1
|
Chen L, Wu P, Zhu Y, Luo H, Tan Q, Chen Y, Luo D, Chen Z. Electrospinning strategies targeting fibroblast for wound healing of diabetic foot ulcers. APL Bioeng 2025; 9:011501. [PMID: 40027546 PMCID: PMC11869202 DOI: 10.1063/5.0235412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 02/11/2025] [Indexed: 03/05/2025] Open
Abstract
The high incidence and prevalence of diabetic foot ulcers (DFUs) present a substantial clinical and economic burden, necessitating innovative therapeutic approaches. Fibroblasts, characterized by their intrinsic cellular plasticity and multifunctional capabilities, play key roles in the pathophysiological processes underlying DFUs. Hyperglycemic conditions lead to a cascade of biochemical alterations that culminate in the dysregulation of fibroblast phenotype and function, which is the primary cause of impaired wound healing in DFUs. Biomaterials, particularly those engineered at the nanoscale, hold significant promise for enhancing DFU treatment outcomes. Electrospun nanofiber scaffolds, with their structural and compositional similarities to the natural extracellular matrix, serve as an effective substrate for fibroblast adhesion, proliferation, and migration. This review comprehensively summarizes the biological behavior of fibroblasts in DFUs and the mechanism mediating wound healing. At the same time, the mechanism of biological materials, especially electrospun nanofiber scaffolds, to improve the therapeutic effect by regulating the activity of fibroblasts was also discussed. By highlighting the latest advancements and clinical applications, we aim to provide a clear perspective on the future direction of DFU treatment strategies centered on fibroblast-targeted therapies.
Collapse
Affiliation(s)
| | - Ping Wu
- Department of Burn plastic and Cosmetology, Chongqing University FuLing HospitalChina
| | - Yu Zhu
- Department of Burn plastic and Cosmetology, Chongqing University FuLing HospitalChina
| | - Han Luo
- Department of Burn plastic and Cosmetology, Chongqing University FuLing HospitalChina
| | - Qiang Tan
- Department of Burn plastic and Cosmetology, Chongqing University FuLing HospitalChina
| | - Yongsong Chen
- Department of Burn plastic and Cosmetology, Chongqing University FuLing HospitalChina
| | - Dan Luo
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, Sichuan 610500, China
| | - Zhiyong Chen
- Author to whom correspondence should be addressed:
| |
Collapse
|
2
|
Mohammadian S, Hosseni SJ, Negad Dehbashi F, Dayer D. The Insulin-Producing Cells Generated from Rat Adipose Tissue Mesenchymal Stem Cells via Pdx1 Overexpression Activate an Immune Response both in Vitro and in Vivo. IRANIAN JOURNAL OF MEDICAL SCIENCES 2025; 50:112-123. [PMID: 40026296 PMCID: PMC11870862 DOI: 10.30476/ijms.2024.101162.3378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/25/2024] [Accepted: 04/19/2024] [Indexed: 03/05/2025]
Abstract
Background The current work investigated the immunological features of insulin-producing cells (IPCs) generated from rat adipose-derived mesenchymal stem cells (ADSCs) both in vitro and in vivo. Methods The research was carried out at Ahvaz Jundishapur University of Medical Sciences in 2023. ADSCs were derived from rat adipose tissues and differentiated into IPCs. The control group included undifferentiated ADSCs. The amount of secreted insulin was measured using ELISA. The expression of major histocompatibility complex-I (MHC-I) and MHC-II, cluster of differentiation 40 (CD40), and CD80 by IPCs in vitro was assessed using Western Blot analysis. The in vivo study was performed on 10 male diabetic rats. The experimental group received 107 IPCs in the peritoneal cavity. The control group received 107 undifferentiated ADSCs. After 4 hours, the expression of CD3a and CD45 by immune cells collected from the peritoneal cavity was measured using flow cytometry. All parameters were statistically analyzed using a t test. Results The differentiated cells secreted much higher amounts of insulin than the control group (P=0.04). IPCs exhibited higher expression of MHC-I and MHC-II, CD40, and CD80 (P=0.02, P=0.008, P=0.07, and P=0.02, respectively). The experimental group showed higher levels of CD3a and CD45 expression than the control group (P=0.07, P=0.04, respectively). Conclusion Functional IPCs generated by ADSCs differentiation exhibited immunogenic activity both in vitro and in vivo. Immune-modulating strategies are required for the effective transplantation of the differentiated IPCs generated in our study.
Collapse
Affiliation(s)
- Shadab Mohammadian
- Group of Biotechnology, Institute of Persian Gulf, Persian Gulf University, Bushehr, Iran
- Department of Biological Science and Technology, Faculty of Nano and Bio Science and Technology, Persian Gulf University, Bushehr, Iran
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Javad Hosseni
- Group of Biotechnology, Institute of Persian Gulf, Persian Gulf University, Bushehr, Iran
- Department of Biological Science and Technology, Faculty of Nano and Bio Science and Technology, Persian Gulf University, Bushehr, Iran
| | - Fereshte Negad Dehbashi
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Dian Dayer
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
3
|
Zhou X, Wu Y, Zhu Z, Lu C, Zhang C, Zeng L, Xie F, Zhang L, Zhou F. Mucosal immune response in biology, disease prevention and treatment. Signal Transduct Target Ther 2025; 10:7. [PMID: 39774607 PMCID: PMC11707400 DOI: 10.1038/s41392-024-02043-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/05/2024] [Accepted: 10/27/2024] [Indexed: 01/11/2025] Open
Abstract
The mucosal immune system, as the most extensive peripheral immune network, serves as the frontline defense against a myriad of microbial and dietary antigens. It is crucial in preventing pathogen invasion and establishing immune tolerance. A comprehensive understanding of mucosal immunity is essential for developing treatments that can effectively target diseases at their entry points, thereby minimizing the overall impact on the body. Despite its importance, our knowledge of mucosal immunity remains incomplete, necessitating further research. The outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has underscored the critical role of mucosal immunity in disease prevention and treatment. This systematic review focuses on the dynamic interactions between mucosa-associated lymphoid structures and related diseases. We delve into the basic structures and functions of these lymphoid tissues during disease processes and explore the intricate regulatory networks and mechanisms involved. Additionally, we summarize novel therapies and clinical research advances in the prevention of mucosal immunity-related diseases. The review also addresses the challenges in developing mucosal vaccines, which aim to induce specific immune responses while maintaining tolerance to non-pathogenic microbes. Innovative therapies, such as nanoparticle vaccines and inhalable antibodies, show promise in enhancing mucosal immunity and offer potential for improved disease prevention and treatment.
Collapse
Affiliation(s)
- Xiaoxue Zhou
- School of Medicine, Hangzhou City University, Hangzhou, China
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Yuchen Wu
- The First School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhipeng Zhu
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Chu Lu
- The First Affiliated Hospital, the Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Chunwu Zhang
- The First School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Linghui Zeng
- School of Medicine, Hangzhou City University, Hangzhou, China
| | - Feng Xie
- The First Affiliated Hospital, the Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China.
| | - Long Zhang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China.
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Fangfang Zhou
- The First Affiliated Hospital, the Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
4
|
Nayar S, Turner JD, Asam S, Fennell E, Pugh M, Colafrancesco S, Berardicurti O, Smith CG, Flint J, Teodosio A, Iannizzotto V, Gardner DH, van Roon J, Korsunsky I, Howdle D, Frei AP, Lassen KG, Bowman SJ, Ng WF, Croft AP, Filer A, Fisher BA, Buckley CD, Barone F. Molecular and spatial analysis of tertiary lymphoid structures in Sjogren's syndrome. Nat Commun 2025; 16:5. [PMID: 39747819 PMCID: PMC11697438 DOI: 10.1038/s41467-024-54686-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/18/2024] [Indexed: 01/04/2025] Open
Abstract
Tertiary lymphoid structures play important roles in autoimmune and non-autoimmune conditions. While many of the molecular mechanisms involved in tertiary lymphoid structure formation have been identified, the cellular sources and temporal and spatial relationship remain unknown. Here we use combine single-cell RNA-sequencing, spatial transcriptomics and proteomics of minor salivary glands of patients with Sjogren's disease and Sicca Syndrome, with ex-vivo functional studies to construct a cellular and spatial map of key components involved in the formation and function of tertiary lymphoid structures. We confirm the presence of a fibroblast cell state and identify a pericyte/mural cell state with potential immunological functions. The identification of cellular properties associated with these structures and the molecular and functional interactions identified by this analysis may provide key therapeutic cues for tertiary lymphoid structures associated conditions in autoimmunity and cancer.
Collapse
Affiliation(s)
- Saba Nayar
- Rheumatology Research Group, Department of Inflammation and Ageing, College of Medicine & Health, University of Birmingham, Birmingham, UK
- National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- Birmingham Tissue Analytics, College of Medicine & Health, University of Birmingham, Birmingham, UK
| | - Jason D Turner
- Rheumatology Research Group, Department of Inflammation and Ageing, College of Medicine & Health, University of Birmingham, Birmingham, UK
| | - Saba Asam
- Rheumatology Research Group, Department of Inflammation and Ageing, College of Medicine & Health, University of Birmingham, Birmingham, UK
- UCL Genomics, Zayed Centre for Research into Rare Disease in Children, University College London, London, UK
| | - Eanna Fennell
- School of Medicine & HRI & Bernal Institute, University of Limerick, Limerick, Ireland
| | - Matthew Pugh
- Department of Immunology and Immunotherapy, College of Medicine & Health, University of Birmingham, Birmingham, UK
| | | | - Onorina Berardicurti
- Rheumatology, Immunology and Clinical Medicine Unit, Department of Medicine, Università Campus Bio-Medico, Rome, and Immunorheumatology Unit, Fondazione Policlinico Universitario Campus Bio Medico, Rome, Italy
| | - Charlotte G Smith
- Rheumatology Research Group, Department of Inflammation and Ageing, College of Medicine & Health, University of Birmingham, Birmingham, UK
| | - Joe Flint
- Birmingham Tissue Analytics, College of Medicine & Health, University of Birmingham, Birmingham, UK
| | - Ana Teodosio
- Birmingham Tissue Analytics, College of Medicine & Health, University of Birmingham, Birmingham, UK
| | - Valentina Iannizzotto
- Rheumatology Research Group, Department of Inflammation and Ageing, College of Medicine & Health, University of Birmingham, Birmingham, UK
| | - David H Gardner
- Birmingham Tissue Analytics, College of Medicine & Health, University of Birmingham, Birmingham, UK
| | - Joel van Roon
- Department of Rheumatology & Clinical Immunology/Laboratory of Translational Immunology, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Ilya Korsunsky
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
| | - Dawn Howdle
- Birmingham Tissue Analytics, College of Medicine & Health, University of Birmingham, Birmingham, UK
| | - Andreas P Frei
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Kara G Lassen
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Simon J Bowman
- Rheumatology Research Group, Department of Inflammation and Ageing, College of Medicine & Health, University of Birmingham, Birmingham, UK
- National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Wan-Fai Ng
- HRB Clinical Research Facility, University College Cork, Cork, Ireland
| | - Adam P Croft
- Rheumatology Research Group, Department of Inflammation and Ageing, College of Medicine & Health, University of Birmingham, Birmingham, UK
| | - Andrew Filer
- Rheumatology Research Group, Department of Inflammation and Ageing, College of Medicine & Health, University of Birmingham, Birmingham, UK
- National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- Birmingham Tissue Analytics, College of Medicine & Health, University of Birmingham, Birmingham, UK
| | - Benjamin A Fisher
- Rheumatology Research Group, Department of Inflammation and Ageing, College of Medicine & Health, University of Birmingham, Birmingham, UK
- National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Christopher D Buckley
- Rheumatology Research Group, Department of Inflammation and Ageing, College of Medicine & Health, University of Birmingham, Birmingham, UK
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Francesca Barone
- Rheumatology Research Group, Department of Inflammation and Ageing, College of Medicine & Health, University of Birmingham, Birmingham, UK.
- Candel Therapeutics, Needham, MA, USA.
| |
Collapse
|
5
|
Jeevanandam A, Yin Z, Connolly KA, Joshi NS. Mouse Models Enable the Functional Investigation of Tertiary Lymphoid Structures in Cancer. Methods Mol Biol 2025; 2864:57-76. [PMID: 39527217 DOI: 10.1007/978-1-0716-4184-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Tertiary lymphoid structures (TLSs) are organized lymphoid aggregates that form within nonlymphoid tissue, including tumors, in response to persistent inflammatory stimulation. In cancer patients, TLSs are generally associated with positive clinical outcomes. However, the cellular composition and spatial distribution of TLSs can vary depending on the underlying disease state, complicating interpretations of their prognostic significance. Murine models are indispensable for providing a deeper insight into the mechanisms involved in TLS formation and function. Studies using these models can complement current clinical efforts to characterize TLSs via genetic sequencing and histopathology of human samples. Several features of TLSs resemble that of secondary lymphoid organs (SLOs). Consequently, vascular system components and structural support elements are important for TLS formation and maintenance. Furthermore, TLSs in different tissue environments can exhibit distinct characteristics, necessitating careful consideration when selecting mouse models for study. Herein, we discuss critical aspects to consider when modeling TLSs and describe recent findings of TLS studies in the mouse lung and intestinal gut environments as examples to highlight the importance of considering tissue-specific regulatory mechanisms for TLSs. In this chapter, we also summarize the mechanistic insights derived from murine models on the formation and function of TLSs, which may translate to the future therapeutic modulation of TLS in disease.
Collapse
Affiliation(s)
- Advait Jeevanandam
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Zixi Yin
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Kelli A Connolly
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Nikhil S Joshi
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
6
|
Kim HM, Bruno TC. An Introduction to Tertiary Lymphoid Structures in Cancer. Methods Mol Biol 2025; 2864:1-19. [PMID: 39527214 DOI: 10.1007/978-1-0716-4184-2_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Immunotherapy has revolutionized therapeutics for cancer patients, which signifies the importance of effective antitumor immunity in combatting cancer. However, the benefit of immunotherapies is limited to specific patient populations and tumor types, suggesting the overt need for new immunotherapeutic targets. Tertiary lymphoid structures (TLS) are ectopic lymph node-like structures that develop at the sites of chronic inflammation such as cancer. TLS are correlated with favorable clinical outcomes across multiple solid tumors and are associated with increased tumor-infiltrating lymphocytes (TILs), particularly effector memory CD8+ T cells. Despite strong clinical data in humans, there are still major knowledge gaps on the function of TLS in cancer. Herein, we highlight the known biology and clinical impact of TLS, which offer further evidence to harness TLS for improved immunotherapeutics.
Collapse
Affiliation(s)
- Hye Mi Kim
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Tumor Microenvironment Center (TMC), UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Program in Microbiology and Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tullia C Bruno
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
- Tumor Microenvironment Center (TMC), UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
- Cancer Immunology and Immunotherapy Program (CIIP), UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
| |
Collapse
|
7
|
Gutierrez-Chavez C, Knockaert S, Dieu-Nosjean MC, Goc J. Methods for Selective Gene Expression Profiling in Single Tertiary Lymphoid Structure Using Laser Capture Microdissection. Methods Mol Biol 2025; 2864:107-126. [PMID: 39527219 DOI: 10.1007/978-1-0716-4184-2_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Tertiary lymphoid structures (TLS) are de novo lymphoid formations that are induced within tissues during inflammatory episodes. TLS have been reported at various anatomic sites and in many different contexts like cancer, infections, autoimmunity, graft rejection, and idiopathic diseases. These inducible, ectopic, and transient lymphoid structures exhibit the prototypical architecture found within secondary lymphoid organs (SLO) and have been increasingly recognized as a major driver of local adaptive immune reaction. As TLS emerge within tissues, the isolation in situ and the molecular characterization of these structures are challenging to perform. Laser capture microdissection (LCM) is a powerful tool to isolate selective structural components and cells from frozen or paraffin-embedded tissues. We and other groups previously applied LCM to decipher the molecular network within TLS and uncover their intrinsic connection with the local microenvironment. In this chapter, we describe a detailed LCM method for selecting and isolating TLS in situ to perform comprehensive downstream molecular analyses.
Collapse
Affiliation(s)
- Claudia Gutierrez-Chavez
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS 1138, Cordeliers Research Center, Laboratory "Cancer, Immune Control and Escape", Paris, France
- Université Paris Cité, UMRS 1138, Cordeliers Research Center, Paris, France
- Sorbonne University, UMRS 1138, Cordeliers Research Center, Paris, France
- Vall d'Hebron Institute of Oncology, Aging and Cancer Group, Barcelona, Spain
| | - Samantha Knockaert
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS 1138, Cordeliers Research Center, Laboratory "Cancer, Immune Control and Escape", Paris, France
- Université Paris Cité, UMRS 1138, Cordeliers Research Center, Paris, France
- Sorbonne University, UMRS 1138, Cordeliers Research Center, Paris, France
- Institut de Recherches Servier, Center for Therapeutic Innovation in Oncology, Croissy-sur-Seine, France
| | - Marie-Caroline Dieu-Nosjean
- UMRS1135 Sorbonne Université, Paris, France
- Inserm U1135, Paris, France
- Team "Immune Microenvironment and Immunotherapy", Centre of Immunology and Microbial Infections (CIMI), Faculté de Médecine Sorbonne Université, Paris, France
| | - Jeremy Goc
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS 1138, Cordeliers Research Center, Laboratory "Cancer, Immune Control and Escape", Paris, France.
- Université Paris Cité, UMRS 1138, Cordeliers Research Center, Paris, France.
- Sorbonne University, UMRS 1138, Cordeliers Research Center, Paris, France.
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology and Hepatology, Department of Microbiology and Immunology and The Jill Robert's Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| |
Collapse
|
8
|
Zubkova E, Kalinin A, Beloglazova I, Kurilina E, Menshikov M, Parfyonova Y, Tsokolaeva Z. Artificial Tertiary Lymphoid Structures: Exploring Mesenchymal Stromal Cells as a Platform for Immune Niche Formation. Int J Mol Sci 2024; 25:13286. [PMID: 39769051 PMCID: PMC11676966 DOI: 10.3390/ijms252413286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/05/2024] [Accepted: 12/07/2024] [Indexed: 01/11/2025] Open
Abstract
Constructing artificial tertiary lymphoid structures (TLSs) opens new avenues for advancing cancer immunotherapy and personalized medicine by creating controllable immune niches. Mesenchymal stromal cells (MSCs) offer an ideal stromal source for such constructs, given their potent immunomodulatory abilities and accessibility. In this study, we explored the potential of adipose-derived MSCs to adopt TLS-supportive phenotypes and facilitate lymphocyte organization. Single-cell RNA sequencing revealed a distinct subpopulation of MSCs expressing key fibroblastic reticular cell (FRC)-associated markers, including IL-7, PDPN, and IL-15, though lacking follicular dendritic cell (FDC) markers. TNF-α stimulation, but not LTα2β1, further enhanced FRC marker expression (IL-7, PDPN, and ICAM1). Notably, in 3D spheroid co-culture with lymphocytes, MSCs upregulated additional FRC markers, specifically CCL21. Upon implantation into adipose tissue, MSC-lymphocyte organoids maintained structural integrity and showed extensive T-cell infiltration and partial vascularization after 15 days in vivo, although organized B-cell follicles and FDC markers were still lacking. These findings highlight MSCs' intrinsic ability to adopt an FRC-like phenotype that supports T-cell and HEV organization, suggesting that further optimization, including genetic modification, may be needed to achieve an FDC phenotype and replicate the full architectural and functional complexity of TLSs.
Collapse
Affiliation(s)
- Ekaterina Zubkova
- National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Moscow 121552, Russia
| | - Alexander Kalinin
- National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Moscow 121552, Russia
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Irina Beloglazova
- National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Moscow 121552, Russia
| | - Ella Kurilina
- National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Moscow 121552, Russia
| | - Mikhail Menshikov
- National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Moscow 121552, Russia
| | - Yelena Parfyonova
- National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Moscow 121552, Russia
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Zoya Tsokolaeva
- National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Moscow 121552, Russia
- Negovsky Research Institute of General Reanimatology, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow 107031, Russia
| |
Collapse
|
9
|
Bod L, Shalapour S. B cells spatial organization defines their phenotype and function in cancer "Tell me with whom you consort, and I will tell you who you are" - Goethe. Curr Opin Immunol 2024; 91:102504. [PMID: 39547092 DOI: 10.1016/j.coi.2024.102504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/15/2024] [Accepted: 10/21/2024] [Indexed: 11/17/2024]
Abstract
The presence of B cells and their subtypes in the tumor environment has been recognized a for very long time. Immunoglobulins specific for more than thousands of tumor-associated antigens were detected in the sera of patients with cancer; however, antibody-mediated cancer cell killing is usually impaired. The role of humoral immune response remained elusive until recently, with new discoveries regarding their contribution in regulating antitumor immunity, particularly during immunotherapy. Humoral immunity has been described to promote or attenuate tumorigenesis and can have opposing effects on therapeutic outcome in different tumor entities. The antagonism effect of B cells depends on their subtypes and immunoglobulin isotypes and is regulated by their spatial distribution and localization. In this short review, we will focus on how the spatial organization of B cells within the tumor microenvironment, tumor-associated lymph nodes, and tertiary lymphoid structures define their fate and function and contribute to the regulation of antitumor immunity.
Collapse
Affiliation(s)
- Lloyd Bod
- Department of Medicine, Krantz Family Center for Cancer Research, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Shabnam Shalapour
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA.
| |
Collapse
|
10
|
Montauti E, Oh DY, Fong L. CD4 + T cells in antitumor immunity. Trends Cancer 2024; 10:969-985. [PMID: 39242276 PMCID: PMC11464182 DOI: 10.1016/j.trecan.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 09/09/2024]
Abstract
Advances in cancer immunotherapy have transformed cancer care and realized unprecedented responses in many patients. The growing arsenal of novel therapeutics - including immune checkpoint inhibition (ICI), adoptive T cell therapies (ACTs), and cancer vaccines - reflects the success of cancer immunotherapy. The therapeutic benefits of these treatment modalities are generally attributed to the enhanced quantity and quality of antitumor CD8+ T cell responses. Nevertheless, CD4+ T cells are now recognized to play key roles in both the priming and effector phases of the antitumor immune response. In addition to providing T cell help through co-stimulation and cytokine production, CD4+ T cells can also possess cytotoxicity either directly on MHC class II-expressing tumor cells or to other cells within the tumor microenvironment (TME). The presence of specific populations of CD4+ T cells, and their intrinsic plasticity, within the TME can represent an important determinant of clinical response to immune checkpoint inhibitors, vaccines, and chimeric antigen receptor (CAR) T cell therapies. Understanding how the antitumor functions of specific CD4+ T cell types are induced while limiting their protumorigenic attributes will enable more successful immunotherapies.
Collapse
Affiliation(s)
- Elena Montauti
- Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - David Y Oh
- Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Lawrence Fong
- Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA; Immunotherapy Integrated Research Center, Fred Hutchison Cancer Center, Seattle, WA, USA.
| |
Collapse
|
11
|
Hovd AMK, Nayar S, Smith CG, Kanapathippillai P, Iannizzotto V, Barone F, Fenton KA, Pedersen HL. Podoplanin expressing macrophages and their involvement in tertiary lymphoid structures in mouse models of Sjögren's disease. Front Immunol 2024; 15:1455238. [PMID: 39355243 PMCID: PMC11442383 DOI: 10.3389/fimmu.2024.1455238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/21/2024] [Indexed: 10/03/2024] Open
Abstract
Tertiary lymphoid structures (TLSs) are formed in tissues targeted by chronic inflammation processes, such as infection and autoimmunity. In Sjögren's disease, the organization of immune cells into TLS is an important part of disease progression. Here, we investigated the dynamics of tissue resident macrophages in the induction and expansion of salivary gland TLS. We induced Sjögren's disease by cannulation of the submandibular glands of C57BL/6J mice with LucAdV5. In salivary gland tissues from these mice, we analyzed the different macrophage populations prior to cannulation on day 0 and on day 2, 5, 8, 16 and 23 post-infection using multicolored flow cytometry, mRNA gene analysis, and histological evaluation of tissue specific macrophages. The histological localization of macrophages in the LucAdV5 induced inflamed salivary glands was compared to salivary glands of NZBW/F1 lupus prone mice, a spontaneous mouse model of Sjögren's disease. The evaluation of the dynamics and changes in macrophage phenotype revealed that the podoplanin (PDPN) expressing CX3CR1+ macrophage population was increased in the salivary gland tissue during LucAdV5 induced inflammation. This PDPN+ CX3CR1+ macrophage population was, together with PDPN+CD206+ macrophages, observed to be localized in the parenchyma during the acute inflammation phase as well as surrounding the TLS structure in the later stages of inflammation. This suggests a dual role of tissue resident macrophages, contributing to both proinflammatory and anti-inflammatory processes, as well as their possible interactions with other immune cells within the inflamed tissue. These macrophages may be involved with lymphoid neogenesis, which is associated with disease severity and progression. In conclusion, our study substantiates the involvement of proinflammatory and regulatory macrophages in autoimmune pathology and underlines the possible multifaceted functions of macrophages in lymphoid cell organization.
Collapse
Affiliation(s)
- Aud-Malin Karlsson Hovd
- Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Saba Nayar
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Charlotte G. Smith
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Premasany Kanapathippillai
- Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Valentina Iannizzotto
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Francesca Barone
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Kristin Andreassen Fenton
- Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Hege Lynum Pedersen
- Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
12
|
Zhao L, Jin S, Wang S, Zhang Z, Wang X, Chen Z, Wang X, Huang S, Zhang D, Wu H. Tertiary lymphoid structures in diseases: immune mechanisms and therapeutic advances. Signal Transduct Target Ther 2024; 9:225. [PMID: 39198425 PMCID: PMC11358547 DOI: 10.1038/s41392-024-01947-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/02/2024] [Accepted: 08/01/2024] [Indexed: 09/01/2024] Open
Abstract
Tertiary lymphoid structures (TLSs) are defined as lymphoid aggregates formed in non-hematopoietic organs under pathological conditions. Similar to secondary lymphoid organs (SLOs), the formation of TLSs relies on the interaction between lymphoid tissue inducer (LTi) cells and lymphoid tissue organizer (LTo) cells, involving multiple cytokines. Heterogeneity is a distinguishing feature of TLSs, which may lead to differences in their functions. Growing evidence suggests that TLSs are associated with various diseases, such as cancers, autoimmune diseases, transplant rejection, chronic inflammation, infection, and even ageing. However, the detailed mechanisms behind these clinical associations are not yet fully understood. The mechanisms by which TLS maturation and localization affect immune function are also unclear. Therefore, it is necessary to enhance the understanding of TLS development and function at the cellular and molecular level, which may allow us to utilize them to improve the immune microenvironment. In this review, we delve into the composition, formation mechanism, associations with diseases, and potential therapeutic applications of TLSs. Furthermore, we discuss the therapeutic implications of TLSs, such as their role as markers of therapeutic response and prognosis. Finally, we summarize various methods for detecting and targeting TLSs. Overall, we provide a comprehensive understanding of TLSs and aim to develop more effective therapeutic strategies.
Collapse
Affiliation(s)
- Lianyu Zhao
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Song Jin
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Shengyao Wang
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Zhe Zhang
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Xuan Wang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Zhanwei Chen
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Xiaohui Wang
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Shengyun Huang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- School of Stomatology, Shandong First Medical University, Jinan, China.
| | - Dongsheng Zhang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- School of Stomatology, Shandong First Medical University, Jinan, China.
| | - Haiwei Wu
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- School of Stomatology, Shandong First Medical University, Jinan, China.
| |
Collapse
|
13
|
Langouo Fontsa M, Padonou F, Willard-Gallo K. Tumor-associated tertiary lymphoid structures in cancer: implications for immunotherapy. Expert Rev Clin Immunol 2024; 20:839-847. [PMID: 39007892 DOI: 10.1080/1744666x.2024.2380892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/12/2024] [Indexed: 07/16/2024]
Abstract
INTRODUCTION Tertiary lymphoid structures (TLS) arise at chronic inflammatory sites where they function as miniature lymph nodes to generate immune responses, which can be beneficial or detrimental, in diseases as diverse as autoimmunity, chronic infections and cancer. A growing number of studies show that a TLS presence in tumors from cancer patients treated with immune checkpoint inhibitors is closely linked with improved clinical outcomes. TLS may foster the generation of specific anti-tumor immune responses and immunological memory that recognizes a patient's own tumor. Due to repeated rounds of chronic inflammation, some tumor-associated TLS may be immunologically inactive, with immune checkpoint inhibitors functioning to revitalize them through pathway activation. AREAS COVERED This review summarizes work on TLS and how they mediate immune responses in human tumors. We also explore TLS as potential prognostic and predictive biomarkers for immunotherapy. EXPERT OPINION The presence of TLS in human tumors has been linked with a better clinical prognosis, response to treatment(s) and overall survival. TLS provide a structured microenvironment for the activation, expansion and maturation of immune cells at the tumor site. These activities can enhance the efficacy of immunotherapeutic treatments such as checkpoint inhibitors and cancer vaccines by revitalizing local anti-tumor immunity.
Collapse
Affiliation(s)
- Mireille Langouo Fontsa
- Molecular Immunology Unit, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Francine Padonou
- Molecular Immunology Unit, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Karen Willard-Gallo
- Molecular Immunology Unit, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
14
|
Mazzaglia C, Munir H, Lei IM, Gerigk M, Huang YYS, Shields JD. Modeling Structural Elements and Functional Responses to Lymphatic-Delivered Cues in a Murine Lymph Node on a Chip. Adv Healthc Mater 2024; 13:e2303720. [PMID: 38626388 DOI: 10.1002/adhm.202303720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 04/08/2024] [Indexed: 04/18/2024]
Abstract
Lymph nodes (LNs) are organs of the immune system, critical for maintenance of homeostasis and initiation of immune responses, yet there are few models that accurately recapitulate LN functions in vitro. To tackle this issue, an engineered murine LN (eLN) has been developed, replicating key cellular components of the mouse LN; incorporating primary murine lymphocytes, fibroblastic reticular cells, and lymphatic endothelial cells. T and B cell compartments are incorporated within the eLN that mimic LN cortex and paracortex architectures. When challenged, the eLN elicits both robust inflammatory responses and antigen-specific immune activation, showing that the system can differentiate between non specific and antigen-specific stimulation and can be monitored in real time. Beyond immune responses, this model also enables interrogation of changes in stromal cells, thus permitting investigations of all LN cellular components in homeostasis and different disease settings, such as cancer. Here, how LN behavior can be influenced by murine melanoma-derived factors is presented. In conclusion, the eLN model presents a promising platform for in vitro study of LN biology that will enhance understanding of stromal and immune responses in the murine LN, and in doing so will enable development of novel therapeutic strategies to improve LN responses in disease.
Collapse
Affiliation(s)
- Corrado Mazzaglia
- MRC Cancer Unit, University of Cambridge, Cambridge, CB2 0XZ, UK
- The Nanoscience Centre, University of Cambridge, Cambridge, CB3 0FF, UK
| | - Hafsa Munir
- Helmholtz Institute for Translational Oncology Mainz (HI-TRON Mainz), 55131, Mainz, Germany
- Division of Dermal Oncoimmunology, German Cancer Research Centre (DKFZ), 69120, Heidelberg, Germany
| | - Iek Man Lei
- Department of Engineering, University of Cambridge, Cambridge, CB2 1PZ, UK
| | - Magda Gerigk
- The Nanoscience Centre, University of Cambridge, Cambridge, CB3 0FF, UK
- Department of Engineering, University of Cambridge, Cambridge, CB2 1PZ, UK
| | - Yan Yan Shery Huang
- The Nanoscience Centre, University of Cambridge, Cambridge, CB3 0FF, UK
- Department of Engineering, University of Cambridge, Cambridge, CB2 1PZ, UK
| | - Jacqueline D Shields
- MRC Cancer Unit, University of Cambridge, Cambridge, CB2 0XZ, UK
- Translational Medical Sciences, School of Medicine, University of Nottingham Biodiscovery Institute, Nottingham, NG7 2RD, UK
| |
Collapse
|
15
|
Salminen A, Kaarniranta K, Kauppinen A. Tissue fibroblasts are versatile immune regulators: An evaluation of their impact on the aging process. Ageing Res Rev 2024; 97:102296. [PMID: 38588867 DOI: 10.1016/j.arr.2024.102296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/26/2024] [Accepted: 04/03/2024] [Indexed: 04/10/2024]
Abstract
Fibroblasts are abundant stromal cells which not only control the integrity of extracellular matrix (ECM) but also act as immune regulators. It is known that the structural cells within tissues can establish an organ-specific immunity expressing many immune-related genes and closely interact with immune cells. In fact, fibroblasts can modify their immune properties to display both pro-inflammatory and immunosuppressive activities in a context-dependent manner. After acute insults, fibroblasts promote tissue inflammation although they concurrently recruit immunosuppressive cells to enhance the resolution of inflammation. In chronic pathological states, tissue fibroblasts, especially senescent fibroblasts, can display many pro-inflammatory and immunosuppressive properties and stimulate the activities of different immunosuppressive cells. In return, immunosuppressive cells, such as M2 macrophages and myeloid-derived suppressor cells (MDSC), evoke an excessive conversion of fibroblasts into myofibroblasts, thus aggravating the severity of tissue fibrosis. Single-cell transcriptome studies on fibroblasts isolated from aged tissues have confirmed that tissue fibroblasts express many genes coding for cytokines, chemokines, and complement factors, whereas they lose some fibrogenic properties. The versatile immune properties of fibroblasts and their close cooperation with immune cells indicate that tissue fibroblasts have a crucial role in the aging process and age-related diseases.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland.
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland; Department of Ophthalmology, Kuopio University Hospital, P.O. Box 100, KYS FI-70029, Finland
| | - Anu Kauppinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland
| |
Collapse
|
16
|
Stangis MM, Chen Z, Min J, Glass SE, Jackson JO, Radyk MD, Hoi XP, Brennen WN, Yu M, Dinh HQ, Coffey RJ, Shrubsole MJ, Chan KS, Grady WM, Yegnasubramanian S, Lyssiotis CA, Maitra A, Halberg RB, Dey N, Lau KS. The Hallmarks of Precancer. Cancer Discov 2024; 14:683-689. [PMID: 38571435 PMCID: PMC11170686 DOI: 10.1158/2159-8290.cd-23-1550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Research on precancers, as defined as at-risk tissues and early lesions, is of high significance given the effectiveness of early intervention. We discuss the need for risk stratification to prevent overtreatment, an emphasis on the role of genetic and epigenetic aging when considering risk, and the importance of integrating macroenvironmental risk factors with molecules and cells in lesions and at-risk normal tissues for developing effective intervention and health policy strategies.
Collapse
Affiliation(s)
- Mary M. Stangis
- Department of Oncology – McArdle Laboratory for Cancer Research, University of Wisconsin-Madison
- Department of Medicine – Gastroenterology Division, University of Wisconsin-Madison
- Carbone Cancer Center, University of Wisconsin-Madison
| | - Zhengyi Chen
- Chemical and Physical Biology Program, Vanderbilt University School of Medicine
- Epithelial Biology Center, Vanderbilt University Medical Center
| | - Jimin Min
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center
- Sheikh Ahmed Center for Pancreatic Cancer Research, University of Texas MD Anderson Cancer Center
| | - Sarah E. Glass
- Epithelial Biology Center, Vanderbilt University Medical Center
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine
| | - Jordan O. Jackson
- Department of Laboratory Medicine and Pathology, University of Washington
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center
| | - Megan D. Radyk
- Department of Molecular & Integrative Physiology, University of Michigan Medical School
| | - Xen Ping Hoi
- Department of Urology, Houston Methodist Research Institute
- Neal Cancer Center, Houston Methodist Research Institute
| | - W. Nathaniel Brennen
- Department of Oncology – Genitourinary Cancer Disease Division, Johns Hopkins Medicine
- Department of Pharmacology and Molecular Sciences, Johns Hopkins Medicine
- Department of Urology, Johns Hopkins Medicine
| | - Ming Yu
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center
- Department of Medicine – Division of Gastroenterology, University of Washington
- Public Health Sciences Division, Fred Hutchinson Cancer Center
| | - Huy Q. Dinh
- Department of Oncology – McArdle Laboratory for Cancer Research, University of Wisconsin-Madison
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison
| | - Robert J. Coffey
- Epithelial Biology Center, Vanderbilt University Medical Center
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine
- Department of Medicine – Division of Gastroenterology, Hepatology, & Nutrition, Vanderbilt University Medical Center
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center
| | - Martha J. Shrubsole
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center
- Department of Medicine – Division of Epidemiology, Vanderbilt University Medical Center
| | - Keith S. Chan
- Department of Urology, Houston Methodist Research Institute
- Neal Cancer Center, Houston Methodist Research Institute
| | - William M. Grady
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center
- Department of Medicine – Division of Gastroenterology, University of Washington
- Public Health Sciences Division, Fred Hutchinson Cancer Center
| | - Srinivasan Yegnasubramanian
- Department of Oncology – Genitourinary Cancer Disease Division, Johns Hopkins Medicine
- Radiation Oncology and Molecular Radiation Sciences – Molecular Radiation Science Division, Johns Hopkins Medicine
- Department of Pathology – Kidney-Urologic Pathology Division, Johns Hopkins Medicine
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medicine
| | - Costas A. Lyssiotis
- Department of Molecular & Integrative Physiology, University of Michigan Medical School
- Internal Medicine – Division of Gastroenterology, University of Michigan Medical School
- Rogel Cancer Center, University of Michigan Medical School
| | - Anirban Maitra
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center
- Sheikh Ahmed Center for Pancreatic Cancer Research, University of Texas MD Anderson Cancer Center
| | - Richard B. Halberg
- Department of Oncology – McArdle Laboratory for Cancer Research, University of Wisconsin-Madison
- Department of Medicine – Gastroenterology Division, University of Wisconsin-Madison
- Carbone Cancer Center, University of Wisconsin-Madison
| | - Neelendu Dey
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center
- Department of Medicine – Division of Gastroenterology, University of Washington
| | - Ken S. Lau
- Chemical and Physical Biology Program, Vanderbilt University School of Medicine
- Epithelial Biology Center, Vanderbilt University Medical Center
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center
- Department of Surgery, Vanderbilt University Medical Center
| |
Collapse
|
17
|
Tanaka S, Yamamoto T, Iwata A, Kiuchi M, Kokubo K, Iinuma T, Sugiyama T, Hanazawa T, Hirahara K, Ikeda K, Nakajima H. Single-cell RNA sequencing of submandibular gland reveals collagen type XV-positive fibroblasts as a disease-characterizing cell population of IgG4-related disease. Arthritis Res Ther 2024; 26:55. [PMID: 38378635 PMCID: PMC10877852 DOI: 10.1186/s13075-024-03289-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/16/2024] [Indexed: 02/22/2024] Open
Abstract
OBJECTIVES IgG4-related disease (IgG4-RD) is a systemic autoimmune disease with an unknown etiology, affecting single/multiple organ(s). Pathological findings include the infiltration of IgG4-producing plasma cells, obliterative phlebitis, and storiform fibrosis. Although immunological studies have shed light on the dysregulation of lymphocytes in IgG4-RD pathogenesis, the role of non-immune cells remains unclear. This study aimed to investigate the demographics and characteristics of non-immune cells in IgG4-RD and explore potential biomarkers derived from non-immune cells in the sera. METHODS We conducted single-cell RNA sequence (scRNA-seq) on non-immune cells isolated from submandibular glands of IgG4-RD patients. We focused on fibroblasts expressing collagen type XV and confirmed the presence of those fibroblasts using immunohistochemistry. Additionally, we measured the levels of collagen type XV in the sera of IgG4-RD patients. RESULTS The scRNA-seq analysis revealed several distinct clusters consisting of fibroblasts, endothelial cells, ductal cells, and muscle cells. Differential gene expression analysis showed upregulation of COL15A1 in IgG4-RD fibroblasts compared to control subjects. Notably, COL15A1-positive fibroblasts exhibited a distinct transcriptome compared to COL15A1-negative counterparts. Immunohistochemical analysis confirmed a significant presence of collagen type XV-positive fibroblasts in IgG4-RD patients. Furthermore, immune-suppressive therapy in active IgG4-RD patients resulted in decreased serum levels of collagen type XV. CONCLUSIONS Our findings suggest that collagen type XV-producing fibroblasts may represent a disease-characterizing non-immune cell population in IgG4-RD and hold potential as a disease-monitoring marker.
Collapse
Affiliation(s)
- Shigeru Tanaka
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba, 260-8670, Japan.
| | - Takuya Yamamoto
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba, 260-8670, Japan
| | - Arifumi Iwata
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba, 260-8670, Japan
| | - Masahiro Kiuchi
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kota Kokubo
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tomohisa Iinuma
- Department of Otorhinolaryngology/Head & Neck Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takahiro Sugiyama
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba, 260-8670, Japan
| | - Toyoyuki Hanazawa
- Department of Otorhinolaryngology/Head & Neck Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kiyoshi Hirahara
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kei Ikeda
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba, 260-8670, Japan.
- Department of Rheumatology, Dokkyo Medical University, 880 Kitakobayashi, Shimotsuga, Tochigi, Mibu, 321 - 0293, Japan.
| | - Hiroshi Nakajima
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba, 260-8670, Japan
| |
Collapse
|
18
|
Leone P, Malerba E, Susca N, Favoino E, Perosa F, Brunori G, Prete M, Racanelli V. Endothelial cells in tumor microenvironment: insights and perspectives. Front Immunol 2024; 15:1367875. [PMID: 38426109 PMCID: PMC10902062 DOI: 10.3389/fimmu.2024.1367875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/05/2024] [Indexed: 03/02/2024] Open
Abstract
The tumor microenvironment is a highly complex and dynamic mixture of cell types, including tumor, immune and endothelial cells (ECs), soluble factors (cytokines, chemokines, and growth factors), blood vessels and extracellular matrix. Within this complex network, ECs are not only relevant for controlling blood fluidity and permeability, and orchestrating tumor angiogenesis but also for regulating the antitumor immune response. Lining the luminal side of vessels, ECs check the passage of molecules into the tumor compartment, regulate cellular transmigration, and interact with both circulating pathogens and innate and adaptive immune cells. Thus, they represent a first-line defense system that participates in immune responses. Tumor-associated ECs are involved in T cell priming, activation, and proliferation by acting as semi-professional antigen presenting cells. Thus, targeting ECs may assist in improving antitumor immune cell functions. Moreover, tumor-associated ECs contribute to the development at the tumor site of tertiary lymphoid structures, which have recently been associated with enhanced response to immune checkpoint inhibitors (ICI). When compared to normal ECs, tumor-associated ECs are abnormal in terms of phenotype, genetic expression profile, and functions. They are characterized by high proliferative potential and the ability to activate immunosuppressive mechanisms that support tumor progression and metastatic dissemination. A complete phenotypic and functional characterization of tumor-associated ECs could be helpful to clarify their complex role within the tumor microenvironment and to identify EC specific drug targets to improve cancer therapy. The emerging therapeutic strategies based on the combination of anti-angiogenic treatments with immunotherapy strategies, including ICI, CAR T cells and bispecific antibodies aim to impact both ECs and immune cells to block angiogenesis and at the same time to increase recruitment and activation of effector cells within the tumor.
Collapse
Affiliation(s)
- Patrizia Leone
- Internal Medicine Unit, Department of Interdisciplinary Medicine, Aldo Moro University of Bari, Bari, Italy
| | - Eleonora Malerba
- Department of Precision and Regenerative Medicine and Ionian Area-(DiMePRe-J), Aldo Moro University of Bari, Bari, Italy
| | - Nicola Susca
- Internal Medicine Unit, Department of Interdisciplinary Medicine, Aldo Moro University of Bari, Bari, Italy
| | - Elvira Favoino
- Rheumatic and Systemic Autoimmune Diseases Unit, Department of Interdisciplinary Medicine, Aldo Moro University of Bari, Bari, Italy
| | - Federico Perosa
- Rheumatic and Systemic Autoimmune Diseases Unit, Department of Interdisciplinary Medicine, Aldo Moro University of Bari, Bari, Italy
| | - Giuliano Brunori
- Centre for Medical Sciences, University of Trento and Nephrology and Dialysis Division, Santa Chiara Hospital, Provincial Health Care Agency (APSS), Trento, Italy
| | - Marcella Prete
- Internal Medicine Unit, Department of Interdisciplinary Medicine, Aldo Moro University of Bari, Bari, Italy
| | - Vito Racanelli
- Centre for Medical Sciences, University of Trento and Internal Medicine Division, Santa Chiara Hospital, Provincial Health Care Agency (APSS), Trento, Italy
| |
Collapse
|
19
|
Omotesho QA, Escamilla A, Pérez-Ruiz E, Frecha CA, Rueda-Domínguez A, Barragán I. Epigenetic targets to enhance antitumor immune response through the induction of tertiary lymphoid structures. Front Immunol 2024; 15:1348156. [PMID: 38333212 PMCID: PMC10851080 DOI: 10.3389/fimmu.2024.1348156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/02/2024] [Indexed: 02/10/2024] Open
Abstract
Tertiary lymphoid structures (TLS) are ectopic lymphoid aggregates found in sites of chronic inflammation such as tumors and autoimmune diseases. The discovery that TLS formation at tumor sites correlated with good patient prognosis has triggered extensive research into various techniques to induce their formation at the tumor microenvironment (TME). One strategy is the exogenous induction of specific cytokines and chemokine expression in murine models. However, applying such systemic chemokine expression can result in significant toxicity and damage to healthy tissues. Also, the TLS formed from exogenous chemokine induction is heterogeneous and different from the ones associated with favorable prognosis. Therefore, there is a need to optimize additional approaches like immune cell engineering with lentiviral transduction to improve the TLS formation in vivo. Similarly, the genetic and epigenetic regulation of the different phases of TLS neogenesis are still unknown. Understanding these molecular regulations could help identify novel targets to induce tissue-specific TLS in the TME. This review offers a unique insight into the molecular checkpoints of the different stages and mechanisms involved in TLS formation. This review also highlights potential epigenetic targets to induce TLS neogenesis. The review further explores epigenetic therapies (epi-therapy) and ongoing clinical trials using epi-therapy in cancers. In addition, it builds upon the current knowledge of tools to generate TLS and TLS phenotyping biomarkers with predictive and prognostic clinical potential.
Collapse
Affiliation(s)
- Quadri Ajibola Omotesho
- Medical Oncology Service (Group of Translational Research in Cancer Immunotherapy and Epigenetics), Regional and Clinical University Hospitals, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Malaga, Spain
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Alejandro Escamilla
- Medical Oncology Service (Group of Translational Research in Cancer Immunotherapy and Epigenetics), Regional and Clinical University Hospitals, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Malaga, Spain
- Department of Human Physiology, Human Histology, Pathological Anatomy and Physical Sport Education, University of Malaga, Malaga, Spain
| | - Elisabeth Pérez-Ruiz
- Medical Oncology Service (Group of Translational Research in Cancer Immunotherapy and Epigenetics), Regional and Clinical University Hospitals, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Malaga, Spain
| | - Cecilia A. Frecha
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Civil Hospital, Malaga, Spain
| | - Antonio Rueda-Domínguez
- Medical Oncology Service (Group of Translational Research in Cancer Immunotherapy and Epigenetics), Regional and Clinical University Hospitals, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Malaga, Spain
| | - Isabel Barragán
- Medical Oncology Service (Group of Translational Research in Cancer Immunotherapy and Epigenetics), Regional and Clinical University Hospitals, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Malaga, Spain
- Group of Pharmacoepigenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
20
|
Guo S, Yuan J, Meng X, Feng X, Ma D, Han Y, Li K. Cancer-associated fibroblasts: Just on the opposite side of antitumour immunity? Int Immunopharmacol 2023; 122:110601. [PMID: 37418988 DOI: 10.1016/j.intimp.2023.110601] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/18/2023] [Accepted: 07/01/2023] [Indexed: 07/09/2023]
Abstract
The tumour microenvironment (TME) is critical for the initiation, progression, and metastasis of tumours, and cancer-associated fibroblasts (CAFs) are the most dominant cells and have attracted interest as targets for cancer therapy among the stromal components within the TME. Currently, most of the identified CAF subpopulations are believed to exhibit suppressive effects on antitumour immunity. However, accumulating evidence indicates the presence of immunostimulatory CAF subpopulations, which play an important role in the maintenance and amplification of antitumour immunity, in the TME. Undoubtedly, these findings provide novel insights into CAF heterogeneity. Herein, we focus on summarizing CAF subpopulations that promote antitumour immunity, the surface markers of these populations, and possible immunostimulatory mechanisms in the context of recent advances in research on CAF subpopulations. In addition, we discuss the possibility of new therapies targeting CAF subpopulations and conclude with a brief description of some prospective avenues for CAF research.
Collapse
Affiliation(s)
- Shuaiqingying Guo
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jing Yuan
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaolin Meng
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xue Feng
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ding Ma
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yingyan Han
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Kezhen Li
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
21
|
Esparcia-Pinedo L, Romero-Laorden N, Alfranca A. Tertiary lymphoid structures and B lymphocytes: a promising therapeutic strategy to fight cancer. Front Immunol 2023; 14:1231315. [PMID: 37622111 PMCID: PMC10445545 DOI: 10.3389/fimmu.2023.1231315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023] Open
Abstract
Tertiary lymphoid structures (TLSs) are clusters of lymphoid cells with an organization that resembles that of secondary lymphoid organs. Both structures share common developmental characteristics, although TLSs usually appear in chronically inflamed non-lymphoid tissues, such as tumors. TLSs contain diverse types of immune cells, with varying degrees of spatial organization that represent different stages of maturation. These structures support both humoral and cellular immune responses, thus the correlation between the existence of TLS and clinical outcomes in cancer patients has been extensively studied. The finding that TLSs are associated with better prognosis in some types of cancer has led to the design of therapeutic strategies based on promoting the formation of these structures. Agents such as chemokines, cytokines, antibodies and cancer vaccines have been used in combination with traditional antitumor treatments to enhance TLS generation, with good results. The induction of TLS formation therefore represents a novel and promising avenue for the treatment of a number of tumor types.
Collapse
Affiliation(s)
- Laura Esparcia-Pinedo
- Immunology Department, Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria Princesa, Madrid, Spain
- Department of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Nuria Romero-Laorden
- Medical Oncology Department, Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria Princesa, Madrid, Spain
- Cátedra Universidad Autónoma de Madrid (UAM)-Fundación Instituto Roche de Medicina Personalizada de Precisión, Madrid, Spain
| | - Arantzazu Alfranca
- Immunology Department, Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria Princesa, Madrid, Spain
- Department of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
- Cátedra Universidad Autónoma de Madrid (UAM)-Fundación Instituto Roche de Medicina Personalizada de Precisión, Madrid, Spain
- Centro de Investigación Biomédica en Red Cardiovascular, CIBERCV, Madrid, Spain
| |
Collapse
|
22
|
Lowe MM, Cohen JN, Moss MI, Clancy S, Adler J, Yates A, Naik HB, Pauli M, Taylor I, McKay A, Harris H, Kim E, Hansen SL, Rosenblum MD, Moreau JM. Tertiary Lymphoid Structures Sustain Cutaneous B cell Activity in Hidradenitis Suppurativa. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.14.528504. [PMID: 36824918 PMCID: PMC9949072 DOI: 10.1101/2023.02.14.528504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Background Hidradenitis suppurativa (HS) skin lesions are highly inflammatory and characterized by a large immune infiltrate. While B cells and plasma cells comprise a major component of this immune milieu the biology and contribution of these cells in HS pathogenesis is unclear. Objective We aimed to investigate the dynamics and microenvironmental interactions of B cells within cutaneous HS lesions. Methods We combined histological analysis, single-cell RNA-sequencing (scRNAseq), and spatial transcriptomic profiling of HS lesions to define the tissue microenvironment relative to B cell activity within this disease. Results Our findings identify tertiary lymphoid structures (TLS) within HS lesions and describe organized interactions between T cells, B cells, antigen presenting cells and skin stroma. We find evidence that B cells within HS TLS actively undergo maturation, including participation in germinal center reactions and class switch recombination. Moreover, skin stroma and accumulating T cells are primed to support the formation of TLS and facilitate B cell recruitment during HS. Conclusion Our data definitively demonstrate the presence of TLS in lesional HS skin and point to ongoing cutaneous B cell maturation through class switch recombination and affinity maturation during disease progression in this inflamed non-lymphoid tissue.
Collapse
|
23
|
Cavagnero KJ, Gallo RL. Essential immune functions of fibroblasts in innate host defense. Front Immunol 2022; 13:1058862. [PMID: 36591258 PMCID: PMC9797514 DOI: 10.3389/fimmu.2022.1058862] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/09/2022] [Indexed: 12/23/2022] Open
Abstract
The term fibroblast has been used generally to describe spindle-shaped stromal cells of mesenchymal origin that produce extracellular matrix, establish tissue structure, and form scar. Current evidence has found that cells with this morphology are highly heterogeneous with some fibroblastic cells actively participating in both innate and adaptive immune defense. Detailed analysis of barrier tissues such as skin, gut, and lung now show that some fibroblasts directly sense pathogens and other danger signals to elicit host defense functions including antimicrobial activity, leukocyte recruitment, and production of cytokines and lipid mediators relevant to inflammation and immunosuppression. This review will synthesize current literature focused on the innate immune functions performed by fibroblasts at barrier tissues to highlight the previously unappreciated importance of these cells in immunity.
Collapse
Affiliation(s)
| | - Richard L. Gallo
- Department of Dermatology, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
24
|
Tertiary Lymphoid Structures: A Potential Biomarker for Anti-Cancer Therapy. Cancers (Basel) 2022; 14:cancers14235968. [PMID: 36497450 PMCID: PMC9739898 DOI: 10.3390/cancers14235968] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
A tertiary lymphoid structure (TLS) is a special component in the immune microenvironment that is mainly composed of tumor-infiltrating lymphocytes (TILs), including T cells, B cells, DC cells, and high endothelial venules (HEVs). For cancer patients, evaluation of the immune microenvironment has a predictive effect on tumor biological behavior, treatment methods, and prognosis. As a result, TLSs have begun to attract the attention of researchers as a new potential biomarker. However, the composition and mechanisms of TLSs are still unclear, and clinical detection methods are still being explored. Although some meaningful results have been obtained in clinical trials, there is still a long way to go before such methods can be applied in clinical practice. However, we believe that with the continuous progress of basic research and clinical trials, TLS detection and related treatment can benefit more and more patients. In this review, we generalize the definition and composition of TLSs, summarize clinical trials involving TLSs according to treatment methods, and describe possible methods of inducing TLS formation.
Collapse
|
25
|
Liu Y, Liu Y, He W, Mu X, Wu X, Deng J, Nie X. Fibroblasts: Immunomodulatory factors in refractory diabetic wound healing. Front Immunol 2022; 13:918223. [PMID: 35990622 PMCID: PMC9391070 DOI: 10.3389/fimmu.2022.918223] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/15/2022] [Indexed: 12/15/2022] Open
Abstract
Diabetes is a systemic disease in which patients with diabetes may develop peripheral neuropathy of the lower extremities and peripheral vascular disease due to long-term continuous exposure to high glucose. Delayed wound healing in diabetes is one of the major complications of diabetes. Slow wound healing in diabetic patients is associated with high glucose toxicity. When the condition deteriorates, the patient needs to be amputated, which seriously affects the quality of life and even endangers the life of the patient. In general, the delayed healing of diabetes wound is due to the lack of chemokines, abnormal inflammatory response, lack of angiogenesis and epithelial formation, and fibroblast dysfunction. The incidence of several chronic debilitating conditions is increasing in patients with diabetes, such as chronic renal insufficiency, heart failure, and hepatic insufficiency. Fibrosis is an inappropriate deposition of extracellular matrix (ECM) proteins. It is common in diabetic patients causing organ dysfunction. The fibrotic mechanism of diabetic fibroblasts may involve direct activation of permanent fibroblasts. It may also involve the degeneration of fibers after hyperglycemia stimulates immune cells, vascular cells, or organ-specific parenchymal cells. Numerous studies confirm that fibroblasts play an essential role in treating diabetes and its complications. The primary function of fibroblasts in wound healing is to construct and reshape the ECM. Nowadays, with the widespread use of single-cell RNA sequencing (scRNA-seq), an increasing number of studies have found that fibroblasts have become the critical immune sentinel cells, which can detect not only the activation and regulation of immune response but also the molecular pattern related to the injury. By exploring the heterogeneity and functional changes of fibroblasts in diabetes, the manuscript discusses that fibroblasts may be used as immunomodulatory factors in refractory diabetic wound healing, providing new ideas for the treatment of refractory diabetic wound healing.
Collapse
Affiliation(s)
- Ye Liu
- College of Pharmacy, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi, China
| | - Yiqiu Liu
- College of Pharmacy, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi, China
| | - Wenjie He
- College of Pharmacy, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi, China
| | - Xingrui Mu
- College of Pharmacy, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi, China
| | - Xingqian Wu
- College of Pharmacy, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi, China
| | - Junyu Deng
- College of Pharmacy, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi, China
| | - Xuqiang Nie
- College of Pharmacy, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi, China
| |
Collapse
|
26
|
Rossi A, Belmonte B, Carnevale S, Liotti A, De Rosa V, Jaillon S, Piconese S, Tripodo C. Stromal and Immune Cell Dynamics in Tumor Associated Tertiary Lymphoid Structures and Anti-Tumor Immune Responses. Front Cell Dev Biol 2022; 10:933113. [PMID: 35874810 PMCID: PMC9304551 DOI: 10.3389/fcell.2022.933113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
Tertiary lymphoid structures (TLS) are ectopic lymphoid organs that have been observed in chronic inflammatory conditions including cancer, where they are thought to exert a positive effect on prognosis. Both immune and non-immune cells participate in the genesis of TLS by establishing complex cross-talks requiring both soluble factors and cell-to-cell contact. Several immune cell types, including T follicular helper cells (Tfh), regulatory T cells (Tregs), and myeloid cells, may accumulate in TLS, possibly promoting or inhibiting their development. In this manuscript, we propose to review the available evidence regarding specific aspects of the TLS formation in solid cancers, including 1) the role of stromal cell composition and architecture in the recruitment of specific immune subpopulations and the formation of immune cell aggregates; 2) the contribution of the myeloid compartment (macrophages and neutrophils) to the development of antibody responses and the TLS formation; 3) the immunological and metabolic mechanisms dictating recruitment, expansion and plasticity of Tregs into T follicular regulatory cells, which are potentially sensitive to immunotherapeutic strategies directed to costimulatory receptors or checkpoint molecules.
Collapse
Affiliation(s)
- Alessandra Rossi
- Department of Internal Clinical Sciences, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Beatrice Belmonte
- Tumor Immunology Unit, Department of Sciences for Health Promotion and Mother-Child Care “G. D’Alessandro”, University of Palermo, Palermo, Italy
| | | | - Antonietta Liotti
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale, Consiglio Nazionale Delle Ricerche, Naples, Italy
| | - Veronica De Rosa
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale, Consiglio Nazionale Delle Ricerche, Naples, Italy
| | - Sebastien Jaillon
- RCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Silvia Piconese
- Department of Internal Clinical Sciences, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
- IRCCS Fondazione Santa Lucia, Unità di Neuroimmunologia, Rome, Italy
- Laboratory Affiliated to Istituto Pasteur Italia—Fondazione Cenci Bolognetti, Rome, Italy
- *Correspondence: Silvia Piconese,
| | - Claudio Tripodo
- Tumor Immunology Unit, Department of Sciences for Health Promotion and Mother-Child Care “G. D’Alessandro”, University of Palermo, Palermo, Italy
- Histopathology Unit, FIRC Institute of Molecular Oncology (IFOM), Milan, Italy
| |
Collapse
|
27
|
Márquez AB, van der Vorst EPC, Maas SL. Key Chemokine Pathways in Atherosclerosis and Their Therapeutic Potential. J Clin Med 2021; 10:3825. [PMID: 34501271 PMCID: PMC8432216 DOI: 10.3390/jcm10173825] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/20/2021] [Accepted: 08/20/2021] [Indexed: 12/24/2022] Open
Abstract
The search to improve therapies to prevent or treat cardiovascular diseases (CVDs) rages on, as CVDs remain a leading cause of death worldwide. Here, the main cause of CVDs, atherosclerosis, and its prevention, take center stage. Chemokines and their receptors have long been known to play an important role in the pathophysiological development of atherosclerosis. Their role extends from the initiation to the progression, and even the potential regression of atherosclerotic lesions. These important regulators in atherosclerosis are therefore an obvious target in the development of therapeutic strategies. A plethora of preclinical studies have assessed various possibilities for targeting chemokine signaling via various approaches, including competitive ligands and microRNAs, which have shown promising results in ameliorating atherosclerosis. Developments in the field also include detailed imaging with tracers that target specific chemokine receptors. Lastly, clinical trials revealed the potential of various therapies but still require further investigation before commencing clinical use. Although there is still a lot to be learned and investigated, it is clear that chemokines and their receptors present attractive yet extremely complex therapeutic targets. Therefore, this review will serve to provide a general overview of the connection between various chemokines and their receptors with atherosclerosis. The different developments, including mouse models and clinical trials that tackle this complex interplay will also be explored.
Collapse
Affiliation(s)
- Andrea Bonnin Márquez
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany;
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, 52074 Aachen, Germany
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, 6229 ER Maastricht, The Netherlands
| | - Emiel P. C. van der Vorst
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany;
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, 52074 Aachen, Germany
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, 6229 ER Maastricht, The Netherlands
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, 80336 Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, 80336 Munich, Germany
| | - Sanne L. Maas
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany;
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
28
|
Fletcher AL, Turley SJ. Who am I? (re-)Defining fibroblast identity and immunological function in the age of bioinformatics. Immunol Rev 2021; 302:5-9. [PMID: 34219244 DOI: 10.1111/imr.12993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Anne L Fletcher
- Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | | |
Collapse
|