1
|
Rivera-Correa J, Gupta S, Ricker E, Flores-Castro D, Jenkins D, Vulcano S, Phalke SP, Pannellini T, Miele MM, Li Z, Zamponi N, Kim YB, Chinenov Y, Giannopoulou E, Cerchietti L, Pernis AB. ROCK1 promotes B cell differentiation and proteostasis under stress through the heme-regulated proteins, BACH2 and HRI. JCI Insight 2025; 10:e180507. [PMID: 39903532 PMCID: PMC11949073 DOI: 10.1172/jci.insight.180507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 01/28/2025] [Indexed: 02/06/2025] Open
Abstract
The mechanisms utilized by differentiating B cells to withstand highly damaging conditions generated during severe infections, like the massive hemolysis that accompanies malaria, are poorly understood. Here, we demonstrate that ROCK1 regulates B cell differentiation in hostile environments replete with pathogen-associated molecular patterns (PAMPs) and high levels of heme by controlling 2 key heme-regulated molecules, BACH2 and heme-regulated eIF2α kinase (HRI). ROCK1 phosphorylates BACH2 and protects it from heme-driven degradation. As B cells differentiate, furthermore, ROCK1 restrains their pro-inflammatory potential and helps them handle the heightened stress imparted by the presence of PAMPs and heme by controlling HRI, a key regulator of the integrated stress response and cytosolic proteotoxicity. ROCK1 controls the interplay of HRI with HSP90 and limits the recruitment of HRI and HSP90 to unique p62/SQSTM1 complexes that also contain critical kinases like mTOR complex 1 and TBK1, and proteins involved in RNA metabolism, oxidative damage, and proteostasis like TDP-43. Thus, ROCK1 helps B cells cope with intense pathogen-driven destruction by coordinating the activity of key controllers of B cell differentiation and stress responses. These ROCK1-dependent mechanisms may be widely employed by cells to handle severe environmental stresses, and these findings may be relevant for immune-mediated and age-related neurodegenerative disorders.
Collapse
Affiliation(s)
- Juan Rivera-Correa
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, USA
- Biological Sciences Department, New York City College of Technology, City University of New York, Brooklyn, New York, USA
| | - Sanjay Gupta
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, USA
| | - Edd Ricker
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, USA
| | - Danny Flores-Castro
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, USA
| | - Daniel Jenkins
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, USA
| | - Stephen Vulcano
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, USA
| | - Swati P. Phalke
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, USA
| | - Tania Pannellini
- Research Division and Precision Medicine Laboratory, Hospital for Special Surgery, New York, New York, USA
| | - Matthew M. Miele
- Microchemistry & Proteomics Core at Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Zhuoning Li
- Microchemistry & Proteomics Core at Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Nahuel Zamponi
- Hematology and Oncology Division, Weill Cornell Medicine, New York, New York, USA
| | - Young-Bum Kim
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Yurii Chinenov
- David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
| | - Eugenia Giannopoulou
- Biological Sciences Department, New York City College of Technology, City University of New York, Brooklyn, New York, USA
- David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
| | - Leandro Cerchietti
- Hematology and Oncology Division, Weill Cornell Medicine, New York, New York, USA
| | - Alessandra B. Pernis
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, USA
- David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
- Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
2
|
Hasegawa H, Wang S, Kast E, Chou HT, Kaur M, Janlaor T, Mostafavi M, Wang YL, Li P. Understanding the biosynthesis of human IgM SAM-6 through a combinatorial expression of mutant subunits that affect product assembly and secretion. PLoS One 2024; 19:e0291568. [PMID: 38848420 PMCID: PMC11161108 DOI: 10.1371/journal.pone.0291568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 05/06/2024] [Indexed: 06/09/2024] Open
Abstract
Polymeric IgMs are secreted from plasma cells abundantly despite their structural complexity and intricate multimerization steps. To gain insights into IgM's assembly mechanics that underwrite such high-level secretion, we characterized the biosynthetic process of a natural human IgM, SAM-6, using a heterologous HEK293(6E) cell platform that allowed the production of IgMs both in hexameric and pentameric forms in a controlled fashion. By creating a series of mutant subunits that differentially disrupt secretion, folding, and specific inter-chain disulfide bond formation, we assessed their effects on various aspects of IgM biosynthesis in 57 different subunit chain combinations, both in hexameric and pentameric formats. The mutations caused a spectrum of changes in steady-state subcellular subunit distribution, ER-associated inclusion body formation, intracellular subunit detergent solubility, covalent assembly, secreted IgM product quality, and secretion output. Some mutations produced differential effects on product quality depending on whether the mutation was introduced to hexameric IgM or pentameric IgM. Through this systematic combinatorial approach, we consolidate diverse overlapping knowledge on IgM biosynthesis for both hexamers and pentamers, while unexpectedly revealing that the loss of certain inter-chain disulfide bonds, including the one between μHC and λLC, is tolerated in polymeric IgM assembly and secretion. The findings highlight the differential roles of underlying non-covalent protein-protein interactions in hexamers and pentamers when orchestrating the initial subunit interactions and maintaining the polymeric IgM product integrity during ER quality control steps, secretory pathway trafficking, and secretion.
Collapse
Affiliation(s)
- Haruki Hasegawa
- Discovery Protein Science, Department of Large Molecule Discovery and Research Data Science, Amgen Inc., South San Francisco, CA, United States of America
| | - Songyu Wang
- Discovery Protein Science, Department of Large Molecule Discovery and Research Data Science, Amgen Inc., South San Francisco, CA, United States of America
| | - Eddie Kast
- Molecular Analytics, Department of Biologic Therapeutic Discovery, Amgen Inc., South San Francisco, CA, United States of America
| | - Hui-Ting Chou
- Structural Biology, Department of Small Molecule Therapeutic Discovery, Amgen Inc., South San Francisco, CA, United States of America
| | - Mehma Kaur
- Discovery Protein Science, Department of Large Molecule Discovery and Research Data Science, Amgen Inc., South San Francisco, CA, United States of America
| | - Tanakorn Janlaor
- Discovery Protein Science, Department of Large Molecule Discovery and Research Data Science, Amgen Inc., South San Francisco, CA, United States of America
| | - Mina Mostafavi
- Discovery Protein Science, Department of Large Molecule Discovery and Research Data Science, Amgen Inc., South San Francisco, CA, United States of America
| | - Yi-Ling Wang
- Discovery Protein Science, Department of Large Molecule Discovery and Research Data Science, Amgen Inc., South San Francisco, CA, United States of America
| | - Peng Li
- Discovery Protein Science, Department of Large Molecule Discovery and Research Data Science, Amgen Inc., South San Francisco, CA, United States of America
| |
Collapse
|
3
|
Steinmetz TD, Verstappen GM, Suurmond J, Kroese FGM. Targeting plasma cells in systemic autoimmune rheumatic diseases - Promises and pitfalls. Immunol Lett 2023; 260:44-57. [PMID: 37315847 DOI: 10.1016/j.imlet.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/12/2023] [Accepted: 06/10/2023] [Indexed: 06/16/2023]
Abstract
Plasma cells are the antibody secretors of the immune system. Continuous antibody secretion over years can provide long-term immune protection but could also be held responsible for long-lasting autoimmunity in case of self-reactive plasma cells. Systemic autoimmune rheumatic diseases (ARD) affect multiple organ systems and are associated with a plethora of different autoantibodies. Two prototypic systemic ARDs are systemic lupus erythematosus (SLE) and Sjögren's disease (SjD). Both diseases are characterized by B-cell hyperactivity and the production of autoantibodies against nuclear antigens. Analogues to other immune cells, different subsets of plasma cells have been described. Plasma cell subsets are often defined dependent on their current state of maturation, that also depend on the precursor B-cell subset from which they derived. But, a universal definition of plasma cell subsets is not available so far. Furthermore, the ability for long-term survival and effector functions may differ, potentially in a disease-specific manner. Characterization of plasma cell subsets and their specificity in individual patients can help to choose a suitable targeting approach for either a broad or more selective plasma cell depletion. Targeting plasma cells in systemic ARDs is currently challenging because of side effects or varying depletion efficacies in the tissue. Recent developments, however, like antigen-specific targeting and CAR-T-cell therapy might open up major benefits for patients beyond current treatment options.
Collapse
Affiliation(s)
- Tobit D Steinmetz
- University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | - Gwenny M Verstappen
- University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jolien Suurmond
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Frans G M Kroese
- University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
4
|
Cheng RYH, de Rutte J, Ito CEK, Ott AR, Bosler L, Kuo WY, Liang J, Hall BE, Rawlings DJ, Di Carlo D, James RG. SEC-seq: association of molecular signatures with antibody secretion in thousands of single human plasma cells. Nat Commun 2023; 14:3567. [PMID: 37322036 PMCID: PMC10272111 DOI: 10.1038/s41467-023-39367-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 06/07/2023] [Indexed: 06/17/2023] Open
Abstract
The secreted products of cells drive many functions in vivo; however, methods to link this functional information to surface markers and transcriptomes have been lacking. By accumulating secretions close to secreting cells held within cavity-containing hydrogel nanovials, we demonstrate workflows to analyze the amount of IgG secreted from single human B cells and link this information to surface markers and transcriptomes from the same cells. Measurements using flow cytometry and imaging flow cytometry corroborate the association between IgG secretion and CD38/CD138. By using oligonucleotide-labeled antibodies we find that upregulation of pathways for protein localization to the endoplasmic reticulum and mitochondrial oxidative phosphorylation are most associated with high IgG secretion, and uncover surrogate plasma cell surface markers (e.g., CD59) defined by the ability to secrete IgG. Altogether, this method links quantity of secretion with single-cell sequencing (SEC-seq) and enables researchers to fully explore the links between genome and function, laying the foundation for discoveries in immunology, stem cell biology, and beyond.
Collapse
Affiliation(s)
- Rene Yu-Hong Cheng
- Center of Immunotherapy and Immunity, Seattle Children Research Institute, Seattle, WA, 98101, USA
- Molecular Engineering and Science Institute, University of Washington, Seattle, WA, 98195, USA
| | | | - Cade Ellis K Ito
- Center of Immunotherapy and Immunity, Seattle Children Research Institute, Seattle, WA, 98101, USA
- Department of Lab Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Andee R Ott
- Center of Immunotherapy and Immunity, Seattle Children Research Institute, Seattle, WA, 98101, USA
| | - Lucie Bosler
- Partillion Bioscience, Los Angeles, CA, 90095, USA
| | - Wei-Ying Kuo
- Partillion Bioscience, Los Angeles, CA, 90095, USA
| | - Jesse Liang
- Partillion Bioscience, Los Angeles, CA, 90095, USA
| | | | - David J Rawlings
- Center of Immunotherapy and Immunity, Seattle Children Research Institute, Seattle, WA, 98101, USA
- Department of Immunology, University of Washington, Seattle, WA, 98195, USA
- Departments of Pediatrics, University of Washington, Seattle, WA, 98195, USA
| | - Dino Di Carlo
- Partillion Bioscience, Los Angeles, CA, 90095, USA.
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, CA, 90095, USA.
- Department of Mechanical and Aerospace Engineering, Los Angeles, CA, 90095, USA.
- California NanoSystems Institute (CNSI), University of California - Los Angeles, Los Angeles, CA, 90095, USA.
| | - Richard G James
- Center of Immunotherapy and Immunity, Seattle Children Research Institute, Seattle, WA, 98101, USA.
- Molecular Engineering and Science Institute, University of Washington, Seattle, WA, 98195, USA.
- Department of Lab Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA.
- Departments of Pediatrics, University of Washington, Seattle, WA, 98195, USA.
- Department of Pharmacology, University of Washington, Seattle, WA, 98195, USA.
- Brotman-Baty Institute for Precision Medicine, Seattle, WA, 98195, USA.
| |
Collapse
|
5
|
Keppeke GD, Diogenes L, Gomes K, Andrade LEC. "Untargeting" autoantibodies using genome editing, a proof-of-concept study. Clin Immunol 2023; 251:109343. [PMID: 37094742 DOI: 10.1016/j.clim.2023.109343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 04/26/2023]
Abstract
Autoantibodies (AAbs) are useful biomarkers and many have direct pathogenic role. Current standard therapies for elimination of specific B/plasma-cell clones are not fully efficient. We apply CRISPR/Cas9 genome-editing to knockout V(D)J rearrangements that produce pathogenic AAbs in vitro. HEK293T cell-lines were established stably expressing a humanized anti-dsDNA Ab (clone 3H9) and a human-derived anti-nAChR-α1 Ab (clone B12L). For each clone, five CRISPR/Cas9 heavy-chain's CDR2/3-targeting guided-RNAs (T-gRNAs) were designed. Non-Target-gRNA (NT-gRNA) was control. After editing, levels of secreted Abs were evaluated, as well as 3H9 anti-dsDNA and B12L anti-AChR reactivities. T-gRNAs editing decreased expression of heavy-chain genes to ∼50-60%, compared to >90% in NT-gRNA, although secreted Abs levels and reactivity to their respective antigens in T-gRNAs decreased ∼90% and ∼ 95% compared with NT-gRNA for 3H9 and B12L, respectively. Sequencing indicated indels at Cas9 cut-site, which could lead to codon jam, and consequently, knockout. Additionally, remaining secreted 3H9-Abs presented variable dsDNA reactivity among the five T-gRNA, suggesting the exact Cas9 cut-site and indels further interfere with antibody-antigen interaction. CRISPR/Cas9 genome-editing was very effective to knockout the Heavy-Chain-IgG genes, considerably affecting AAbs secretion and binding capacity, fostering application of this concept to in vivo models as a potential novel therapeutic approach for AAb-mediated diseases.
Collapse
Affiliation(s)
| | - Larissa Diogenes
- Rheumatology Division, Department of Medicine, Federal University of Sao Paulo, Brazil
| | - Kethellen Gomes
- Rheumatology Division, Department of Medicine, Federal University of Sao Paulo, Brazil
| | - Luis Eduardo Coelho Andrade
- Rheumatology Division, Department of Medicine, Federal University of Sao Paulo, Brazil; Immunology Division, Fleury Laboratory, Sao Paulo, Brazil.
| |
Collapse
|
6
|
Haas M, Fest T. Final step of B-cell differentiation into plasmablasts; the right time to activate plasma cell PIM2 kinase. Immunol Lett 2023; 258:45-50. [PMID: 37207916 DOI: 10.1016/j.imlet.2023.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 05/21/2023]
Abstract
The differentiation of B cells into antibody-secreting plasma cells is a complex process that involves extensive changes in morphology, lifespan, and cellular metabolism to support the high rates of antibody production. During the final stage of differentiation, B cells undergo significant expansion of their endoplasmic reticulum and mitochondria, which induces cellular stress and may lead to cell death in absence of effective inhibition of the apoptotic pathway. These changes are tightly regulated at transcriptional and epigenetic levels, as well as at post-translational level, with protein modifications playing a critical role in the process of cellular modification and adaptation. Our recent research has highlighted the pivotal role of the serine/threonine kinase PIM2 in B cell differentiation, from commitment stage to plasmablast and maintenance of expression in mature plasma cells. PIM2 has been shown to promote cell cycle progression during the final stage of differentiation and to inhibit Caspase 3 activation, raising the threshold for apoptosis. In this review, we examine the key molecular mechanisms controlled by PIM2 that contribute to plasma cell development and maintenance.
Collapse
Affiliation(s)
- Marion Haas
- Université de Rennes 1, INSERM, Établissement Français du Sang de Bretagne, Team B_DEVIL, UMR_S1236, Rennes, France; Laboratoire d'Hématologie, Centre Hospitalier Universitaire, Rennes, France
| | - Thierry Fest
- Université de Rennes 1, INSERM, Établissement Français du Sang de Bretagne, Team B_DEVIL, UMR_S1236, Rennes, France; Laboratoire d'Hématologie, Centre Hospitalier Universitaire, Rennes, France.
| |
Collapse
|
7
|
Aaron TS, Fooksman DR. Dynamic organization of the bone marrow plasma cell niche. FEBS J 2022; 289:4228-4239. [PMID: 35114061 DOI: 10.1111/febs.16385] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/29/2021] [Accepted: 02/01/2022] [Indexed: 01/09/2023]
Abstract
Prophylactic, serological memory relies on maintaining stable reservoirs of plasma cells, capable of constitutively-secreting high-affinity, anti-pathogen antibody for a lifetime. Although antibody titers generated by some vaccines (e.g. measles) can last a lifetime, other vaccinations (e.g. tetanus) need repeated boosting because long-lived plasma cells are not produced or maintained. Moreover, in old age, the ability to generate long-lived humoral responses diminishes. Despite their importance to health, it is unknown how long-lived plasma cells survive over years, whereas most antibody secreting cells die off within weeks after vaccination. In this review, we focus on how known factors regulate the longevity of plasma cell fitness and survival, and how that landscape is shaped by environmental influences, such as inflammation, infection and aging. In addition, we highlight newly discovered cellular dynamics in the bone marrow that may reframe the mechanisms supporting long-lived plasma cell survival and function.
Collapse
Affiliation(s)
- Tonya S Aaron
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - David R Fooksman
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
8
|
Renner P, Crone M, Kornas M, Pioli KT, Pioli PD. Intracellular flow cytometry staining of antibody-secreting cells using phycoerythrin-conjugated antibodies: pitfalls and solutions. Antib Ther 2022; 5:151-163. [PMID: 35928457 PMCID: PMC9344851 DOI: 10.1093/abt/tbac013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
Background Antibody-secreting cells are terminally differentiated B cells that play a critical role in humoral immunity through immunoglobulin secretion along with possessing the potential to be long-lived. It is now appreciated that ASCs regulate multiple aspects of biology through the secretion of various cytokines. In this regard, ICFC is a key tool used to assess the presence of intracellular proteins such as cytokines and transcription factors. Methods Paraformaldehyde plus saponin or the eBioscience Foxp3/Transcription Factor Staining Buffer Set were used to evaluate the non-specific intracellular retention of phycoerythrin-containing antibody conjugates by ASCs. Results We showed that the use of phycoerythrin-containing antibody conjugates led to a false interpretation of ASC intracellular protein expression compared with other cell types. This was mainly due to the inappropriate retention of these antibodies specifically within ASCs. Furthermore, we demonstrated how to reduce this retention which allowed for a more accurate comparison of intracellular protein expression between ASCs and other cell types such as B lymphocytes. Using this methodology, our data revealed that spleen ASCs expressed toll-like receptor 7 as well as the pro-form of the inflammatory cytokine interleukin-1β. Conclusion Increasing the number of centrifugation steps performed on ASCs post-fixation leads to inappropriate retention of phycoerythrin-containing antibody conjugates during ICFC.
Collapse
Affiliation(s)
- Patrick Renner
- Department of Investigative Medicine , Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, United States
| | - Michael Crone
- Department of Investigative Medicine , Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, United States
| | - Matthew Kornas
- Department of Investigative Medicine , Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, United States
| | - KimAnh T Pioli
- Department of Investigative Medicine , Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, United States
- Department of Biochemistry , Microbiology and Immunology, University of Saskatchewan, Saskatoon, Canada
| | - Peter D Pioli
- Department of Investigative Medicine , Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, United States
- Department of Biochemistry , Microbiology and Immunology, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
9
|
Affiliation(s)
- David Allman
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|