular calcium in macrophages, thus limiting AIM2 inflammasome activation. In summary, our study reveals a regulatory role of the BK channel in macrophages under inflammatory conditions.
Collapse
Affiliation(s)
- Yihe Chen
- Institute of Pharmacology, University of Bern, 3010 Bern, Switzerland
| | - Nikita Markov
- Institute of Pharmacology, University of Bern, 3010 Bern, Switzerland
| | - Lea Gigon
- Institute of Pharmacology, University of Bern, 3010 Bern, Switzerland
| | - Aref Hosseini
- Institute of Pharmacology, University of Bern, 3010 Bern, Switzerland
| | - Shida Yousefi
- Institute of Pharmacology, University of Bern, 3010 Bern, Switzerland
| | - Darko Stojkov
- Institute of Pharmacology, University of Bern, 3010 Bern, Switzerland
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, 3010 Bern, Switzerland
- Institute of Biochemistry, Brandenburg Medical School, 16816 Neuruppin, Germany
| |
Collapse
|
5
|
Du X, Zhao D, Wang Y, Sun Z, Yu Q, Jiang H, Wang L. Low Serum Calcium Concentration in Patients With Systemic Lupus Erythematosus Accompanied by the Enhanced Peripheral Cellular Immunity. Front Immunol 2022; 13:901854. [PMID: 35757710 PMCID: PMC9226677 DOI: 10.3389/fimmu.2022.901854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/16/2022] [Indexed: 11/21/2022] Open
Abstract
Objective This study aims to explore the relationship between serum calcium concentration and peripheral lymphocyte status/Th1/Th2 cytokine levels in SLE patients, and the effect of glucocorticoids (GCs) on the calcium concentration and immune cell activation. Methods The peripheral blood TBNK lymphocyte subsets and Th1/Th2 cytokines in SLE patients with low or normal serum calcium concentration and healthy people were analyzed and compared retrospectively. Peripheral white blood cells (PWBCs) from SLE patients or healthy people were stimulated with PMA or GCs in vitro to test their extracellular calcium concentration and CD8+ T cell activation. Results The percentages of CD8+ T in SLE patients increased, but the increase of the number of CD8+ T cells only occurred in the SLE patients with low serum calcium concentration, and the number of CD45hiCD8+ T cells also increased, suggesting that SLE patients with hypocalcemia tend to possess an enhanced cellular immunity. The results of Th1/Th2 cytokines in peripheral blood showed that the levels of serum IL-2, IL-10, IL-6 and IFN-γ in SLE patients with hypocalcemia were significantly increased. Although the serum levels of TNF-α in SLE patients were –similar to that in healthy people, it was significantly higher than that in SLE patients with normal serum calcium. When comparing the results of Th1/Th2 cytokines in two times of one patient, the serum levels of TNF-α in SLE patients increased while serum calcium levels decreased. The in vitro experiments showed that the decrease of serum calcium concentration in SLE patients was affected by the immune cell activation and the application of GCs, but GCs did not promote the immune cell activation. Conclusions Low serum calcium may make SLE patients in an enhanced cellular immune status and GCs aggravates the decrease of serum calcium levels but has no role on the immune cell activation. It suggests that hypocalcemia possibly promotes the disease activity of SLE patient, which should be paid attention to clinically.
Collapse
Affiliation(s)
- Xue Du
- Institute of Pediatrics, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Di Zhao
- Department of Health Examination Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Ying Wang
- Institute of Pediatrics, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Zhengyi Sun
- Institute of Pediatrics, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Qiuyang Yu
- Institute of Pediatrics, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Hongyu Jiang
- Department of Health Examination Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Liying Wang
- Institute of Pediatrics, The First Hospital of Jilin University, Jilin University, Changchun, China.,Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| |
Collapse
|
6
|
Feher A, Pócsi M, Papp F, Szanto TG, Csoti A, Fejes Z, Nagy B, Nemes B, Varga Z. Functional Voltage-Gated Sodium Channels Are Present in the Human B Cell Membrane. Cells 2022; 11:1225. [PMID: 35406789 PMCID: PMC8998058 DOI: 10.3390/cells11071225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/31/2022] [Accepted: 04/03/2022] [Indexed: 02/04/2023] Open
Abstract
B cells express various ion channels, but the presence of voltage-gated sodium (NaV) channels has not been confirmed in the plasma membrane yet. In this study, we have identified several NaV channels, which are expressed in the human B cell membrane, by electrophysiological and molecular biology methods. The sensitivity of the detected sodium current to tetrodotoxin was between the values published for TTX-sensitive and TTX-insensitive channels, which suggests the co-existence of multiple NaV1 subtypes in the B cell membrane. This was confirmed by RT-qPCR results, which showed high expression of TTX-sensitive channels along with the lower expression of TTX-insensitive NaV1 channels. The biophysical characteristics of the currents also supported the expression of multiple NaV channels. In addition, we investigated the potential functional role of NaV channels by membrane potential measurements. Removal of Na+ from the extracellular solution caused a reversible hyperpolarization, supporting the role of NaV channels in shaping and maintaining the resting membrane potential. As this study was mainly limited to electrophysiological properties, we cannot exclude the possible non-canonical functions of these channels. This work concludes that the presence of voltage-gated sodium channels in the plasma membrane of human B cells should be recognized and accounted for in the future.
Collapse
Affiliation(s)
- Adam Feher
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (A.F.); (F.P.); (T.G.S.); (A.C.)
| | - Marianna Pócsi
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (M.P.); (Z.F.); (B.N.J.)
| | - Ferenc Papp
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (A.F.); (F.P.); (T.G.S.); (A.C.)
| | - Tibor G. Szanto
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (A.F.); (F.P.); (T.G.S.); (A.C.)
| | - Agota Csoti
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (A.F.); (F.P.); (T.G.S.); (A.C.)
| | - Zsolt Fejes
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (M.P.); (Z.F.); (B.N.J.)
| | - Béla Nagy
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (M.P.); (Z.F.); (B.N.J.)
| | - Balázs Nemes
- Department of Organ Transplantation, Faculty of Medicine, Institute of Surgery, University of Debrecen, H-4032 Debrecen, Hungary;
| | - Zoltan Varga
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (A.F.); (F.P.); (T.G.S.); (A.C.)
| |
Collapse
|
7
|
Bohmwald K, Gálvez NMS, Andrade CA, Mora VP, Muñoz JT, González PA, Riedel CA, Kalergis AM. Modulation of Adaptive Immunity and Viral Infections by Ion Channels. Front Physiol 2021; 12:736681. [PMID: 34690811 PMCID: PMC8531258 DOI: 10.3389/fphys.2021.736681] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/10/2021] [Indexed: 12/15/2022] Open
Abstract
Most cellular functions require of ion homeostasis and ion movement. Among others, ion channels play a crucial role in controlling the homeostasis of anions and cations concentration between the extracellular and intracellular compartments. Calcium (Ca2+) is one of the most relevant ions involved in regulating critical functions of immune cells, allowing the appropriate development of immune cell responses against pathogens and tumor cells. Due to the importance of Ca2+ in inducing the immune response, some viruses have evolved mechanisms to modulate intracellular Ca2+ concentrations and the mobilization of this cation through Ca2+ channels to increase their infectivity and to evade the immune system using different mechanisms. For instance, some viral infections require the influx of Ca2+ through ionic channels as a first step to enter the cell, as well as their replication and budding. Moreover, through the expression of viral proteins on the surface of infected cells, Ca2+ channels function can be altered, enhancing the pathogen evasion of the adaptive immune response. In this article, we review those ion channels and ion transporters that are essential for the function of immune cells. Specifically, cation channels and Ca2+ channels in the context of viral infections and their contribution to the modulation of adaptive immune responses.
Collapse
Affiliation(s)
- Karen Bohmwald
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nicolás M. S. Gálvez
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Catalina A. Andrade
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Valentina P. Mora
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - José T. Muñoz
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo A. González
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia A. Riedel
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Millennium Institute on Immunology and Immunotherapy, Universidad Andres Bello, Santiago, Chile
| | - Alexis M. Kalergis
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
8
|
Lu A, Shi Y, Liu Y, Lin J, Zhang H, Guo Y, Li L, Lin Z, Wu J, Ji D, Wang C. Integrative analyses identified ion channel genes GJB2 and SCNN1B as prognostic biomarkers and therapeutic targets for lung adenocarcinoma. Lung Cancer 2021; 158:29-39. [PMID: 34111567 DOI: 10.1016/j.lungcan.2021.06.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/01/2021] [Accepted: 06/01/2021] [Indexed: 01/08/2023]
Abstract
OBJECTIVES Abnormal expressions of ion channel genes are associated with the occurrence and progression of tumors. At present, their roles in the carcinogenesis of lung adenocarcinoma (LUAD) are not clear. MATERIALS AND METHODS Differentially expressed (DE) genes in the tumorigenesis were identified from 328 ion channel genes in 102 LUAD and paired adjacent normal samples. Similar analyses were performed between 177 metastatic and 286 non-metastatic LUAD samples to identify DE ion channel genes in the progression of LUAD. Independent prognostic factors selected from DE ion channel genes were used to construct a prognostic model. Correlation analysis and drugs-drug targets interaction network were used to screen the potential drugs for LUAD patients stratified by GJB2 or SCNN1B. RESULTS Six ion channel genes (GJB2, CACNA1D, KCNQ1, SCNN1B, SCNN1G and TRPV6) were continuous differentially expressed in the tumorigenesis and progression of LUAD. The survival analysis in four datasets with 522 LUAD samples showed that GJB2 and SCNN1B were independent prognostic biomarkers. Patients with overexpression of GJB2 or underexpression of SCNN1B had shorter overall survival. Moreover, multi-omics analysis showed that hypomethylation of GJB2 and hypermethylation of SCNN1B in the promoter region may contribute to their aberrant expressions. KEGG enrichment analysis showed that the overexpressed genes in the group with high GJB2 or low SCNN1B were enriched in cancer-related pathways, while the underexpressed genes were enriched in metabolism-related pathways. The prognostic model with GJB2 and SCNN1B can stratify all LUAD patients into two groups with significantly different survival. Correlation analysis and drugs-drug targets interaction network suggested that GJB2 and SCNN1B expression might have indicative therapeutic values for LUAD patients. Finally, pan-cancer analysis in other eight cancer types showed that GJB2 and SCNN1B might be also potential prognostic factors for KIRC. CONCLUSIONS GJB2 and SCNN1B were identified as prognostic biomarkers and therapeutic targets for LUAD.
Collapse
Affiliation(s)
- Ao Lu
- Department of Gastroenterology, the First Affiliated Hospital of Fujian Medical University, Fuzhou, 350122, China; Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China.
| | - Yidan Shi
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China
| | - Yijuan Liu
- Department of Gastroenterology, the First Affiliated Hospital of Fujian Medical University, Fuzhou, 350122, China
| | - Jiahao Lin
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China
| | - Huarong Zhang
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China
| | - Yating Guo
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China
| | - Lisheng Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Zeman Lin
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China
| | - Junling Wu
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China
| | - Daihan Ji
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China
| | - Chengdang Wang
- Department of Gastroenterology, the First Affiliated Hospital of Fujian Medical University, Fuzhou, 350122, China.
| |
Collapse
|
9
|
Choi SW, Woo J, Park KS, Ko J, Jeon YK, Choi SW, Yoo HY, Kho I, Kim TJ, Kim SJ. Higher expression of KCNK10 (TREK-2) K + channels and their functional upregulation by lipopolysaccharide treatment in mouse peritoneal B1a cells. Pflugers Arch 2021; 473:659-671. [PMID: 33586023 DOI: 10.1007/s00424-021-02526-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 01/10/2021] [Accepted: 01/28/2021] [Indexed: 11/24/2022]
Abstract
Innate-like CD5+ B1a cells localized in serous cavities are activated by innate stimuli, such as lipopolysaccharide (LPS), leading to T cell-independent antibody responses. Although ion channels play crucial roles in the homeostasis and activation of immune cells, the electrophysiological properties of B1a cells have not been investigated to date. Previously, in the mouse B cell lymphoma cells, we found that the voltage-independent two-pore-domain potassium (K2P) channels generate a negative membrane potential and drive Ca2+ influx. Here, we newly compared the expression and activities of K2P channels in mouse splenic follicular B (FoB), marginal zone B (MZB), and peritoneal B1a cells. Next-generation sequencing analysis showed higher levels of transcripts for TREK-2 and TWIK-2 in B1a cells than those in FoB or MZB cells. Electrophysiological analysis, using patch clamp technique, revealed higher activity of TREK-2 with the characteristic large unitary conductance (~ 250 pS) in B1a than that in FoB or MZB cells. TREK-2 activity was further increased by LPS treatment (>2 h), which was more prominent in B1a than that in MZB or FoB cells. The cytosolic Ca2+ concentration of B cells was decreased by high-K+-induced depolarization (ΔRKCl (%)), suggesting the basal Ca2+ influx to be driven by negative membrane potential. The LPS treatment significantly increased the ΔRKCl (%) in B1a, though not in FoB and MZB cells. Our study was the first to compare the K2P channels in mouse primary B cell subsets, elucidating the functional upregulation of TREK-2 and augmentation of Ca2+ influx by the stimulation of Toll-like receptor 4 in B1a cells.
Collapse
Affiliation(s)
- Si Won Choi
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Joohan Woo
- Department of Physiology and Ion Channel Disease Research Center, Dongguk University College of Medicine, Seoul, Republic of Korea
| | - Kyung Sun Park
- Wide River Institute of Immunology, Seoul National University College of Medicine, Hongcheon, Republic of Korea
| | - Juyeon Ko
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Young Keul Jeon
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seong Woo Choi
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Physiology and Ion Channel Disease Research Center, Dongguk University College of Medicine, Seoul, Republic of Korea.,Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hae Young Yoo
- Department of Nursing, Chung-Ang University, Seoul, Republic of Korea
| | - Inseong Kho
- Department of Immunology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Tae Jin Kim
- Department of Immunology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Sung Joon Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea. .,Wide River Institute of Immunology, Seoul National University College of Medicine, Hongcheon, Republic of Korea. .,Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
10
|
Berditchevski F, Fennell E, Murray PG. Calcium-dependent signalling in B-cell lymphomas. Oncogene 2021; 40:6321-6328. [PMID: 34625709 PMCID: PMC8585665 DOI: 10.1038/s41388-021-02025-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/24/2021] [Accepted: 09/15/2021] [Indexed: 11/20/2022]
Abstract
Induced waves of calcium fluxes initiate multiple signalling pathways that play an important role in the differentiation and maturation of B-cells. Finely tuned transient Ca+2 fluxes from the endoplasmic reticulum in response to B-cell receptor (BCR) or chemokine receptor activation are followed by more sustained calcium influxes from the extracellular environment and contribute to the mechanisms responsible for the proliferation of B-cells, their migration within lymphoid organs and their differentiation. Dysregulation of these well-balanced mechanisms in B-cell lymphomas results in uncontrolled cell proliferation and resistance to apoptosis. Consequently, several cytotoxic drugs (and anti-proliferative compounds) used in standard chemotherapy regimens for the treatment of people with lymphoma target calcium-dependent pathways. Furthermore, ~10% of lymphoma associated mutations are found in genes with functions in calcium-dependent signalling, including those affecting B-cell receptor signalling pathways. In this review, we provide an overview of the Ca2+-dependent signalling network and outline the contribution of its key components to B cell lymphomagenesis. We also consider how the oncogenic Epstein-Barr virus, which is causally linked to the pathogenesis of a number of B-cell lymphomas, can modify Ca2+-dependent signalling.
Collapse
Affiliation(s)
- Fedor Berditchevski
- grid.6572.60000 0004 1936 7486Institute of Cancer and Genomic Sciences, The University of Birmingham, Edgbaston, Birmingham B15 2TT UK
| | - Eanna Fennell
- grid.10049.3c0000 0004 1936 9692Health Research Institute, University of Limerick, Castletroy, Limerick, V94 T9PX Ireland
| | - Paul G. Murray
- grid.10049.3c0000 0004 1936 9692Health Research Institute, University of Limerick, Castletroy, Limerick, V94 T9PX Ireland ,grid.6572.60000 0004 1936 7486Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TT UK
| |
Collapse
|
11
|
Noble M, Lin QT, Sirko C, Houpt JA, Novello MJ, Stathopulos PB. Structural Mechanisms of Store-Operated and Mitochondrial Calcium Regulation: Initiation Points for Drug Discovery. Int J Mol Sci 2020; 21:E3642. [PMID: 32455637 PMCID: PMC7279490 DOI: 10.3390/ijms21103642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/11/2020] [Accepted: 05/17/2020] [Indexed: 12/18/2022] Open
Abstract
Calcium (Ca2+) is a universal signaling ion that is essential for the life and death processes of all eukaryotes. In humans, numerous cell stimulation pathways lead to the mobilization of sarco/endoplasmic reticulum (S/ER) stored Ca2+, resulting in the propagation of Ca2+ signals through the activation of processes, such as store-operated Ca2+ entry (SOCE). SOCE provides a sustained Ca2+ entry into the cytosol; moreover, the uptake of SOCE-mediated Ca2+ by mitochondria can shape cytosolic Ca2+ signals, function as a feedback signal for the SOCE molecular machinery, and drive numerous mitochondrial processes, including adenosine triphosphate (ATP) production and distinct cell death pathways. In recent years, tremendous progress has been made in identifying the proteins mediating these signaling pathways and elucidating molecular structures, invaluable for understanding the underlying mechanisms of function. Nevertheless, there remains a disconnect between using this accumulating protein structural knowledge and the design of new research tools and therapies. In this review, we provide an overview of the Ca2+ signaling pathways that are involved in mediating S/ER stored Ca2+ release, SOCE, and mitochondrial Ca2+ uptake, as well as pinpoint multiple levels of crosstalk between these pathways. Further, we highlight the significant protein structures elucidated in recent years controlling these Ca2+ signaling pathways. Finally, we describe a simple strategy that aimed at applying the protein structural data to initiating drug design.
Collapse
Affiliation(s)
- Megan Noble
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A5C1, Canada; (M.N.); (Q.-T.L.); (C.S.); (M.J.N.)
| | - Qi-Tong Lin
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A5C1, Canada; (M.N.); (Q.-T.L.); (C.S.); (M.J.N.)
| | - Christian Sirko
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A5C1, Canada; (M.N.); (Q.-T.L.); (C.S.); (M.J.N.)
| | - Jacob A. Houpt
- Department of Medicine, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A5C1, Canada;
| | - Matthew J. Novello
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A5C1, Canada; (M.N.); (Q.-T.L.); (C.S.); (M.J.N.)
| | - Peter B. Stathopulos
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A5C1, Canada; (M.N.); (Q.-T.L.); (C.S.); (M.J.N.)
| |
Collapse
|
12
|
Mahtani T, Treanor B. Beyond the CRAC: Diversification of ion signaling in B cells. Immunol Rev 2020; 291:104-122. [PMID: 31402507 PMCID: PMC6851625 DOI: 10.1111/imr.12770] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 04/30/2019] [Indexed: 12/22/2022]
Abstract
Although calcium signaling and the important role of calcium release–activated calcium channels is well recognized in the context of immune cell signaling, there is a vast diversity of ion channels and transporters that regulate the entry of ions beyond calcium, including magnesium, zinc, potassium, sodium, and chloride. These ions play a critical role in numerous metabolic and cellular processes. The importance of ions in human health and disease is illustrated by the identification of primary immunodeficiencies in patients with mutations in genes encoding ion channels and transporters, as well as the immunological defects observed in individuals with nutritional ion deficiencies. Despite progress in identifying the important role of ions in immune cell development and activation, we are still in the early stages of exploring the diversity of ion channels and transporters and mechanistically understanding the role of these ions in immune cell biology. Here, we review the biology of ion signaling in B cells and the identification of critical ion channels and transporters in B‐cell development, activation, and differentiation into effector cells. Elucidating the role of ion channels and transporters in immune cell signaling is critical for expanding the repertoire of potential therapeutics for the treatment of immune disorders. Moreover, increased understanding of the role of ions in immune cell function will enhance our understanding of the potentially serious consequences of ion deficiencies in human health and disease.
Collapse
Affiliation(s)
- Trisha Mahtani
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Bebhinn Treanor
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada.,Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|