1
|
Don T, Gadgeel M, Savaşan S. A Room for Long-Lived Plasma Cell Contribution in Immune Cytopenias? Cancers (Basel) 2025; 17:1537. [PMID: 40361462 PMCID: PMC12071925 DOI: 10.3390/cancers17091537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/27/2025] [Accepted: 04/30/2025] [Indexed: 05/15/2025] Open
Abstract
Immune cytopenias, such as autoimmune hemolytic anemia, immune thrombocytopenia, and Evans syndrome, are characterized by autoantibodies targeting various blood cells, initiating their destruction. Interactions between T cells, B cells, their ultimate maturational plasma cell descendants, dendritic cells, and macrophages result in antibody production, including the autoreactive ones. Autoimmune phenomena can be idiopathic or associated with various immune dysregulation conditions or malignancies. Interventions disrupting this complex network at different levels have been used to treat immune cytopenias with certain levels of success. Some cases are known to be refractory to many different therapeutic approaches, including the ones eliminating B cells. In some such cases, targeting plasma cells resulted in disease control. Among plasma cell compartments, unique long-lived plasma cells (LLPCs) residing primarily in the bone marrow, are specialized antibody-producing cells with an extended lifespan, capable of persistently secreting antibodies. LLPCs can evade conventional therapeutic strategies designed to target often-proliferating cells. Research focusing on the role of LLPCs in autoimmune phenomena including immune cytopenias has provided evidence for their role, characterized by the sustained production of autoantibodies. Frequent genetic mutations and progression to other immune dysregulation entities have been reported in a group of children with immune cytopenias. This might provide new insights focusing on the potential underlying genetic and epigenetic mechanisms leading to generation and maintenance of LLPCs in autoimmune disorders. We provide a brief review of LLPC biology and evidence for their role in immune cytopenias with potential future implications in this article.
Collapse
Affiliation(s)
- Tricia Don
- Pediatric Residency, Children’s Hospital of Michigan, Detroit, MI 48201, USA;
| | - Manisha Gadgeel
- Hematology/Oncology Flow Cytometry Laboratory, Children’s Hospital of Michigan, Detroit, MI 48201, USA;
- Department of Pediatrics, Central Michigan University College of Medicine, Saginaw, MI 48602, USA
| | - Süreyya Savaşan
- Hematology/Oncology Flow Cytometry Laboratory, Children’s Hospital of Michigan, Detroit, MI 48201, USA;
- Department of Pediatrics, Central Michigan University College of Medicine, Saginaw, MI 48602, USA
- Division of Hematology/Oncology, Pediatric Transplantation and Cell Therapy Program, Children’s Hospital of Michigan, Detroit, MI 48201, USA
- Barbara Ann Karmanos Cancer Center, Detroit, MI 48201, USA
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
2
|
Rivera-Correa J, Gupta S, Ricker E, Flores-Castro D, Jenkins D, Vulcano S, Phalke SP, Pannellini T, Miele MM, Li Z, Zamponi N, Kim YB, Chinenov Y, Giannopoulou E, Cerchietti L, Pernis AB. ROCK1 promotes B cell differentiation and proteostasis under stress through the heme-regulated proteins, BACH2 and HRI. JCI Insight 2025; 10:e180507. [PMID: 39903532 PMCID: PMC11949073 DOI: 10.1172/jci.insight.180507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 01/28/2025] [Indexed: 02/06/2025] Open
Abstract
The mechanisms utilized by differentiating B cells to withstand highly damaging conditions generated during severe infections, like the massive hemolysis that accompanies malaria, are poorly understood. Here, we demonstrate that ROCK1 regulates B cell differentiation in hostile environments replete with pathogen-associated molecular patterns (PAMPs) and high levels of heme by controlling 2 key heme-regulated molecules, BACH2 and heme-regulated eIF2α kinase (HRI). ROCK1 phosphorylates BACH2 and protects it from heme-driven degradation. As B cells differentiate, furthermore, ROCK1 restrains their pro-inflammatory potential and helps them handle the heightened stress imparted by the presence of PAMPs and heme by controlling HRI, a key regulator of the integrated stress response and cytosolic proteotoxicity. ROCK1 controls the interplay of HRI with HSP90 and limits the recruitment of HRI and HSP90 to unique p62/SQSTM1 complexes that also contain critical kinases like mTOR complex 1 and TBK1, and proteins involved in RNA metabolism, oxidative damage, and proteostasis like TDP-43. Thus, ROCK1 helps B cells cope with intense pathogen-driven destruction by coordinating the activity of key controllers of B cell differentiation and stress responses. These ROCK1-dependent mechanisms may be widely employed by cells to handle severe environmental stresses, and these findings may be relevant for immune-mediated and age-related neurodegenerative disorders.
Collapse
Affiliation(s)
- Juan Rivera-Correa
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, USA
- Biological Sciences Department, New York City College of Technology, City University of New York, Brooklyn, New York, USA
| | - Sanjay Gupta
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, USA
| | - Edd Ricker
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, USA
| | - Danny Flores-Castro
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, USA
| | - Daniel Jenkins
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, USA
| | - Stephen Vulcano
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, USA
| | - Swati P. Phalke
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, USA
| | - Tania Pannellini
- Research Division and Precision Medicine Laboratory, Hospital for Special Surgery, New York, New York, USA
| | - Matthew M. Miele
- Microchemistry & Proteomics Core at Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Zhuoning Li
- Microchemistry & Proteomics Core at Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Nahuel Zamponi
- Hematology and Oncology Division, Weill Cornell Medicine, New York, New York, USA
| | - Young-Bum Kim
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Yurii Chinenov
- David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
| | - Eugenia Giannopoulou
- Biological Sciences Department, New York City College of Technology, City University of New York, Brooklyn, New York, USA
- David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
| | - Leandro Cerchietti
- Hematology and Oncology Division, Weill Cornell Medicine, New York, New York, USA
| | - Alessandra B. Pernis
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, USA
- David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
- Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
3
|
Dong L, Yan L, Li Y, Li M, Feng W, Li X, Yue J, Zhang E, Luo Y, Bai Y. The monitoring of B lymphocytes in non-lymphoma patients following rituximab treatment. Front Immunol 2024; 15:1513303. [PMID: 39654895 PMCID: PMC11625799 DOI: 10.3389/fimmu.2024.1513303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 11/06/2024] [Indexed: 12/12/2024] Open
Abstract
RTX was initially used for non-Hodgkin's lymphoma treatment and has been used in the clinical treatment of various autoimmune diseases as well as in antirejection and immune induction therapy for kidney transplant recipients. Following RTX treatment, the time for B cell regeneration varies among patients, but there is no unified recommendation for the frequency of B cell monitoring. This study aimed to investigate the clinical significance of periodic monitoring of peripheral blood B lymphocytes in individualized immunotherapy following rituximab (RTX) treatment in patients with different diseases. This study included 488 patients with different diseases divided in four groups who were hospitalized and followed up from April 2017 to March 2024 (including 77, 161, 120, and 130 cases of neuromyelitis optica, pemphigus, membranous nephropathy, and kidney transplant recipients, respectively). Dynamic changes in percentage and absolute count of peripheral blood B lymphocytes before and after RTX treatment were investigated in the four groups, as well as the number of B cell subsets in 32 patients with optic neuromyelitis after RTX treatment. Although most patients showed high expression of B cells after 24 weeks, less than 6.8% of patients still began to experience B cell regeneration within 4 weeks. Thus, regular B cell monitoring following RTX treatment is helpful to better track the remission and recurrence of the disease and provide effective laboratory support for the selection and implementation of individualized immunotherapy.
Collapse
Affiliation(s)
- Linjie Dong
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Laboratory Medicine, Meishan City People’s Hospital, Meishan, Sichuan, China
| | - Lin Yan
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yi Li
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Mei Li
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Weihua Feng
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaoqiong Li
- Department of Laboratory Medicine, Meishan City People’s Hospital, Meishan, Sichuan, China
| | - Jiaxi Yue
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Erdi Zhang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yao Luo
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yangjuan Bai
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Saito Y, Harada A, Ushijima M, Tanaka K, Higuchi R, Baba A, Murakami D, Nutt SL, Nakagawa T, Ohkawa Y, Baba Y. Plasma cell differentiation is regulated by the expression of histone variant H3.3. Nat Commun 2024; 15:5004. [PMID: 38902223 PMCID: PMC11190180 DOI: 10.1038/s41467-024-49375-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 06/04/2024] [Indexed: 06/22/2024] Open
Abstract
The differentiation of B cells into plasma cells is associated with substantial transcriptional and epigenetic remodeling. H3.3 histone variant marks active chromatin via replication-independent nucleosome assembly. However, its role in plasma cell development remains elusive. Herein, we show that during plasma cell differentiation, H3.3 is downregulated, and the deposition of H3.3 and chromatin accessibility are dynamically changed. Blockade of H3.3 downregulation by enforced H3.3 expression impairs plasma cell differentiation in an H3.3-specific sequence-dependent manner. Mechanistically, enforced H3.3 expression inhibits the upregulation of plasma cell-associated genes such as Irf4, Prdm1, and Xbp1 and maintains the expression of B cell-associated genes, Pax5, Bach2, and Bcl6. Concomitantly, sustained H3.3 expression prevents the structure of chromatin accessibility characteristic for plasma cells. Our findings suggest that appropriate H3.3 expression and deposition control plasma cell differentiation.
Collapse
Affiliation(s)
- Yuichi Saito
- Division of Immunology and Genome Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
- Department of Otorhinolaryngology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Akihito Harada
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Miho Ushijima
- Division of Immunology and Genome Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Kaori Tanaka
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Ryota Higuchi
- Division of Immunology and Genome Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
- Department of Otorhinolaryngology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Akemi Baba
- Division of Immunology and Genome Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Daisuke Murakami
- Department of Otorhinolaryngology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Stephen L Nutt
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3050, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Takashi Nakagawa
- Department of Otorhinolaryngology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yasuyuki Ohkawa
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.
| | - Yoshihiro Baba
- Division of Immunology and Genome Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
5
|
Nguyen DC, Saney C, Hentenaar IT, Cabrera-Mora M, Capric V, Woodruff MC, Andrews J, Lonial S, Sanz I, Lee FEH. Majority of human circulating IgG plasmablasts stop blasting in a cell-free pro-survival culture. Sci Rep 2024; 14:3616. [PMID: 38350990 PMCID: PMC10864258 DOI: 10.1038/s41598-024-53977-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 02/07/2024] [Indexed: 02/16/2024] Open
Abstract
Following infection or vaccination, early-minted antibody secreting cells (ASC) or plasmablasts appear in circulation transiently, and a small fraction migrates to the spleen or bone marrow (BM) to mature into long-lived plasma cells (LLPC). While LLPC, by definition, are quiescent or non-dividing, the majority of blood ASC are thought to be "blasting" or proliferative. In this study, we find > 95% nascent blood ASC in culture express Ki-67 but only 6-12% incorporate BrdU after 4 h or 24 h labeling. In contrast, < 5% BM LLPC in culture are Ki-67+ with no BrdU uptake. Due to limitations of traditional flow cytometry, we utilized a novel optofluidic technology to evaluate cell division with simultaneous functional IgG secretion. We find 11% early-minted blood ASC undergo division, and none of the terminally differentiated BM LLPC (CD19-CD38hiCD138+) divide during the 7-21 days in culture. While BM LLPC undergo complete cell cycle arrest, the process of differentiation into an ASC or plasmablasts also discourages entry into S phase. Since the majority of Ki-67+ nascent blood ASC have exited cell cycle and are no longer actively "blasting", the term "plasmablast", which traditionally refers to an ASC that still has the capacity to divide, may probably be a misnomer.
Collapse
Affiliation(s)
- Doan C Nguyen
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Celia Saney
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, USA
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Ian T Hentenaar
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Monica Cabrera-Mora
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Violeta Capric
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Matthew C Woodruff
- Division of Rheumatology, Department of Medicine, Emory University, Atlanta, GA, USA
- Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
| | - Joel Andrews
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Sagar Lonial
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Ignacio Sanz
- Division of Rheumatology, Department of Medicine, Emory University, Atlanta, GA, USA
- Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
| | - F Eun-Hyung Lee
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, USA.
- Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA.
| |
Collapse
|
6
|
Neri P, Barwick BG, Jung D, Patton JC, Maity R, Tagoug I, Stein CK, Tilmont R, Leblay N, Ahn S, Lee H, Welsh SJ, Riggs DL, Stong N, Flynt E, Thakurta A, Keats JJ, Lonial S, Bergsagel PL, Boise LH, Bahlis NJ. ETV4-Dependent Transcriptional Plasticity Maintains MYC Expression and Results in IMiD Resistance in Multiple Myeloma. Blood Cancer Discov 2024; 5:56-73. [PMID: 37934799 PMCID: PMC10772538 DOI: 10.1158/2643-3230.bcd-23-0061] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 10/01/2023] [Accepted: 11/03/2023] [Indexed: 11/09/2023] Open
Abstract
Immunomodulatory drugs (IMiD) are a backbone therapy for multiple myeloma (MM). Despite their efficacy, most patients develop resistance, and the mechanisms are not fully defined. Here, we show that IMiD responses are directed by IMiD-dependent degradation of IKZF1 and IKZF3 that bind to enhancers necessary to sustain the expression of MYC and other myeloma oncogenes. IMiD treatment universally depleted chromatin-bound IKZF1, but eviction of P300 and BRD4 coactivators only occurred in IMiD-sensitive cells. IKZF1-bound enhancers overlapped other transcription factor binding motifs, including ETV4. Chromatin immunoprecipitation sequencing showed that ETV4 bound to the same enhancers as IKZF1, and ETV4 CRISPR/Cas9-mediated ablation resulted in sensitization of IMiD-resistant MM. ETV4 expression is associated with IMiD resistance in cell lines, poor prognosis in patients, and is upregulated at relapse. These data indicate that ETV4 alleviates IKZF1 and IKZF3 dependency in MM by maintaining oncogenic enhancer activity and identify transcriptional plasticity as a previously unrecognized mechanism of IMiD resistance. SIGNIFICANCE We show that IKZF1-bound enhancers are critical for IMiD efficacy and that the factor ETV4 can bind the same enhancers and substitute for IKZF1 and mediate IMiD resistance by maintaining MYC and other oncogenes. These data implicate transcription factor redundancy as a previously unrecognized mode of IMiD resistance in MM. See related article by Welsh, Barwick, et al., p. 34. See related commentary by Yun and Cleveland, p. 5. This article is featured in Selected Articles from This Issue, p. 4.
Collapse
Affiliation(s)
- Paola Neri
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Canada
| | - Benjamin G. Barwick
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - David Jung
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Canada
| | - Jonathan C. Patton
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Ranjan Maity
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Canada
| | - Ines Tagoug
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Canada
| | - Caleb K. Stein
- Division of Hematology and Oncology, Mayo Clinic, Scottsdale, Arizona
| | - Remi Tilmont
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Canada
| | - Noemie Leblay
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Canada
| | - Sungwoo Ahn
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Canada
| | - Holly Lee
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Canada
| | - Seth J. Welsh
- Division of Hematology and Oncology, Mayo Clinic, Scottsdale, Arizona
| | - Daniel L. Riggs
- Division of Hematology and Oncology, Mayo Clinic, Scottsdale, Arizona
| | - Nicholas Stong
- Translational Medicine, Bristol Myers Squibb, Summit, New Jersey
| | - Erin Flynt
- Predictive Sciences, Bristol Myers Squibb, Summit, New Jersey
| | - Anjan Thakurta
- Oxford Centre for Translational Myeloma Research, University of Oxford, Oxford, United Kingdom
| | | | - Sagar Lonial
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - P. Leif Bergsagel
- Division of Hematology and Oncology, Mayo Clinic, Scottsdale, Arizona
| | - Lawrence H. Boise
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Nizar J. Bahlis
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Canada
| |
Collapse
|
7
|
Nguyen DC, Saney C, Hentenaar IT, Cabrera-Mora M, Woodruff MC, Andrews J, Lonial S, Sanz I, Lee FEH. Majority of human circulating plasmablasts stop blasting: A probable misnomer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.10.557057. [PMID: 37745615 PMCID: PMC10515790 DOI: 10.1101/2023.09.10.557057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Following infection or vaccination, early-minted antibody secreting cells (ASC) or plasmablasts appear in circulation transiently, and a small fraction migrates to the spleen or bone marrow (BM) to mature into long-lived plasma cells (LLPC). While LLPC, by definition, are quiescent or non-dividing, the majority of blood ASC are thought to be "blasting" or proliferative. In this study, we find >95% nascent blood ASC in culture express Ki-67 but only 6-12% incorporate BrdU after 4h or 24h labeling. In contrast, <5% BM LLPC in culture are Ki-67 + with no BrdU uptake. Due to limitations of traditional flow cytometry, we utilized a novel optofluidic technology to evaluate cell division with simultaneous functional Ig secretion. We find 11% early-minted blood ASC undergo division, and none of the terminally differentiated BM LLPC (CD19 - CD38 hi CD138 + ) divide during the 7-21 days in culture. While BM LLPC undergo complete cell cycle arrest, the process of differentiation into an ASC of plasmablasts discourages entry into S phase. Since the majority of Ki-67 + nascent blood ASC have exited cell cycle and are no longer actively "blasting", the term "plasmablast", which traditionally refers to an ASC that still has the capacity to divide, may probably be a misnomer.
Collapse
|
8
|
Xiong E, Popp O, Salomon C, Mertins P, Kocks C, Rajewsky K, Chu VT. A CRISPR/Cas9-mediated screen identifies determinants of early plasma cell differentiation. Front Immunol 2023; 13:1083119. [PMID: 36685499 PMCID: PMC9849354 DOI: 10.3389/fimmu.2022.1083119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/12/2022] [Indexed: 01/06/2023] Open
Abstract
Introduction The differentiation of B cells into antibody-secreting plasma cells depends on cell division-coupled, epigenetic and other cellular processes that are incompletely understood. Methods We have developed a CRISPR/Cas9-based screen that models an early stage of T cell-dependent plasma cell differentiation and measures B cell survival or proliferation versus the formation of CD138+ plasmablasts. Here, we refined and extended this screen to more than 500 candidate genes that are highly expressed in plasma cells. Results Among known genes whose deletion preferentially or mostly affected plasmablast formation were the transcription factors Prdm1 (BLIMP1), Irf4 and Pou2af1 (OBF-1), and the Ern1 gene encoding IRE1a, while deletion of XBP1, the transcriptional master regulator that specifies the expansion of the secretory program in plasma cells, had no effect. Defective plasmablast formation caused by Ern1 deletion could not be rescued by the active, spliced form of XBP1 whose processing is dependent on and downstream of IRE1a, suggesting that in early plasma cell differentiation IRE1a acts independently of XBP1. Moreover, we newly identified several genes involved in NF-kB signaling (Nfkbia), vesicle trafficking (Arf4, Preb) and epigenetic regulators that form part of the NuRD complex (Hdac1, Mta2, Mbd2) to be required for plasmablast formation. Deletion of ARF4, a small GTPase required for COPI vesicle formation, impaired plasmablast formation and blocked antibody secretion. After Hdac1 deletion plasmablast differentiation was consistently reduced by about 50%, while deletion of the closely related Hdac2 gene had no effect. Hdac1 knock-out led to strongly perturbed protein expression of antagonistic transcription factors that govern plasma cell versus B cell identity (by decreasing IRF4 and BLIMP1 and increasing BACH2 and PAX5). Discussion Taken together, our results highlight specific and non-redundant roles for Ern1, Arf4 and Hdac1 in the early steps of plasma cell differentiation.
Collapse
Affiliation(s)
- Ermeng Xiong
- Immune Regulation and Cancer, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Oliver Popp
- Proteomics platform, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC) and Berlin Institute of Health (BIH), Berlin, Germany
| | - Claudia Salomon
- Immune Regulation and Cancer, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Philipp Mertins
- Proteomics platform, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC) and Berlin Institute of Health (BIH), Berlin, Germany
| | - Christine Kocks
- Immune Regulation and Cancer, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany,Genome Engineering & Disease Models, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Klaus Rajewsky
- Immune Regulation and Cancer, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany,*Correspondence: Klaus Rajewsky, ; Van Trung Chu,
| | - Van Trung Chu
- Immune Regulation and Cancer, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany,Genome Engineering & Disease Models, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany,*Correspondence: Klaus Rajewsky, ; Van Trung Chu,
| |
Collapse
|
9
|
Xiao F, Rui K, Shi X, Wu H, Cai X, Lui KO, Lu Q, Ballestar E, Tian J, Zou H, Lu L. Epigenetic regulation of B cells and its role in autoimmune pathogenesis. Cell Mol Immunol 2022; 19:1215-1234. [PMID: 36220996 PMCID: PMC9622816 DOI: 10.1038/s41423-022-00933-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/19/2022] [Indexed: 11/05/2022] Open
Abstract
B cells play a pivotal role in the pathogenesis of autoimmune diseases. Although previous studies have shown many genetic polymorphisms associated with B-cell activation in patients with various autoimmune disorders, progress in epigenetic research has revealed new mechanisms leading to B-cell hyperactivation. Epigenetic mechanisms, including those involving histone modifications, DNA methylation, and noncoding RNAs, regulate B-cell responses, and their dysregulation can contribute to the pathogenesis of autoimmune diseases. Patients with autoimmune diseases show epigenetic alterations that lead to the initiation and perpetuation of autoimmune inflammation. Moreover, many clinical and animal model studies have shown the promising potential of epigenetic therapies for patients. In this review, we present an up-to-date overview of epigenetic mechanisms with a focus on their roles in regulating functional B-cell subsets. Furthermore, we discuss epigenetic dysregulation in B cells and highlight its contribution to the development of autoimmune diseases. Based on clinical and preclinical evidence, we discuss novel epigenetic biomarkers and therapies for patients with autoimmune disorders.
Collapse
Affiliation(s)
- Fan Xiao
- Department of Pathology, Shenzhen Institute of Research and Innovation and Shenzhen Hospital, The University of Hong Kong, Hong Kong; Chongqing International Institute for Immunology, Chongqing, China
| | - Ke Rui
- Institute of Medical Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xiaofei Shi
- Department of Rheumatology and Immunology, The First Affiliated Hospital and School of Medicine, Henan University of Science and Technology, Luoyang, China
| | - Haijing Wu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Xiaoyan Cai
- Department of Rheumatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Kathy O Lui
- Department of Chemical Pathology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Qianjin Lu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Esteban Ballestar
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute, Badalona, 08916, Barcelona, Spain
- Epigenetics in Inflammatory and Metabolic Diseases Laboratory, Health Science Center, East China Normal University, Shanghai, China
| | - Jie Tian
- Institute of Medical Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, China.
| | - Hejian Zou
- Department of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China.
| | - Liwei Lu
- Department of Pathology, Shenzhen Institute of Research and Innovation and Shenzhen Hospital, The University of Hong Kong, Hong Kong; Chongqing International Institute for Immunology, Chongqing, China.
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong, China.
| |
Collapse
|
10
|
Kania AK, Price MJ, George-Alexander LE, Patterson DG, Hicks SL, Scharer CD, Boss JM. H3K27me3 Demethylase UTX Restrains Plasma Cell Formation. THE JOURNAL OF IMMUNOLOGY 2022; 208:1873-1885. [PMID: 35346967 PMCID: PMC9012698 DOI: 10.4049/jimmunol.2100948] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 02/02/2022] [Indexed: 11/19/2022]
Abstract
B cell differentiation is associated with substantial transcriptional, metabolic, and epigenetic remodeling, including redistribution of histone 3 lysine 27 trimethylation (H3K27me3), which is associated with a repressive chromatin state and gene silencing. Although the role of the methyltransferase EZH2 (Enhancer of zeste homolog 2) in B cell fate decisions has been well established, it is not known whether H3K27me3 demethylation is equally important. In this study, we showed that simultaneous genetic deletion of the two H3K27 demethylases UTX and JMJD3 (double-knockout [Utx fl/fl Jmjd3 fl/fl Cd19 cre/+] [dKO]) led to a significant increase in plasma cell (PC) formation after stimulation with the T cell-independent Ags LPS and NP-Ficoll. This phenotype occurred in a UTX-dependent manner as UTX single-knockout mice, but not JMJD3 single-knockout mice, mimicked the dKO. Although UTX- and JMJD3-deficient marginal zone B cells showed increased proliferation, dKO follicular B cells also showed increased PC formation. PCs from dKO mice upregulated genes associated with oxidative phosphorylation and exhibited increased spare respiratory capacity. Mechanistically, deletion of Utx and Jmjd3 resulted in higher levels of H3K27me3 at proapoptotic genes and resulted in reduced apoptosis of dKO PCs in vivo. Furthermore, UTX regulated chromatin accessibility at regions containing ETS and IFN regulatory factor (IRF) transcription factor family motifs, including motifs of known repressors of PC fate. Taken together, these data demonstrate that the H3K27me3 demethylases restrain B cell differentiation.
Collapse
Affiliation(s)
- Anna K Kania
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA
| | - Madeline J Price
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA
| | | | - Dillon G Patterson
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA
| | - Sakeenah L Hicks
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA
| | - Christopher D Scharer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA
| | - Jeremy M Boss
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
11
|
Saini A, Ghoneim HE, Lio CWJ, Collins PL, Oltz EM. Gene Regulatory Circuits in Innate and Adaptive Immune Cells. Annu Rev Immunol 2022; 40:387-411. [PMID: 35119910 DOI: 10.1146/annurev-immunol-101320-025949] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cell identity and function largely rely on the programming of transcriptomes during development and differentiation. Signature gene expression programs are orchestrated by regulatory circuits consisting of cis-acting promoters and enhancers, which respond to a plethora of cues via the action of transcription factors. In turn, transcription factors direct epigenetic modifications to revise chromatin landscapes, and drive contacts between distal promoter-enhancer combinations. In immune cells, regulatory circuits for effector genes are especially complex and flexible, utilizing distinct sets of transcription factors and enhancers, depending on the cues each cell type receives during an infection, after sensing cellular damage, or upon encountering a tumor. Here, we review major players in the coordination of gene regulatory programs within innate and adaptive immune cells, as well as integrative omics approaches that can be leveraged to decipher their underlying circuitry. Expected final online publication date for the Annual Review of Immunology, Volume 40 is April 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Ankita Saini
- Department of Microbial Infection and Immunity and Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio, USA; ,
| | - Hazem E Ghoneim
- Department of Microbial Infection and Immunity and Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio, USA; ,
| | - Chan-Wang Jerry Lio
- Department of Microbial Infection and Immunity and Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio, USA; ,
| | - Patrick L Collins
- Department of Microbial Infection and Immunity and Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio, USA; ,
| | - Eugene M Oltz
- Department of Microbial Infection and Immunity and Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio, USA; ,
| |
Collapse
|
12
|
Patterson DG, Kania AK, Price MJ, Rose JR, Scharer CD, Boss JM. An IRF4-MYC-mTORC1 Integrated Pathway Controls Cell Growth and the Proliferative Capacity of Activated B Cells during B Cell Differentiation In Vivo. THE JOURNAL OF IMMUNOLOGY 2021; 207:1798-1811. [PMID: 34470852 DOI: 10.4049/jimmunol.2100440] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/30/2021] [Indexed: 12/13/2022]
Abstract
Cell division is an essential component of B cell differentiation to Ab-secreting plasma cells, with critical reprogramming occurring during the initial stages of B cell activation. However, a complete understanding of the factors that coordinate early reprogramming events in vivo remain to be determined. In this study, we examined the initial reprogramming by IRF4 in activated B cells using an adoptive transfer system and mice with a B cell-specific deletion of IRF4. IRF4-deficient B cells responding to influenza, 4-hydroxy-3-nitrophenylacetyl-Ficoll, and LPS divided but stalled during the proliferative response. Gene expression profiling of IRF4-deficient B cells at discrete divisions revealed IRF4 was critical for inducing MYC target genes, oxidative phosphorylation, and glycolysis. Moreover, IRF4-deficient B cells maintained an inflammatory gene expression signature. Complementary chromatin accessibility analyses established a hierarchy of IRF4 activity and identified networks of dysregulated transcription factor families in IRF4-deficient B cells, including E-box binding bHLH family members. Indeed, B cells lacking IRF4 failed to fully induce Myc after stimulation and displayed aberrant cell cycle distribution. Furthermore, IRF4-deficient B cells showed reduced mTORC1 activity and failed to initiate the B cell activation unfolded protein response and grow in cell size. Myc overexpression in IRF4-deficient cells was sufficient to overcome the cell growth defect. Together, these data reveal an IRF4-MYC-mTORC1 relationship critical for controlling cell growth and the proliferative response during B cell differentiation.
Collapse
Affiliation(s)
- Dillon G Patterson
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA; and.,The Emory Vaccine Center, Emory University School of Medicine, Emory University, Atlanta, GA
| | - Anna K Kania
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA; and.,The Emory Vaccine Center, Emory University School of Medicine, Emory University, Atlanta, GA
| | - Madeline J Price
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA; and.,The Emory Vaccine Center, Emory University School of Medicine, Emory University, Atlanta, GA
| | - James R Rose
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA; and.,The Emory Vaccine Center, Emory University School of Medicine, Emory University, Atlanta, GA
| | - Christopher D Scharer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA; and.,The Emory Vaccine Center, Emory University School of Medicine, Emory University, Atlanta, GA
| | - Jeremy M Boss
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA; and .,The Emory Vaccine Center, Emory University School of Medicine, Emory University, Atlanta, GA
| |
Collapse
|
13
|
Imran S, Neeland MR, Koplin J, Dharmage S, Tang MLK, Sawyer S, Dang T, McWilliam V, Peters R, Perrett KP, Novakovic B, Saffery R. Epigenetic programming underpins B-cell dysfunction in peanut and multi-food allergy. Clin Transl Immunology 2021; 10:e1324. [PMID: 34466226 PMCID: PMC8384135 DOI: 10.1002/cti2.1324] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/07/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Rates of IgE-mediated food allergy (FA) have increased over the last few decades, and mounting evidence implicates disruption of epigenetic profiles in various immune cell types in FA development. Recent data implicate B-cell dysfunction in FA; however, few studies have examined epigenetic changes within these cells. METHODS We assessed epigenetic and transcriptomic profiles in purified B cells from adolescents with FA, comparing single-food-allergic (peanut only), multi-food-allergic (peanut and ≥1 other food) and non-allergic (control) individuals. Adolescents represent a phenotype of persistent and severe FA indicative of a common immune deviation. RESULTS We identified 144 differentially methylated probes (DMPs) and 116 differentially expressed genes (DEGs) that distinguish B cells of individuals with FA from controls, including differential methylation of the PM20D1 promoter previously associated with allergic disorders. Subgroup comparisons found 729 DMPs specific to either single-food- or multi-food-allergic individuals, suggesting epigenetic distinctions between allergy groups. This included two regions with increased methylation near three S100 genes in multi-food-allergic individuals. Ontology results of DEGs specific to multi-food-allergic individuals revealed enrichment of terms associated with myeloid cell activation. Motif enrichment analysis of promoters associated with DMPs and DEGs showed differential enrichment for motifs recognised by transcription factors regulating B- and T-cell development, B-cell lineage determination and TGF-β signalling pathway between the multi-food-allergic and single-food-allergic groups. CONCLUSION Our data highlight epigenetic changes in B cells associated with peanut allergy, distinguishing features of the epigenome between single-food- and multi-food-allergic individuals and revealing differential developmental pathways potentially underpinning these distinct phenotypes.
Collapse
Affiliation(s)
- Samira Imran
- Murdoch Children’s Research Institute, and Department of PaediatricsUniversity of MelbourneRoyal Children's HospitalParkvilleVICAustralia
| | - Melanie R Neeland
- Murdoch Children’s Research Institute, and Department of PaediatricsUniversity of MelbourneRoyal Children's HospitalParkvilleVICAustralia
| | - Jennifer Koplin
- Murdoch Children’s Research Institute, and Department of PaediatricsUniversity of MelbourneRoyal Children's HospitalParkvilleVICAustralia
| | - Shyamali Dharmage
- Murdoch Children’s Research Institute, and Department of PaediatricsUniversity of MelbourneRoyal Children's HospitalParkvilleVICAustralia
- Allergy and Lung Health UnitMelbourne School of Population and Global HealthUniversity of MelbourneCarltonVICAustralia
| | - Mimi LK Tang
- Murdoch Children’s Research Institute, and Department of PaediatricsUniversity of MelbourneRoyal Children's HospitalParkvilleVICAustralia
- Department of Allergy and ImmunologyRoyal Children's HospitalMelbourneVICAustralia
| | - Susan Sawyer
- Murdoch Children’s Research Institute, and Department of PaediatricsUniversity of MelbourneRoyal Children's HospitalParkvilleVICAustralia
- Centre for Adolescent HealthRoyal Children's HospitalMelbourneVICAustralia
| | - Thanh Dang
- Murdoch Children’s Research Institute, and Department of PaediatricsUniversity of MelbourneRoyal Children's HospitalParkvilleVICAustralia
| | - Vicki McWilliam
- Murdoch Children’s Research Institute, and Department of PaediatricsUniversity of MelbourneRoyal Children's HospitalParkvilleVICAustralia
- Department of Allergy and ImmunologyRoyal Children's HospitalMelbourneVICAustralia
| | - Rachel Peters
- Murdoch Children’s Research Institute, and Department of PaediatricsUniversity of MelbourneRoyal Children's HospitalParkvilleVICAustralia
| | - Kirsten P Perrett
- Murdoch Children’s Research Institute, and Department of PaediatricsUniversity of MelbourneRoyal Children's HospitalParkvilleVICAustralia
- Department of Allergy and ImmunologyRoyal Children's HospitalMelbourneVICAustralia
| | - Boris Novakovic
- Murdoch Children’s Research Institute, and Department of PaediatricsUniversity of MelbourneRoyal Children's HospitalParkvilleVICAustralia
| | - Richard Saffery
- Murdoch Children’s Research Institute, and Department of PaediatricsUniversity of MelbourneRoyal Children's HospitalParkvilleVICAustralia
| |
Collapse
|