1
|
Saouaf OM, Ou BS, Song YE, Carter JJ, Yan J, Jons CK, Barnes CO, Appel EA. Sustained Vaccine Exposure Elicits More Rapid, Consistent, and Broad Humoral Immune Responses to Multivalent Influenza Vaccines. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2404498. [PMID: 40091614 PMCID: PMC12079443 DOI: 10.1002/advs.202404498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 11/17/2024] [Indexed: 03/19/2025]
Abstract
With the ever-present threat of pandemics, it is imperative vaccine technologies eliciting broad and durable immunity to high-risk pathogens are developed. Yet, current annual influenza vaccines, for example, fail to provide robust immunity against the 3-4 homologous strains they contain, let alone heterologous strains. Herein, this study demonstrates that sustained delivery of multivalent influenza vaccines from an injectable polymer-nanoparticle (PNP) hydrogel technology induces more rapid, consistent, and potent humoral immune responses against multiple homologous viruses, as well as potent responses against heterologous viruses and potential pandemic subtypes H5N1, H7N9 and H9N2. Further, admixing PNP hydrogels with commercial influenza vaccines results in stronger hemagglutination inhibition against both heterologous and homologous viruses. Additional investigation shows this enhanced potency and breadth arise from higher affinity antibodies targeting both the hemagglutinin stem and head. Overall, this simple and effective sustained delivery platform for multivalent annual influenza vaccines generates durable, potent, and remarkably broad immunity to influenza.
Collapse
Affiliation(s)
- Olivia M. Saouaf
- Department of Materials Science & EngineeringStanford UniversityStanfordCA94305USA
| | - Ben S. Ou
- Department of BioengineeringStanford UniversityStanfordCA94305USA
| | - Ye Eun Song
- Department of Materials Science & EngineeringStanford UniversityStanfordCA94305USA
| | - Joshua J. Carter
- Department of BiophysicsStanford University School of MedicineStanfordCA94305USA
| | - Jerry Yan
- Department of BioengineeringStanford UniversityStanfordCA94305USA
| | - Carolyn K. Jons
- Department of Materials Science & EngineeringStanford UniversityStanfordCA94305USA
| | - Christopher O. Barnes
- Department of BiologyStanford University School of MedicineStanfordCA94305USA
- Chan Zuckerberg BiohubSan FranciscoCA94158USA
- Sarafan ChEM‐H InstituteStanford UniversityStanfordCA94305USA
| | - Eric A. Appel
- Department of Materials Science & EngineeringStanford UniversityStanfordCA94305USA
- Department of BioengineeringStanford UniversityStanfordCA94305USA
- Sarafan ChEM‐H InstituteStanford UniversityStanfordCA94305USA
- Institute for ImmunityTransplantation & InfectionStanford University School of MedicineStanfordCA94305USA
- Department of Pediatrics – EndocrinologyStanford University School of MedicineStanfordCA94305USA
- Woods Institute for the EnvironmentStanford UniversityStanfordCA94305USA
| |
Collapse
|
2
|
Duan H, Chi X, Yang X, Pan S, Liu X, Gao P, Zhang F, Zhang X, Dong X, Liao Y, Yang W. Computational design and improvement of a broad influenza virus HA stem targeting antibody. Structure 2025; 33:489-503.e5. [PMID: 39884272 DOI: 10.1016/j.str.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/28/2024] [Accepted: 01/03/2025] [Indexed: 02/01/2025]
Abstract
Broadly neutralizing antibodies (nAbs) are vital therapeutic tools to counteract both pandemic and seasonal influenza threats. Traditional strategies for optimizing nAbs generally rely on labor-intensive, high-throughput mutagenesis screens. Here, we present an innovative structure-based design framework for the optimization of nAbs, which integrates epitope-paratope analysis, computational modeling, and rational design approaches, complemented by comprehensive experimental assessment. This approach was applied to optimize MEDI8852, a nAb targeting the stalk region of influenza A virus hemagglutinin (HA). The resulting variant, M18.1.2.2, shows a marked enhancement in both affinity and neutralizing efficacy, as demonstrated both in vitro and in vivo. Computational modeling reveals that this improvement can be attributed to the fine-tuning of interactions between the antibody's side-chains and the epitope residues that are highly conserved across the influenza A virus HA stalk. Our dry-wet iterative protocol for nAb optimization presented here yielded a promising candidate for influenza intervention.
Collapse
Affiliation(s)
- Huarui Duan
- Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaojing Chi
- Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xuehua Yang
- Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shengnan Pan
- Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiuying Liu
- Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Peixiang Gao
- Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Fangyuan Zhang
- Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xinhui Zhang
- Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xuemeng Dong
- Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yi Liao
- Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Wei Yang
- Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; State Key Laboratory of Respiratory Health and Multimorbidity, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
3
|
Gu C, Babujee L, Pattinson D, Chiba S, Jester P, Maemura T, Neumann G, Kawaoka Y. Development of broadly protective influenza B vaccines. NPJ Vaccines 2025; 10:2. [PMID: 39774170 PMCID: PMC11707085 DOI: 10.1038/s41541-024-01058-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/25/2024] [Indexed: 01/11/2025] Open
Abstract
Influenza B viruses pose a significant threat to global public health, leading to severe respiratory infections in humans and, in some cases, death. During the last 50 years, influenza B viruses of two antigenically distinct lineages (termed 'Victoria' and 'Yamagata') have circulated in humans, necessitating two different influenza B vaccine strains. In this study, we devised a novel vaccine strategy involving reciprocal amino acid substitutions at sites where Victoria- and Yamagata-lineage viruses differ, leading to the generation of 'hybrid' vaccine viruses with the potential to protect against both lineages. Based on antigenic characterization, we selected two candidates and assessed their protective efficacy in a ferret model. Notably, both recombinant HA proteins conferred enhanced protection against heterologous challenges compared to their respective wild-type antigens. These findings show the potential of our novel strategy to develop cross-lineage protective influenza B virus vaccines.
Collapse
Affiliation(s)
- Chunyang Gu
- Department of Pathobiological Sciences, Influenza Research Institute, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Lavanya Babujee
- Department of Pathobiological Sciences, Influenza Research Institute, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - David Pattinson
- Department of Pathobiological Sciences, Influenza Research Institute, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Shiho Chiba
- Department of Pathobiological Sciences, Influenza Research Institute, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Peter Jester
- Department of Pathobiological Sciences, Influenza Research Institute, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Tadashi Maemura
- Department of Pathobiological Sciences, Influenza Research Institute, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Gabriele Neumann
- Department of Pathobiological Sciences, Influenza Research Institute, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA.
| | - Yoshihiro Kawaoka
- Department of Pathobiological Sciences, Influenza Research Institute, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA.
- Division of Virology, Department of Microbiology and Immunology and International Research Center for Infectious Diseases, The Institute of Medical Science, University of Tokyo, Tokyo, Japan.
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan.
- Pandemic Preparedness, Infection and Advanced Research Center, University of Tokyo, Tokyo, Japan.
| |
Collapse
|
4
|
Vlaicu O, Banica L, Hohan R, Surleac M, Florea D, Miron VD, Tudor A, Săndulescu O, Drăgănescu AC, Oțelea D, Paraschiv S. Antigenic Divergence from the Seasonal Vaccine of the Influenza Virus Strains Circulating in Romania During Three Successive Seasons (2021-2024). Microorganisms 2024; 12:2363. [PMID: 39597751 PMCID: PMC11596464 DOI: 10.3390/microorganisms12112363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/11/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
Influenza viruses continue to be an important public health threat. Vaccination is the most effective measure to control the influenza virus circulation. However, these viruses are continuously evolving through antigenic drift/shift, and thus the vaccine efficiency is affected. The aim of this study was to characterize the viral strains circulating in Romania, in a population with declining vaccination coverage, during the last three cold seasons by evaluating the hemagglutinin antigenic relatedness to the vaccine strains. All the available sequences collected between August 2021 and June 2024 were analyzed by using phylogenetic analysis and the Pepitope model to predict vaccine efficacy. The results showed that the 2021/2022 influenza season was dominated by the circulation of highly diverse clades of A(H3N2) viruses with high mutational divergence as compared to the vaccine strain, which might contribute to the reduction in vaccine efficacy. During the 2022/2023 influenza season, both influenza A and B viruses were reported, with few antigenic site mutations. The 2023/2024 influenza season was dominated by the circulation of influenza A viruses: A/H1N1pdm09 clade 6B.1A.5a.2a and A/H3N2 clade 2a.3a.1. The clade 2a.3a.1 also showed high variability when compared to the vaccine strain, presumably leading to reduced vaccine efficacy. This study illustrates the high diversity of influenza viruses circulating in a population with low vaccination coverage during the previous cold seasons. The viral diversity impacted vaccine efficacy, hence the need for public health programs to increase vaccine uptake and improve vaccine formulation in order to limit viral transmission.
Collapse
Affiliation(s)
- Ovidiu Vlaicu
- National Institute for Infectious Diseases “Prof. Dr. Matei Bals”, 021105 Bucharest, Romania; (O.V.); (R.H.); (M.S.); (D.F.); (V.D.M.); (A.T.); (O.S.); (A.C.D.); (D.O.)
| | - Leontina Banica
- National Institute for Infectious Diseases “Prof. Dr. Matei Bals”, 021105 Bucharest, Romania; (O.V.); (R.H.); (M.S.); (D.F.); (V.D.M.); (A.T.); (O.S.); (A.C.D.); (D.O.)
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Robert Hohan
- National Institute for Infectious Diseases “Prof. Dr. Matei Bals”, 021105 Bucharest, Romania; (O.V.); (R.H.); (M.S.); (D.F.); (V.D.M.); (A.T.); (O.S.); (A.C.D.); (D.O.)
| | - Marius Surleac
- National Institute for Infectious Diseases “Prof. Dr. Matei Bals”, 021105 Bucharest, Romania; (O.V.); (R.H.); (M.S.); (D.F.); (V.D.M.); (A.T.); (O.S.); (A.C.D.); (D.O.)
- Research Institute of the University of Bucharest, University of Bucharest, 050095 Bucharest, Romania
| | - Dragoş Florea
- National Institute for Infectious Diseases “Prof. Dr. Matei Bals”, 021105 Bucharest, Romania; (O.V.); (R.H.); (M.S.); (D.F.); (V.D.M.); (A.T.); (O.S.); (A.C.D.); (D.O.)
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Victor Daniel Miron
- National Institute for Infectious Diseases “Prof. Dr. Matei Bals”, 021105 Bucharest, Romania; (O.V.); (R.H.); (M.S.); (D.F.); (V.D.M.); (A.T.); (O.S.); (A.C.D.); (D.O.)
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Andreea Tudor
- National Institute for Infectious Diseases “Prof. Dr. Matei Bals”, 021105 Bucharest, Romania; (O.V.); (R.H.); (M.S.); (D.F.); (V.D.M.); (A.T.); (O.S.); (A.C.D.); (D.O.)
| | - Oana Săndulescu
- National Institute for Infectious Diseases “Prof. Dr. Matei Bals”, 021105 Bucharest, Romania; (O.V.); (R.H.); (M.S.); (D.F.); (V.D.M.); (A.T.); (O.S.); (A.C.D.); (D.O.)
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Anca Cristina Drăgănescu
- National Institute for Infectious Diseases “Prof. Dr. Matei Bals”, 021105 Bucharest, Romania; (O.V.); (R.H.); (M.S.); (D.F.); (V.D.M.); (A.T.); (O.S.); (A.C.D.); (D.O.)
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Dan Oțelea
- National Institute for Infectious Diseases “Prof. Dr. Matei Bals”, 021105 Bucharest, Romania; (O.V.); (R.H.); (M.S.); (D.F.); (V.D.M.); (A.T.); (O.S.); (A.C.D.); (D.O.)
| | - Simona Paraschiv
- National Institute for Infectious Diseases “Prof. Dr. Matei Bals”, 021105 Bucharest, Romania; (O.V.); (R.H.); (M.S.); (D.F.); (V.D.M.); (A.T.); (O.S.); (A.C.D.); (D.O.)
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
5
|
Norizwan JAM, Tan WS. Multifaceted virus-like particles: Navigating towards broadly effective influenza A virus vaccines. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 8:100317. [PMID: 39717209 PMCID: PMC11665419 DOI: 10.1016/j.crmicr.2024.100317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024] Open
Abstract
The threat of influenza A virus (IAV) remains an annual health concern, as almost 500,000 people die each year due to the seasonal flu. Current flu vaccines are highly dependent on embryonated chicken eggs for production, which is time consuming and costly. These vaccines only confer moderate protections in elderly people, and they lack cross-protectivity; thereby requiring annual reformulation to ensure effectiveness against contemporary circulating strains. To address current limitations, new strategies are being sought, with great emphasis given on exploiting IAV's conserved antigens for vaccine development, and by using different vaccine technologies to enhance immunogenicity and expedite vaccine production. Among these technologies, there are growing pre-clinical and clinical studies involving virus-like particles (VLPs), as they are capable to display multiple conserved IAV antigens and augment their immune responses. In this review, we outline recent findings involving broadly effective IAV antigens and strategies to display these antigens on VLPs. Current production systems for IAV VLP vaccines are comprehensively reviewed. Pain-free methods for administration of IAV VLP vaccines through intranasal and transdermal routes, as well as the mechanisms in stimulating immune responses are discussed in detail. The future perspectives of VLPs in IAV vaccine development are discussed, particularly concerning their potentials in overcoming current immunological limitations of IAV vaccines, and their inherent advantages in exploring intranasal vaccination studies. We also propose avenues to expedite VLP vaccine production, as we envision that there will be more clinical trials involving IAV VLP vaccines, leading to commercialization of these vaccines in the near future.
Collapse
Affiliation(s)
- Jaffar Ali Muhamad Norizwan
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Wen Siang Tan
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
6
|
Lim CML, Komarasamy TV, Adnan NAAB, Radhakrishnan AK, Balasubramaniam VRMT. Recent Advances, Approaches and Challenges in the Development of Universal Influenza Vaccines. Influenza Other Respir Viruses 2024; 18:e13276. [PMID: 38513364 PMCID: PMC10957243 DOI: 10.1111/irv.13276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 02/21/2024] [Accepted: 02/24/2024] [Indexed: 03/23/2024] Open
Abstract
Every year, influenza virus infections cause significant morbidity and mortality worldwide. They pose a substantial burden of disease, in terms of not only health but also the economy. Owing to the ability of influenza viruses to continuously evolve, annual seasonal influenza vaccines are necessary as a prophylaxis. However, current influenza vaccines against seasonal strains have limited effectiveness and require yearly reformulation due to the virus undergoing antigenic drift or shift. Vaccine mismatches are common, conferring suboptimal protection against seasonal outbreaks, and the threat of the next pandemic continues to loom. Therefore, there is a great need to develop a universal influenza vaccine (UIV) capable of providing broad and durable protection against all influenza virus strains. In the quest to develop a UIV that would obviate the need for annual vaccination and formulation, a multitude of strategies is currently underway. Promising approaches include targeting the highly conserved epitopes of haemagglutinin (HA), neuraminidase (NA), M2 extracellular domain (M2e) and internal proteins of the influenza virus. The identification and characterization of broadly neutralizing antibodies (bnAbs) targeting conserved regions of the viral HA protein, in particular, have provided important insight into novel vaccine designs and platforms. This review discusses universal vaccine approaches presently under development, with an emphasis on those targeting the highly conserved stalk of the HA protein, recent technological advancements used and the future prospects of a UIV in terms of its advantages, developmental obstacles and potential shortcomings.
Collapse
Affiliation(s)
- Caryn Myn Li Lim
- Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine & Health SciencesMonash University MalaysiaBandar SunwayMalaysia
| | - Thamil Vaani Komarasamy
- Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine & Health SciencesMonash University MalaysiaBandar SunwayMalaysia
| | - Nur Amelia Azreen Binti Adnan
- Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine & Health SciencesMonash University MalaysiaBandar SunwayMalaysia
| | - Ammu Kutty Radhakrishnan
- Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine & Health SciencesMonash University MalaysiaBandar SunwayMalaysia
| | - Vinod R. M. T. Balasubramaniam
- Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine & Health SciencesMonash University MalaysiaBandar SunwayMalaysia
| |
Collapse
|
7
|
Nuñez IA, Jang H, Huang Y, Kelvin A, Ross TM. Influenza virus immune imprinting dictates the clinical outcomes in ferrets challenged with highly pathogenic avian influenza virus H5N1. Front Vet Sci 2023; 10:1286758. [PMID: 38170075 PMCID: PMC10759238 DOI: 10.3389/fvets.2023.1286758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/28/2023] [Indexed: 01/05/2024] Open
Abstract
Zoonotic transmission of H5N1 highly pathogenic avian influenza virus (HPAIV) into the human population is an increasing global threat. The recent 2022 HPAIV outbreak significantly highlighted this possibility, increasing concern in the general population. The clinical outcomes of H5N1 influenza virus exposure can be determined by an individual's primary influenza virus infection (imprinting) or vaccination status. Immunological imprinting with Group 1 - (H1N1, H2N2, and H2N3) increases survival rates following H5N1 viral infection compared to Group 2 - (H3N2) imprinted individuals. Vaccination against H5N1 influenza viruses can offer protection to at-risk populations; however, stockpiled inactivated H5N1 influenza vaccines are not readily available to the public. We hypothesize that the immunological response to vaccination and subsequent clinical outcome following H5N1 influenza virus infection is correlated with the immunological imprinting status of an individual. To test this hypothesis, our lab established a ferret pre-immune model of disease. Naïve ferrets were intranasally inoculated with seasonal influenza viruses and allowed to recover for 84 days prior to H5N1 virus infection. Ferrets imprinted following H1N1 and H2N3 virus infections were completely protected against lethal H5N1 influenza virus challenge (100% survival), with few to no clinical symptoms. In comparison, H3N2 influenza virus-imprinted ferrets had severe clinical symptoms, delayed disease progression, and a sublethal phenotype (40% mortality). Consecutive infections with H1N1 influenza viruses followed by an H3N2 influenza virus infection did not abrogate the immune protection induced by the original H1N1 influenza virus infection. In addition, ferrets consecutively infected with H1N1 and H2N3 viruses had no clinical symptoms or weight loss. H3N2 pre-immune ferrets were vaccinated with a broadly reactive H5 HA-based or H1 NA-based vaccine (Hu-CO 2). These ferrets were protected against H5N1 influenza virus challenge, whereas ferrets vaccinated with the H1N1 wild-type CA/09 rHA vaccine had similar phenotypes as non-vaccinated H3N2-imprinted ferrets with 40% survival. Overall, Group 2 imprinted ferrets, which were vaccinated with heterologous Group 1 HA vaccines, had redirected immune responses to Group 1 influenza viral antigens and rescued a sublethal phenotype to complete protection.
Collapse
Affiliation(s)
- Ivette A. Nuñez
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, United States
- Department of Infectious Diseases, University of Georgia, Athens, GA, United States
| | - Hyesun Jang
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, United States
| | - Ying Huang
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, United States
| | - Alyson Kelvin
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK, Canada
| | - Ted M. Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, United States
- Department of Infectious Diseases, University of Georgia, Athens, GA, United States
| |
Collapse
|
8
|
Swart M, Kuipers H, Milder F, Jongeneelen M, Ritschel T, Tolboom J, Muchene L, van der Lubbe J, Izquierdo Gil A, Veldman D, Huizingh J, Verspuij J, Schmit-Tillemans S, Blokland S, de Man M, Roozendaal R, Fox CB, Schuitemaker H, Capelle M, Langedijk JPM, Zahn R, Brandenburg B. Enhancing breadth and durability of humoral immune responses in non-human primates with an adjuvanted group 1 influenza hemagglutinin stem antigen. NPJ Vaccines 2023; 8:176. [PMID: 37952003 PMCID: PMC10640631 DOI: 10.1038/s41541-023-00772-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 11/02/2023] [Indexed: 11/14/2023] Open
Abstract
Seasonal influenza vaccines must be updated annually and suboptimally protect against strains mismatched to the selected vaccine strains. We previously developed a subunit vaccine antigen consisting of a stabilized trimeric influenza A group 1 hemagglutinin (H1) stem protein that elicits broadly neutralizing antibodies. Here, we further optimized the stability and manufacturability of the H1 stem antigen (H1 stem v2, also known as INFLUENZA G1 mHA) and characterized its formulation and potency with different adjuvants in vitro and in animal models. The recombinant H1 stem antigen (50 µg) was administered to influenza-naïve non-human primates either with aluminum hydroxide [Al(OH)3] + NaCl, AS01B, or SLA-LSQ formulations at week 0, 8 and 34. These SLA-LSQ formulations comprised of varying ratios of the synthetic TLR4 agonist 'second generation synthetic lipid adjuvant' (SLA) with liposomal QS-21 (LSQ). A vaccine formulation with aluminum hydroxide or SLA-LSQ (starting at a 10:25 µg ratio) induced HA-specific antibodies and breadth of neutralization against a panel of influenza A group 1 pseudoviruses, comparable with vaccine formulated with AS01B, four weeks after the second immunization. A formulation with SLA-LSQ in a 5:2 μg ratio contained larger fused or aggregated liposomes and induced significantly lower humoral responses. Broadly HA stem-binding antibodies were detectable for the entire period after the second vaccine dose up to week 34, after which they were boosted by a third vaccine dose. These findings inform about potential adjuvant formulations in clinical trials with an H1 stem-based vaccine candidate.
Collapse
Affiliation(s)
- Maarten Swart
- Janssen Vaccines & Prevention, Leiden, The Netherlands
| | | | - Fin Milder
- Janssen Vaccines & Prevention, Leiden, The Netherlands
| | | | - Tina Ritschel
- Janssen Vaccines & Prevention, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | - Sven Blokland
- Janssen Vaccines & Prevention, Leiden, The Netherlands
| | | | | | | | | | | | | | - Roland Zahn
- Janssen Vaccines & Prevention, Leiden, The Netherlands
| | | |
Collapse
|
9
|
Raj S, Vishwakarma P, Saxena S, Kumar V, Khatri R, Kumar A, Singh M, Mishra S, Asthana S, Ahmed S, Samal S. Intradermal Immunization of Soluble Influenza HA Derived from a Lethal Virus Induces High Magnitude and Breadth of Antibody Responses and Provides Complete Protection In Vivo. Vaccines (Basel) 2023; 11:780. [PMID: 37112692 PMCID: PMC10141624 DOI: 10.3390/vaccines11040780] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 04/05/2023] Open
Abstract
Immunogens mimicking the native-like structure of surface-exposed viral antigens are considered promising vaccine candidates. Influenza viruses are important zoonotic respiratory viruses with high pandemic potential. Recombinant soluble hemagglutinin (HA) glycoprotein-based protein subunit vaccines against Influenza have been shown to induce protective efficacy when administered intramuscularly. Here, we have expressed a recombinant soluble trimeric HA protein in Expi 293F cells and purified the protein derived from the Inf A/Guangdong-Maonan/ SWL1536/2019 virus which was found to be highly virulent in the mouse. The trimeric HA protein was found to be in the oligomeric state, highly stable, and the efficacy study in the BALB/c mouse challenge model through intradermal immunization with the prime-boost regimen conferred complete protection against a high lethal dose of homologous and mouse-adapted InfA/PR8 virus challenge. Furthermore, the immunogen induced high hemagglutinin inhibition (HI) titers and showed cross-protection against other Inf A and Inf B subtypes. The results are promising and warrant trimeric HA as a suitable vaccine candidate.
Collapse
Affiliation(s)
- Sneha Raj
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad 121001, India
| | - Preeti Vishwakarma
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad 121001, India
| | - Shikha Saxena
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad 121001, India
| | - Varun Kumar
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad 121001, India
| | - Ritika Khatri
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad 121001, India
| | - Amit Kumar
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad 121001, India
| | - Mrityunjay Singh
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad 121001, India
| | - Surbhi Mishra
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad 121001, India
| | - Shailendra Asthana
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad 121001, India
| | - Shubbir Ahmed
- Centralized Core Research Facility (CCRF), All India Institute of Medical Sciences, New Delhi 110029, India
| | - Sweety Samal
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad 121001, India
| |
Collapse
|
10
|
Badten A, Ramirez A, Hernandez-Davies JE, Albin TJ, Jain A, Nakajima R, Felgner J, Davies DH, Wang SW. Protein Nanoparticle-Mediated Delivery of Recombinant Influenza Hemagglutinin Enhances Immunogenicity and Breadth of the Antibody Response. ACS Infect Dis 2023; 9:239-252. [PMID: 36607269 PMCID: PMC9926493 DOI: 10.1021/acsinfecdis.2c00362] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Indexed: 01/07/2023]
Abstract
The vast majority of seasonal influenza vaccines administered each year are derived from virus propagated in eggs using technology that has changed little since the 1930s. The immunogenicity, durability, and breadth of response would likely benefit from a recombinant nanoparticle-based approach. Although the E2 protein nanoparticle (NP) platform has been previously shown to promote effective cell-mediated responses to peptide epitopes, it has not yet been reported to deliver whole protein antigens. In this study, we synthesized a novel maleimido tris-nitrilotriacetic acid (NTA) linker to couple protein hemagglutinin (HA) from H1N1 influenza virus to the E2 NP, and we evaluated the HA-specific antibody responses using protein microarrays. We found that recombinant H1 protein alone is immunogenic in mice but requires two boosts for IgG to be detected and is strongly IgG1 (Th2) polarized. When conjugated to E2 NPs, IgG2c is produced leading to a more balanced Th1/Th2 response. Inclusion of the Toll-like receptor 4 agonist monophosphoryl lipid A (MPLA) significantly enhances the immunogenicity of H1-E2 NPs while retaining the Th1/Th2 balance. Interestingly, broader homo- and heterosubtypic cross-reactivity is also observed for conjugated H1-E2 with MPLA, compared to unconjugated H1 with or without MPLA. These results highlight the potential of an NP-based delivery of HA for tuning the immunogenicity, breadth, and Th1/Th2 balance generated by recombinant HA-based vaccination. Furthermore, the modularity of this protein-protein conjugation strategy may have utility for future vaccine development against other human pathogens.
Collapse
Affiliation(s)
- Alexander
J. Badten
- Department
of Chemical and Biomolecular Engineering, Vaccine Research and Development
Center, Department of Physiology and Biophysics, Department of Chemistry, Department of Biomedical
Engineering, Chao Family Comprehensive Cancer Center, Institute for Immunology, University of California, Irvine, California 92697, United States
| | - Aaron Ramirez
- Department
of Chemical and Biomolecular Engineering, Vaccine Research and Development
Center, Department of Physiology and Biophysics, Department of Chemistry, Department of Biomedical
Engineering, Chao Family Comprehensive Cancer Center, Institute for Immunology, University of California, Irvine, California 92697, United States
| | - Jenny E. Hernandez-Davies
- Department
of Chemical and Biomolecular Engineering, Vaccine Research and Development
Center, Department of Physiology and Biophysics, Department of Chemistry, Department of Biomedical
Engineering, Chao Family Comprehensive Cancer Center, Institute for Immunology, University of California, Irvine, California 92697, United States
| | - Tyler J. Albin
- Department
of Chemical and Biomolecular Engineering, Vaccine Research and Development
Center, Department of Physiology and Biophysics, Department of Chemistry, Department of Biomedical
Engineering, Chao Family Comprehensive Cancer Center, Institute for Immunology, University of California, Irvine, California 92697, United States
| | - Aarti Jain
- Department
of Chemical and Biomolecular Engineering, Vaccine Research and Development
Center, Department of Physiology and Biophysics, Department of Chemistry, Department of Biomedical
Engineering, Chao Family Comprehensive Cancer Center, Institute for Immunology, University of California, Irvine, California 92697, United States
| | - Rie Nakajima
- Department
of Chemical and Biomolecular Engineering, Vaccine Research and Development
Center, Department of Physiology and Biophysics, Department of Chemistry, Department of Biomedical
Engineering, Chao Family Comprehensive Cancer Center, Institute for Immunology, University of California, Irvine, California 92697, United States
| | - Jiin Felgner
- Department
of Chemical and Biomolecular Engineering, Vaccine Research and Development
Center, Department of Physiology and Biophysics, Department of Chemistry, Department of Biomedical
Engineering, Chao Family Comprehensive Cancer Center, Institute for Immunology, University of California, Irvine, California 92697, United States
| | - D. Huw Davies
- Department
of Chemical and Biomolecular Engineering, Vaccine Research and Development
Center, Department of Physiology and Biophysics, Department of Chemistry, Department of Biomedical
Engineering, Chao Family Comprehensive Cancer Center, Institute for Immunology, University of California, Irvine, California 92697, United States
| | - Szu-Wen Wang
- Department
of Chemical and Biomolecular Engineering, Vaccine Research and Development
Center, Department of Physiology and Biophysics, Department of Chemistry, Department of Biomedical
Engineering, Chao Family Comprehensive Cancer Center, Institute for Immunology, University of California, Irvine, California 92697, United States
| |
Collapse
|
11
|
Influenza A (N1-N9) and Influenza B (B/Victoria and B/Yamagata) Neuraminidase Pseudotypes as Tools for Pandemic Preparedness and Improved Influenza Vaccine Design. Vaccines (Basel) 2022; 10:vaccines10091520. [PMID: 36146598 PMCID: PMC9571397 DOI: 10.3390/vaccines10091520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
To better understand how inhibition of the influenza neuraminidase (NA) protein contributes to protection against influenza, we produced lentiviral vectors pseudotyped with an avian H11 hemagglutinin (HA) and the NA of all influenza A (N1–N9) subtypes and influenza B (B/Victoria and B/Yamagata). These NA viral pseudotypes (PV) possess stable NA activity and can be utilized as target antigens in in vitro assays to assess vaccine immunogenicity. Employing these NA PV, we developed an enzyme-linked lectin assay (pELLA) for routine serology to measure neuraminidase inhibition (NI) titers of reference antisera, monoclonal antibodies and post-vaccination sera with various influenza antigens. We also show that the pELLA is more sensitive than the commercially available NA-Fluor™ in detecting NA inhibition in these samples. Our studies may lead to establishing the protective NA titer that contributes to NA-based immunity. This will aid in the design of superior, longer lasting and more broadly protective vaccines that can be employed together with HA-targeted vaccines in a pre-pandemic approach.
Collapse
|
12
|
Funari R, Fukuyama H, Shen AQ. Nanoplasmonic multiplex biosensing for COVID-19 vaccines. Biosens Bioelectron 2022; 208:114193. [PMID: 35421841 PMCID: PMC8968208 DOI: 10.1016/j.bios.2022.114193] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 12/24/2022]
Abstract
The ongoing emergence of severe acute respiratory syndrome caused by the new coronavirus (SARS-CoV-2) variants requires swift actions in identifying specific antigens and optimizing vaccine development to maximize the humoral response of the patient. Measuring the specificity and the amount of antibody produced by the host immune system with high throughput and accuracy is critical to develop timely diagnostics and therapeutic strategies. Motivated by finding an easy-to-use and cost-effective alternative to existing serological methodologies for multiplex analysis, we develop a proof-of-concept multiplex nanoplasmonic biosensor to capture the humoral response in serums against multiple antigens. Nanoplasmonic sensing relies on the wavelength shift of the localized surface plasmon resonance (LSPR) peak of gold nanostructures upon binding interactions between the antibodies and the immobilized antigens. Here the antigens are first immobilized on different sensing areas by using a mono-biotinylation system based on the high affinity interaction between biotin and streptavidin. We then validate the multiplex platform by detecting the presence of 3 monoclonal antibodies against 3 antigens (2 different hemagglutinins (HAs) from influenza viruses, and the SARS-CoV-2 Spike RBD (receptor binding domain)). We also measure the humoral response in murine sera collected before and after its immunization with the SARS-CoV-2 Spike protein, in good agreement with the results obtained by the ELISA assay. Our nanoplasmonic assays have successfully demonstrated multiple serum antibody profiling, which can be further integrated with microfluidics as an effective high throughput screening platform in future studies for the ongoing SARS-CoV-2 vaccine development.
Collapse
Affiliation(s)
- Riccardo Funari
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan; Dipartimento di Fisica "M. Merlin", Università degli Studi di Bari "Aldo Moro", Bari, 70125, Italy.
| | - Hidehiro Fukuyama
- Laboratory for Lymphocyte Differentiations, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa, 230-0045, Japan; Near-InfraRed Photo-Immunotherapy Research Institute, Kansai Medical University, Hirakata, Osaka, 573-1010, Japan; INSERM EST, Strasbourg Cedex 2, 67037, France.
| | - Amy Q Shen
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan.
| |
Collapse
|
13
|
Labombarde JG, Pillai MR, Wehenkel M, Lin CY, Keating R, Brown SA, Crawford JC, Brice DC, Castellaw AH, Mandarano AH, Guy CS, Mejia JR, Lewis CD, Chang TC, Oshansky CM, Wong SS, Webby RJ, Yan M, Li Q, Marion TN, Thomas PG, McGargill MA. Induction of broadly reactive influenza antibodies increases susceptibility to autoimmunity. Cell Rep 2022; 38:110482. [PMID: 35263574 PMCID: PMC9036619 DOI: 10.1016/j.celrep.2022.110482] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 01/19/2022] [Accepted: 02/11/2022] [Indexed: 11/03/2022] Open
Abstract
Infection and vaccination repeatedly expose individuals to antigens that are conserved between influenza virus subtypes. Nevertheless, antibodies recognizing variable influenza epitopes greatly outnumber antibodies reactive against conserved epitopes. Elucidating factors contributing to the paucity of broadly reactive influenza antibodies remains a major obstacle for developing a universal influenza vaccine. Here, we report that inducing broadly reactive influenza antibodies increases autoreactive antibodies in humans and mice and exacerbates disease in four distinct models of autoimmune disease. Importantly, transferring broadly reactive influenza antibodies augments disease in the presence of inflammation or autoimmune susceptibility. Further, broadly reactive influenza antibodies spontaneously arise in mice with defects in B cell tolerance. Together, these data suggest that self-tolerance mechanisms limit the prevalence of broadly reactive influenza antibodies, which can exacerbate disease in the context of additional risk factors.
Collapse
Affiliation(s)
- Jocelyn G. Labombarde
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA,These authors contributed equally
| | - Meenu R. Pillai
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA,These authors contributed equally
| | - Marie Wehenkel
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA,These authors contributed equally
| | - Chun-Yang Lin
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA,Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Rachael Keating
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Scott A. Brown
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Jeremy Chase Crawford
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - David C. Brice
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Ashley H. Castellaw
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | | | - Clifford S. Guy
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Juan R. Mejia
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Carlessia D. Lewis
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Ti-Cheng Chang
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Christine M. Oshansky
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Sook-San Wong
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA,Present address: Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, P.R. China,Present address: State Key Laboratory of Respiratory Diseases & National Clinical Research Center for Respiratory Disease, Guangzhou, P.R. China,Present address: School of Public Health, The University of Hong Kong, Hong Kong SAR, P.R. China
| | - Richard J. Webby
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Mei Yan
- Department of Immunology and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Quan–Zhen Li
- Department of Immunology and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tony N. Marion
- Department of Microbiology, Immunology and Biochemistry, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Paul G. Thomas
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Maureen A. McGargill
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA,Lead contact,Correspondence:
| |
Collapse
|
14
|
Qiao Y, Li S, Jin S, Pan Y, Shi Y, Kong W, Shan Y. A self-assembling nanoparticle vaccine targeting the conserved epitope of influenza virus hemagglutinin stem elicits a cross-protective immune response. NANOSCALE 2022; 14:3250-3260. [PMID: 35157751 DOI: 10.1039/d1nr08460g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Various vaccine strategies have been developed to provide broad protection against diverse influenza viruses. The hemagglutinin (HA) stem is the major potential target of these vaccines. Enhancing immunogenicity and eliciting cross-protective immune responses are critical for HA stem-based vaccine designs. In this study, the A helix (Ah) and CD helix (CDh) from the HA stem were fused with ferritin, individually, or in tandem, yielding Ah-f, CDh-f and (A + CD)h-f nanoparticles (NPs), respectively. These NPs were produced through a prokaryotic expression system. After three immunizations with AS03-adjuvanted NPs in BALB/c mice via the subcutaneous route, CDh-f and (A + CD)h-f induced robust humoral and cellular immune responses. Furthermore, CDh-f and (A + CD)h-f conferred complete protection against a lethal challenge of H3N2 virus, while no remarkable immune responses and protective effects were detected in the Ah-f group. These results indicate that the CDh-based nanovaccine represents a promising vaccine platform against influenza, and the epitope-conjugated ferritin NPs may be a potential vaccine platform against other infectious viruses, such as SARS-COV-2.
Collapse
Affiliation(s)
- Yongbo Qiao
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin 130012, China.
| | - Shuang Li
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin 130012, China.
| | - Shenghui Jin
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin 130012, China.
| | - Yi Pan
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin 130012, China.
| | - Yuhua Shi
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin 130012, China.
| | - Wei Kong
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin 130012, China.
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, Jilin 130012, China
| | - Yaming Shan
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin 130012, China.
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, Jilin 130012, China
| |
Collapse
|
15
|
Liao Y, Guo S, Liu G, Qiu Z, Wang J, Yang D, Tian X, Qiao Z, Ma Z, Liu Z. Host Non-Coding RNA Regulates Influenza A Virus Replication. Viruses 2021; 14:v14010051. [PMID: 35062254 PMCID: PMC8779696 DOI: 10.3390/v14010051] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/21/2021] [Accepted: 12/21/2021] [Indexed: 12/12/2022] Open
Abstract
Outbreaks of influenza, caused by the influenza A virus (IAV), occur almost every year in various regions worldwide, seriously endangering human health. Studies have shown that host non-coding RNA is an important regulator of host-virus interactions in the process of IAV infection. In this paper, we comprehensively analyzed the research progress on host non-coding RNAs with regard to the regulation of IAV replication. According to the regulation mode of host non-coding RNAs, the signal pathways involved, and the specific target genes, we found that a large number of host non-coding RNAs directly targeted the PB1 and PB2 proteins of IAV. Nonstructural protein 1 and other key genes regulate the replication of IAV and indirectly participate in the regulation of the retinoic acid-induced gene I-like receptor signaling pathway, toll-like receptor signaling pathway, Janus kinase signal transducer and activator of transcription signaling pathway, and other major intracellular viral response signaling pathways to regulate the replication of IAV. Based on the above findings, we mapped the regulatory network of host non-coding RNAs in the innate immune response to the influenza virus. These findings will provide a more comprehensive understanding of the function and mechanism of host non-coding RNAs in the cellular anti-virus response as well as clues to the mechanism of cell-virus interactions and the discovery of antiviral drug targets.
Collapse
Affiliation(s)
- Yuejiao Liao
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China; (Y.L.); (S.G.); (G.L.); (Z.Q.); (J.W.); (D.Y.); (Z.Q.); (Z.M.)
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China;
| | - Shouqing Guo
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China; (Y.L.); (S.G.); (G.L.); (Z.Q.); (J.W.); (D.Y.); (Z.Q.); (Z.M.)
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China;
| | - Geng Liu
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China; (Y.L.); (S.G.); (G.L.); (Z.Q.); (J.W.); (D.Y.); (Z.Q.); (Z.M.)
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China;
| | - Zhenyu Qiu
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China; (Y.L.); (S.G.); (G.L.); (Z.Q.); (J.W.); (D.Y.); (Z.Q.); (Z.M.)
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China;
| | - Jiamin Wang
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China; (Y.L.); (S.G.); (G.L.); (Z.Q.); (J.W.); (D.Y.); (Z.Q.); (Z.M.)
- Key Laboratory of Biotechnology & Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
| | - Di Yang
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China; (Y.L.); (S.G.); (G.L.); (Z.Q.); (J.W.); (D.Y.); (Z.Q.); (Z.M.)
- Key Laboratory of Biotechnology & Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
| | - Xiaojing Tian
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China;
- Key Laboratory of Biotechnology & Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
| | - Ziling Qiao
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China; (Y.L.); (S.G.); (G.L.); (Z.Q.); (J.W.); (D.Y.); (Z.Q.); (Z.M.)
- Key Laboratory of Biotechnology & Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
| | - Zhongren Ma
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China; (Y.L.); (S.G.); (G.L.); (Z.Q.); (J.W.); (D.Y.); (Z.Q.); (Z.M.)
- Key Laboratory of Biotechnology & Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
| | - Zhenbin Liu
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China; (Y.L.); (S.G.); (G.L.); (Z.Q.); (J.W.); (D.Y.); (Z.Q.); (Z.M.)
- Key Laboratory of Biotechnology & Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
- Correspondence:
| |
Collapse
|
16
|
Becker T, Elbahesh H, Reperant LA, Rimmelzwaan GF, Osterhaus ADME. Influenza Vaccines: Successes and Continuing Challenges. J Infect Dis 2021; 224:S405-S419. [PMID: 34590139 PMCID: PMC8482026 DOI: 10.1093/infdis/jiab269] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Influenza vaccines have been available for over 80 years. They have contributed to significant reductions in influenza morbidity and mortality. However, there have been limitations in their effectiveness, in part due to the continuous antigenic evolution of seasonal influenza viruses, but also due to the predominant use of embryonated chicken eggs for their production. The latter furthermore limits their worldwide production timelines and scale. Therefore today, alternative approaches for their design and production are increasingly pursued, with already licensed quadrivalent seasonal influenza vaccines produced in cell cultures, including based on a baculovirus expression system. Next-generation influenza vaccines aim at inducing broader and longer-lasting immune responses to overcome seasonal influenza virus antigenic drift and to timely address the emergence of a new pandemic influenza virus. Tailored approaches target mechanisms to improve vaccine-induced immune responses in individuals with a weakened immune system, in particular older adults.
Collapse
Affiliation(s)
- Tanja Becker
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Husni Elbahesh
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Germany
| | | | - Guus F Rimmelzwaan
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Albert D M E Osterhaus
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
17
|
Kennedy RB, Grigorova I. B and Th cell response to Ag in vivo: Implications for vaccine development and diseases. Immunol Rev 2020; 296:5-8. [PMID: 32683786 PMCID: PMC7405089 DOI: 10.1111/imr.12899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 02/06/2023]
Affiliation(s)
| | - Irina Grigorova
- Department of Microbiology and ImmunologyUniversity of Michigan Medical SchoolAnn ArborMIUSA
| |
Collapse
|
18
|
Fukuyama H, Shinnakasu R, Kurosaki T. Influenza vaccination strategies targeting the hemagglutinin stem region. Immunol Rev 2020; 296:132-141. [PMID: 32542739 PMCID: PMC7323124 DOI: 10.1111/imr.12887] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/03/2020] [Accepted: 05/20/2020] [Indexed: 12/14/2022]
Abstract
Influenza is one of the best examples of highly mutable viruses that are able to escape immune surveillance. Indeed, in response to influenza seasonal infection or vaccination, the majority of the induced antibodies are strain‐specific. Current vaccine against the seasonal strains with the strategy of surveillance‐prediction‐vaccine does not cover an unmet virus strain leading to pandemic. Recently, antibodies targeting conserved epitopes on the hemagglutinin (HA) protein have been identified, albeit rarely, and they often showed broad protection. These antibody discoveries have brought the feasibility to develop a universal vaccine. Most of these antibodies bind the HA stem domain and accumulate in the memory B cell compartment. Broadly reactive stem‐biased memory responses were induced by infection with antigenically divergent influenza strains and were able to eradicate these viruses, together indicating the importance of generating memory B cells expressing high‐quality anti‐stem antibodies. Here, we emphasize recent progress in our understanding of how such memory B cells can be generated and discuss how these advances may be relevant to the quest for a universal influenza vaccine.
Collapse
Affiliation(s)
- Hidehiro Fukuyama
- Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan.,Cellular Systems Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan.,INSERM EST, Strasbourg Cedex 2, France
| | - Ryo Shinnakasu
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Tomohiro Kurosaki
- Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan.,Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| |
Collapse
|