1
|
Zhang X, Zheng R, Zhang L. N4BP1 as a modulator of the NF-κB pathway. Cytokine Growth Factor Rev 2025:S1359-6101(25)00046-2. [PMID: 40312219 DOI: 10.1016/j.cytogfr.2025.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 04/20/2025] [Accepted: 04/21/2025] [Indexed: 05/03/2025]
Abstract
NEDD4-binding protein 1 (N4BP1) is emerging as a critical regulator of inflammation and immune responses, particularly through its effects on the nuclear factor-κ-gene binding (NF-κB) signaling pathway. This review summarizes the regulatory mechanisms by which N4BP1 inhibits NF-κB activation and its subsequent impact on inflammatory diseases, specifically psoriasis. We discuss its interaction with various components of the NF-κB pathway, revealing that N4BP1 serves as a negative regulator of NF-κB-related gene expression under both stimulated and unstimulated conditions. Evidence highlights that N4BP1 is pivotal in controlling keratinocyte behavior and immune cell dynamics, thus influencing psoriasis pathology. Furthermore, we explore the emerging role of N4BP1 in viral infections, demonstrating its inhibitory effects on human immunodeficiency virus (HIV) replication. The involvement of N4BP1 in Notch signaling and neurogenesis underscores its multifaceted roles in cellular development and response to external stimuli. Collectively, these findings position N4BP1 as a significant player in modulating immune responses and offer potential therapeutic avenues for managing inflammatory diseases and viral infections.
Collapse
Affiliation(s)
- Xiaojing Zhang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250013, China; Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China; Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Ruoqi Zheng
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250013, China; Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China; Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Leiliang Zhang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250013, China; Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China; Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China.
| |
Collapse
|
2
|
Youle RL, Lista MJ, Bouton C, Kunzelmann S, Wilson H, Cottee MA, Purkiss AG, Morris ER, Neil SJD, Taylor IA, Swanson CM. Structural and functional characterization of the extended-diKH domain from the antiviral endoribonuclease KHNYN. J Biol Chem 2025; 301:108336. [PMID: 39984050 PMCID: PMC11997328 DOI: 10.1016/j.jbc.2025.108336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/10/2025] [Accepted: 02/13/2025] [Indexed: 02/23/2025] Open
Abstract
Zinc finger antiviral protein (ZAP) binds CpG dinucleotides in viral RNA and targets them for decay. ZAP interacts with several cofactors to form the ZAP antiviral system, including KHNYN, a multidomain endoribonuclease required for ZAP-mediated RNA decay. However, it is unclear how the individual domains in KHNYN contribute to its activity. Here, we demonstrate that the KHNYN amino-terminal extended-diKH (ex-diKH) domain is required for antiviral activity and present its crystal structure. The structure belongs to a rare group of KH-containing domains, characterized by a noncanonical arrangement between two type 1 KH modules, with an additional helical bundle. N4BP1 is a KHNYN paralog with an ex-diKH domain that functionally complements the KHNYN ex-diKH domain. Interestingly, the ex-diKH domain structure is present in N4BP1-like proteins in lancelets, which are basal chordates, indicating that it is evolutionarily ancient. While many KH domains demonstrate RNA binding activity, biolayer interferometry and electrophoretic mobility shift assays indicate that the KHNYN ex-diKH domain does not bind RNA. Furthermore, residues required for canonical KH domains to bind RNA are not required for KHNYN antiviral activity. By contrast, an inter-KH domain cleft in KHNYN is a potential protein-protein interaction site, and mutations that eliminate arginine salt bridges at the edge of this cleft decrease KHNYN antiviral activity. This suggests that this domain could be a binding site for an unknown KHNYN cofactor.
Collapse
Affiliation(s)
- Rebecca L Youle
- Department of Infectious Diseases, King's College London, London, United Kingdom; Macromolecular Structure Laboratory, The Francis Crick Institute, London, United Kingdom
| | - María José Lista
- Department of Infectious Diseases, King's College London, London, United Kingdom
| | - Clement Bouton
- Department of Infectious Diseases, King's College London, London, United Kingdom
| | - Simone Kunzelmann
- Structural Biology Science Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Harry Wilson
- Department of Infectious Diseases, King's College London, London, United Kingdom
| | - Matthew A Cottee
- Macromolecular Structure Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Andrew G Purkiss
- Structural Biology Science Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Elizabeth R Morris
- Macromolecular Structure Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Stuart J D Neil
- Department of Infectious Diseases, King's College London, London, United Kingdom.
| | - Ian A Taylor
- Macromolecular Structure Laboratory, The Francis Crick Institute, London, United Kingdom.
| | - Chad M Swanson
- Department of Infectious Diseases, King's College London, London, United Kingdom.
| |
Collapse
|
3
|
Iwai N, Akaki K, Hia F, Li W, Yoshinaga M, Mino T, Takeuchi O. UPF1 plays critical roles in early B cell development. Nat Commun 2024; 15:5765. [PMID: 38982067 PMCID: PMC11233602 DOI: 10.1038/s41467-024-50032-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 06/26/2024] [Indexed: 07/11/2024] Open
Abstract
The ATP-dependent RNA helicase UPF1 plays a crucial role in various mRNA degradation pathways, most importantly in nonsense-mediated mRNA decay (NMD). Here, we show that UPF1 is upregulated during the early stages of B cell development and is important for early B cell development in the bone marrow. B-cell-specific Upf1 deletion in mice severely impedes the early to late LPre-B cell transition, in which VH-DHJH recombination occurs at the Igh gene. Furthermore, UPF1 is indispensable for VH-DHJH recombination, without affecting DH-JH recombination. Intriguingly, the genetic pre-arrangement of the Igh gene rescues the differentiation defect in early LPre-B cells under Upf1 deficient conditions. However, differentiation is blocked again following Ig light chain recombination, leading to a failure in development into immature B cells. Notably, UPF1 interacts with and regulates the expression of genes involved in immune responses, cell cycle control, NMD, and the unfolded protein response in B cells. Collectively, our findings underscore the critical roles of UPF1 during the early LPre-B cell stage and beyond, thus orchestrating B cell development.
Collapse
Affiliation(s)
- Noriki Iwai
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kotaro Akaki
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Fabian Hia
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Wei Li
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masanori Yoshinaga
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takashi Mino
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | - Osamu Takeuchi
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| |
Collapse
|
4
|
Moud BN, Ober F, O’Neill TJ, Krappmann D. MALT1 substrate cleavage: what is it good for? Front Immunol 2024; 15:1412347. [PMID: 38863711 PMCID: PMC11165066 DOI: 10.3389/fimmu.2024.1412347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/07/2024] [Indexed: 06/13/2024] Open
Abstract
CARD-BCL10-MALT1 (CBM) signalosomes connect distal signaling of innate and adaptive immune receptors to proximal signaling pathways and immune activation. Four CARD scaffold proteins (CARD9, 10, 11, 14) can form seeds that nucleate the assembly of BCL10-MALT1 filaments in a cell- and stimulus-specific manner. MALT1 (also known as PCASP1) serves a dual function within the assembled CBM complexes. By recruiting TRAF6, MALT1 acts as a molecular scaffold that initiates IκB kinase (IKK)/NF-κB and c-Jun N-terminal kinase (JNK)/AP-1 signaling. In parallel, proximity-induced dimerization of the paracaspase domain activates the MALT1 protease which exerts its function by cleaving a set of specific substrates. While complete MALT1 ablation leads to immune deficiency, selective destruction of either scaffolding or protease function provokes autoimmune inflammation. Thus, balanced MALT1-TRAF6 recruitment and MALT1 substrate cleavage are critical to maintain immune homeostasis and to promote optimal immune activation. Further, MALT1 protease activity drives the survival of aggressive lymphomas and other non-hematologic solid cancers. However, little is known about the relevance of the cleavage of individual substrates for the pathophysiological functions of MALT1. Unbiased serendipity, screening and computational predictions have identified and validated ~20 substrates, indicating that MALT1 targets a quite distinct set of proteins. Known substrates are involved in CBM auto-regulation (MALT1, BCL10 and CARD10), regulation of signaling and adhesion (A20, CYLD, HOIL-1 and Tensin-3), or transcription (RelB) and mRNA stability/translation (Regnase-1, Roquin-1/2 and N4BP1), indicating that MALT1 often targets multiple proteins involved in similar cellular processes. Here, we will summarize what is known about the fate and functions of individual MALT1 substrates and how their cleavage contributes to the biological functions of the MALT1 protease. We will outline what is needed to better connect critical pathophysiological roles of the MALT1 protease with the cleavage of distinct substrates.
Collapse
Affiliation(s)
| | | | | | - Daniel Krappmann
- Research Unit Signaling and Translation, Group Signaling and Immunity, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München – German Research Center for Environmental Health, Neuherberg, Germany
| |
Collapse
|
5
|
Zhong P, Bai L, Hong M, Ouyang J, Wang R, Zhang X, Chen P. A Comprehensive Review on Circulating cfRNA in Plasma: Implications for Disease Diagnosis and Beyond. Diagnostics (Basel) 2024; 14:1045. [PMID: 38786343 PMCID: PMC11119755 DOI: 10.3390/diagnostics14101045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
Circulating cfRNA in plasma has emerged as a fascinating area of research with potential applications in disease diagnosis, monitoring, and personalized medicine. Circulating RNA sequencing technology allows for the non-invasive collection of important information about the expression of target genes, eliminating the need for biopsies. This comprehensive review aims to provide a detailed overview of the current knowledge and advancements in the study of plasma cfRNA, focusing on its diverse landscape and biological functions, detection methods, its diagnostic and prognostic potential in various diseases, challenges, and future perspectives.
Collapse
Affiliation(s)
- Pengqiang Zhong
- Department of Clinical Laboratory, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Lu Bai
- Department of Clinical Laboratory, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Mengzhi Hong
- Department of Clinical Laboratory, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Juan Ouyang
- Department of Clinical Laboratory, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Ruizhi Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Xiaoli Zhang
- Department of Pediatrics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Peisong Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
6
|
Gitlin AD, Maltzman A, Kanno Y, Heger K, Reja R, Schubert AF, Wierciszewski LJ, Pantua H, Kapadia SB, Harris SF, Webster JD, Newton K, Dixit VM. N4BP1 coordinates ubiquitin-dependent crosstalk within the IκB kinase family to limit Toll-like receptor signaling and inflammation. Immunity 2024; 57:973-986.e7. [PMID: 38697117 PMCID: PMC11096006 DOI: 10.1016/j.immuni.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 12/15/2023] [Accepted: 04/08/2024] [Indexed: 05/04/2024]
Abstract
The ubiquitin-binding endoribonuclease N4BP1 potently suppresses cytokine production by Toll-like receptors (TLRs) that signal through the adaptor MyD88 but is inactivated via caspase-8-mediated cleavage downstream of death receptors, TLR3, or TLR4. Here, we examined the mechanism whereby N4BP1 limits inflammatory responses. In macrophages, deletion of N4BP1 prolonged activation of inflammatory gene transcription at late time points after TRIF-independent TLR activation. Optimal suppression of inflammatory cytokines by N4BP1 depended on its ability to bind polyubiquitin chains, as macrophages and mice-bearing inactivating mutations in a ubiquitin-binding motif in N4BP1 displayed increased TLR-induced cytokine production. Deletion of the noncanonical IκB kinases (ncIKKs), Tbk1 and Ikke, or their adaptor Tank phenocopied N4bp1 deficiency and enhanced macrophage responses to TLR1/2, TLR7, or TLR9 stimulation. Mechanistically, N4BP1 acted in concert with the ncIKKs to limit the duration of canonical IκB kinase (IKKα/β) signaling. Thus, N4BP1 and the ncIKKs serve as an important checkpoint against over-exuberant innate immune responses.
Collapse
Affiliation(s)
- Alexander D Gitlin
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA.
| | - Allie Maltzman
- Physiological Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Yuzuka Kanno
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Klaus Heger
- Cancer Immunology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Rohit Reja
- Oncology Bioinformatics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Alexander F Schubert
- Structural Biology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Linsey J Wierciszewski
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Homer Pantua
- Infectious Diseases, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Sharookh B Kapadia
- Infectious Diseases, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Seth F Harris
- Structural Biology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Joshua D Webster
- Pathology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Kim Newton
- Physiological Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| | - Vishva M Dixit
- Physiological Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| |
Collapse
|
7
|
Venz R, Goyala A, Soto-Gamez A, Yenice T, Demaria M, Ewald CY. In-vivo screening implicates endoribonuclease Regnase-1 in modulating senescence-associated lysosomal changes. GeroScience 2024; 46:1499-1514. [PMID: 37644339 PMCID: PMC10828269 DOI: 10.1007/s11357-023-00909-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 08/07/2023] [Indexed: 08/31/2023] Open
Abstract
Accumulation of senescent cells accelerates aging and age-related diseases, whereas preventing this accumulation extends the lifespan in mice. A characteristic of senescent cells is increased staining with β-galactosidase (β-gal) ex vivo. Here, we describe a progressive accumulation of β-gal staining in the model organism C. elegans during aging. We show that distinct pharmacological and genetic interventions targeting the mitochondria and the mTORC1 to the nuclear core complex axis, the non-canonical apoptotic, and lysosomal-autophagy pathways slow the age-dependent accumulation of β-gal. We identify a novel gene, rege-1/Regnase-1/ZC3H12A/MCPIP1, modulating β-gal staining via the transcription factor ets-4/SPDEF. We demonstrate that knocking down Regnase-1 in human cell culture prevents senescence-associated β-gal accumulation. Our data provide a screening pipeline to identify genes and drugs modulating senescence-associated lysosomal phenotypes.
Collapse
Affiliation(s)
- Richard Venz
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, CH-8603, Schwerzenbach, Switzerland
| | - Anita Goyala
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, CH-8603, Schwerzenbach, Switzerland
| | - Abel Soto-Gamez
- European Institute for the Biology of Aging (ERIBA)/University Medical Center Groningen (UMCG), Groningen, The Netherlands
| | - Tugce Yenice
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, CH-8603, Schwerzenbach, Switzerland
| | - Marco Demaria
- European Institute for the Biology of Aging (ERIBA)/University Medical Center Groningen (UMCG), Groningen, The Netherlands
| | - Collin Y Ewald
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, CH-8603, Schwerzenbach, Switzerland.
| |
Collapse
|
8
|
Mai D, Boyce T, Mehta A, Reff J, Scholler J, Sheppard NC, June CH. ZFP36 disruption is insufficient to enhance the function of mesothelin-targeting human CAR-T cells. Sci Rep 2024; 14:3113. [PMID: 38326511 PMCID: PMC10850500 DOI: 10.1038/s41598-024-53769-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 02/05/2024] [Indexed: 02/09/2024] Open
Abstract
Loss of inflammatory effector function, such as cytokine production and proliferation, is a fundamental driver of failure in T cell therapies against solid tumors. Here, we used CRISPR/Cas9 to genetically disrupt ZFP36, an RNA binding protein that regulates the stability of mRNAs involved in T cell inflammatory function, such as the cytokines IL2 and IFNγ, in human T cells engineered with a clinical-stage mesothelin-targeting CAR to determine whether its disruption could enhance antitumor responses. ZFP36 disruption slightly increased antigen-independent activation and cytokine responses but did not enhance overall performance in vitro or in vivo in a xenograft tumor model with NSG mice. While ZFP36 disruption does not reduce the function of CAR-T cells, these results suggest that singular disruption of ZFP36 is not sufficient to improve their function and may benefit from a multiplexed approach.
Collapse
Affiliation(s)
- David Mai
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
- Center for Cellular Immunotherapies, Perelman School of Medicine, Philadelphia, PA, USA.
| | - Tifara Boyce
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Aakash Mehta
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
- The Wharton School, University of Pennsylvania, Philadelphia, PA, USA
| | - Jordan Reff
- Center for Cellular Immunotherapies, Perelman School of Medicine, Philadelphia, PA, USA
| | - John Scholler
- Center for Cellular Immunotherapies, Perelman School of Medicine, Philadelphia, PA, USA
| | - Neil C Sheppard
- Center for Cellular Immunotherapies, Perelman School of Medicine, Philadelphia, PA, USA
- Department of Pathology and Lab Medicine, Perelman School of Medicine, Philadelphia, PA, USA
| | - Carl H June
- Center for Cellular Immunotherapies, Perelman School of Medicine, Philadelphia, PA, USA
- Department of Pathology and Lab Medicine, Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
9
|
Okabe J, Kodama T, Sato Y, Shigeno S, Matsumae T, Daiku K, Sato K, Yoshioka T, Shigekawa M, Higashiguchi M, Kobayashi S, Hikita H, Tatsumi T, Okamoto T, Satoh T, Eguchi H, Akira S, Takehara T. Regnase-1 downregulation promotes pancreatic cancer through myeloid-derived suppressor cell-mediated evasion of anticancer immunity. J Exp Clin Cancer Res 2023; 42:262. [PMID: 37814340 PMCID: PMC10561497 DOI: 10.1186/s13046-023-02831-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 09/13/2023] [Indexed: 10/11/2023] Open
Abstract
BACKGROUND Pancreatitis is known to be an important risk factor for pancreatic ductal adenocarcinoma (PDAC). However, the exact molecular mechanisms of how inflammation promotes PDAC are still not fully understood. Regnase-1, an endoribonuclease, regulates immune responses by degrading mRNAs of inflammation-related genes. Herein, we investigated the role of Regnase-1 in PDAC. METHODS Clinical significance of intratumor Regnase-1 expression was evaluated by immunohistochemistry in 39 surgically-resected PDAC patients. The functional role of Regnase-1 was investigated by pancreas-specific Regnase-1 knockout mice and Kras-mutant Regnase-1 knockout mice. The mechanistic studies with gene silencing, RNA immunoprecipitation sequencing (RIP-seq) and immune cell reconstitution were performed in human/mouse PDAC cell lines and a syngeneic orthotopic tumor transplantation model of KrasG12D-mutant and Trp53-deficient PDAC cells. RESULTS Regnase-1 expression was negatively correlated with the clinical outcomes and an independent predictor of poor relapse-free and overall survival in PDAC patients. Pancreas-specific Regnase-1 deletion in mice promoteed pancreatic cancer with PMN-MDSC infiltration and shortened their survival. A syngeneic orthotopic PDAC model exhibited that Regnase-1 downregulation accelerated tumor progression via recruitment of intratumor CD11b+ MDSCs. Mechanistically, Regnase-1 directly negatively regulated a variety of chemokines/cytokines important for MDSC recruitment and activation, including CXCL1, CXCL2, CSF2, and TGFβ, in pancreatic cancer cells. We subsequently showed that IL-1β-mediated Regnase-1 downregulation recruited MDSCs to tumor sites and promoted pancreatic cancer progression via mitigation of cytotoxic T lympohocytes-mediated antitumor immunity. CONCLUSIONS IL-1b-mediated Regnase-1 downregulation induces MDSCs and promotes pancreatic cancer through the evasion of anticancer immunity.
Collapse
Affiliation(s)
- Junya Okabe
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Takahiro Kodama
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yu Sato
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Satoshi Shigeno
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Takayuki Matsumae
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kazuma Daiku
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Katsuhiko Sato
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Teppei Yoshioka
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Minoru Shigekawa
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Masaya Higashiguchi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Shogo Kobayashi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hayato Hikita
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Tomohide Tatsumi
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Toru Okamoto
- Department of Microbiology, Juntendo University School of Medicine, Tokyo, Japan
- Institute for Advanced Co-Creation Studies, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Takashi Satoh
- Department of Immunology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Shizuo Akira
- Laboratory of Host Defense, World Premier Institute Immunology Frontier Research Center, Osaka University, Suita, Japan
- Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Tetsuo Takehara
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan.
| |
Collapse
|
10
|
Wu C, Guo X, Zheng W, Sun R, Chen L, Shen Y, Chen M, Song Y, Mao R, Chen X, Fan Y. N4BP1 regulates keratinocytes development and plays protective role in burn- and adhesive-related skin injury via MMP9. Cell Signal 2023; 110:110850. [PMID: 37579928 DOI: 10.1016/j.cellsig.2023.110850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 07/07/2023] [Accepted: 08/09/2023] [Indexed: 08/16/2023]
Abstract
Extensive studies have demonstrated critical roles of Regnase-1 in skin inflammation; however the role of N4BP1, a member of Regnase-1 family, in skin is largely unexplored. Here, we found that N4BP1 was highly expressed in skin and its expression was further increased upon skin injury. Compared to wildtype mice, N4BP1 deficient mice showed severe skin injury upon tape-stripping and burns. Overexpression of N4BP1 in HaCaT cells caused more cuboidal with higher cell-to-cell packing, while reduced expression of N4BP1 made cells become more spindle shaped and loosely packed. Overexpression of N4BP1 promoted cell migration, while silence of N4BP1 reduced migration. N4BP1 deficient HaCaT cells were more sensitive to heats compared to control cells. RNA profiling in N4BP1 genetically modified cells demonstrated that N4BP1 broadly affects cellular behaviors such as epithelium development. RNA profiling, RT-PCR verification, WB analysis and RNA immunoprecipitation demonstrated that MMP9 was one of N4BP1 targets that significantly increased in N4BP1 deficient HaCaT cells and skin tissues. Collectively, our results demonstrate a protective role of N4BP1 in skin injury through broadly affecting cellular behaviors of keratinocytes. Furthermore, we identified MMP9 is a target of N4BP1 in keratinocytes. Our findings provide new insight to understand how N4BP1 protects skin under injury.
Collapse
Affiliation(s)
- Changyue Wu
- Laboratory of Medical Science, School of Medicine, Nantong University, Nantong 226001, China; Department of Dermatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Xiaohong Guo
- Department of Pathogenic Biology, School of Medicine, Nantong University, Nantong 226001, China
| | - Wen Zheng
- Laboratory of Medical Science, School of Medicine, Nantong University, Nantong 226001, China; Department of Pathogenic Biology, School of Medicine, Nantong University, Nantong 226001, China
| | - Rong Sun
- Laboratory of Medical Science, School of Medicine, Nantong University, Nantong 226001, China; Department of Pathophysiology, School of Medicine, Nantong University, Nantong 226001, China
| | - Liuting Chen
- Department of Pathogenic Biology, School of Medicine, Nantong University, Nantong 226001, China
| | - Yu Shen
- Department of Dermatology, the third Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Miaomiao Chen
- Laboratory of Medical Science, School of Medicine, Nantong University, Nantong 226001, China
| | - Yihua Song
- Department of Stomatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Renfang Mao
- Department of Pathophysiology, School of Medicine, Nantong University, Nantong 226001, China.
| | - Xiaodong Chen
- Department of Dermatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China.
| | - Yihui Fan
- Laboratory of Medical Science, School of Medicine, Nantong University, Nantong 226001, China; Department of Pathogenic Biology, School of Medicine, Nantong University, Nantong 226001, China.
| |
Collapse
|
11
|
Bechara R, Vagner S, Mariette X. Post-transcriptional checkpoints in autoimmunity. Nat Rev Rheumatol 2023; 19:486-502. [PMID: 37311941 DOI: 10.1038/s41584-023-00980-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2023] [Indexed: 06/15/2023]
Abstract
Post-transcriptional regulation is a fundamental process in gene expression that has a role in diverse cellular processes, including immune responses. A core concept underlying post-transcriptional regulation is that protein abundance is not solely determined by transcript abundance. Indeed, transcription and translation are not directly coupled, and intervening steps occur between these processes, including the regulation of mRNA stability, localization and alternative splicing, which can impact protein abundance. These steps are controlled by various post-transcription factors such as RNA-binding proteins and non-coding RNAs, including microRNAs, and aberrant post-transcriptional regulation has been implicated in various pathological conditions. Indeed, studies on the pathogenesis of autoimmune and inflammatory diseases have identified various post-transcription factors as important regulators of immune cell-mediated and target effector cell-mediated pathological conditions. This Review summarizes current knowledge regarding the roles of post-transcriptional checkpoints in autoimmunity, as evidenced by studies in both haematopoietic and non-haematopoietic cells, and discusses the relevance of these findings for developing new anti-inflammatory therapies.
Collapse
Affiliation(s)
- Rami Bechara
- Université Paris-Saclay, Inserm, CEA, Immunologie des maladies virales, auto-immunes, hématologiques et bactériennes (IMVA-HB/IDMIT/UMR1184), Le Kremlin Bicêtre, France.
| | - Stephan Vagner
- Institut Curie, CNRS UMR3348, INSERM U1278, PSL Research University, Université Paris-Saclay, Orsay, France
| | - Xavier Mariette
- Université Paris-Saclay, Inserm, CEA, Immunologie des maladies virales, auto-immunes, hématologiques et bactériennes (IMVA-HB/IDMIT/UMR1184), Le Kremlin Bicêtre, France
- Assistance Publique - Hôpitaux de Paris, Hôpital Bicêtre, Department of Rheumatology, Le Kremlin Bicêtre, France
| |
Collapse
|
12
|
Yaku A, Inagaki T, Asano R, Okazawa M, Mori H, Sato A, Hia F, Masaki T, Manabe Y, Ishibashi T, Vandenbon A, Nakatsuka Y, Akaki K, Yoshinaga M, Uehata T, Mino T, Morita S, Ishibashi-Ueda H, Morinobu A, Tsujimura T, Ogo T, Nakaoka Y, Takeuchi O. Regnase-1 Prevents Pulmonary Arterial Hypertension Through mRNA Degradation of Interleukin-6 and Platelet-Derived Growth Factor in Alveolar Macrophages. Circulation 2022; 146:1006-1022. [PMID: 35997026 DOI: 10.1161/circulationaha.122.059435] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) is a type of pulmonary hypertension (PH) characterized by obliterative pulmonary vascular remodeling, resulting in right-sided heart failure. Although the pathogenesis of PAH is not fully understood, inflammatory responses and cytokines have been shown to be associated with PAH, in particular, with connective tissue disease-PAH. In this sense, Regnase-1, an RNase that regulates mRNAs encoding genes related to immune reactions, was investigated in relation to the pathogenesis of PH. METHODS We first examined the expression levels of ZC3H12A (encoding Regnase-1) in peripheral blood mononuclear cells from patients with PH classified under various types of PH, searching for an association between the ZC3H12A expression and clinical features. We then generated mice lacking Regnase-1 in myeloid cells, including alveolar macrophages, and examined right ventricular systolic pressures and histological changes in the lung. We further performed a comprehensive analysis of the transcriptome of alveolar macrophages and pulmonary arteries to identify genes regulated by Regnase-1 in alveolar macrophages. RESULTS ZC3H12A expression in peripheral blood mononuclear cells was inversely correlated with the prognosis and severity of disease in patients with PH, in particular, in connective tissue disease-PAH. The critical role of Regnase-1 in controlling PAH was also reinforced by the analysis of mice lacking Regnase-1 in alveolar macrophages. These mice spontaneously developed severe PAH, characterized by the elevated right ventricular systolic pressures and irreversible pulmonary vascular remodeling, which recapitulated the pathology of patients with PAH. Transcriptomic analysis of alveolar macrophages and pulmonary arteries of these PAH mice revealed that Il6, Il1b, and Pdgfa/b are potential targets of Regnase-1 in alveolar macrophages in the regulation of PAH. The inhibition of IL-6 (interleukin-6) by an anti-IL-6 receptor antibody or platelet-derived growth factor by imatinib but not IL-1β (interleukin-1β) by anakinra, ameliorated the pathogenesis of PAH. CONCLUSIONS Regnase-1 maintains lung innate immune homeostasis through the control of IL-6 and platelet-derived growth factor in alveolar macrophages, thereby suppressing the development of PAH in mice. Furthermore, the decreased expression of Regnase-1 in various types of PH implies its involvement in PH pathogenesis and may serve as a disease biomarker, and a therapeutic target for PH as well.
Collapse
Affiliation(s)
- Ai Yaku
- Department of Medical Chemistry (A.Y., F.H., Y. Nakatsuka, K.A., M.Y., T.U., T. Mino, O.T.), Graduate School of Medicine, Kyoto University, Japan
- Department of Rheumatology and Clinical Immunology (A.Y., A.M.), Graduate School of Medicine, Kyoto University, Japan
| | - Tadakatsu Inagaki
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan (T. Inagaki, R.A., M.O., H.M., T. Masaki, Y.M., T. Ishibashi, Y. Nakaoka)
| | - Ryotaro Asano
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan (T. Inagaki, R.A., M.O., H.M., T. Masaki, Y.M., T. Ishibashi, Y. Nakaoka)
- Department of Advanced Medical Research for Pulmonary Hypertension (R.A., T.O.), National Cerebral and Cardiovascular Center, Suita, Japan
- Department of Cardiovascular Medicine (R.A., T.O.), National Cerebral and Cardiovascular Center, Suita, Japan
| | - Makoto Okazawa
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan (T. Inagaki, R.A., M.O., H.M., T. Masaki, Y.M., T. Ishibashi, Y. Nakaoka)
| | - Hiroyoshi Mori
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan (T. Inagaki, R.A., M.O., H.M., T. Masaki, Y.M., T. Ishibashi, Y. Nakaoka)
| | - Ayuko Sato
- Department of Pathology, Hyogo College of Medicine, Nishinomiya, Japan (A.S., T.T.)
| | - Fabian Hia
- Department of Medical Chemistry (A.Y., F.H., Y. Nakatsuka, K.A., M.Y., T.U., T. Mino, O.T.), Graduate School of Medicine, Kyoto University, Japan
| | - Takeshi Masaki
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan (T. Inagaki, R.A., M.O., H.M., T. Masaki, Y.M., T. Ishibashi, Y. Nakaoka)
| | - Yusuke Manabe
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan (T. Inagaki, R.A., M.O., H.M., T. Masaki, Y.M., T. Ishibashi, Y. Nakaoka)
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Japan (Y.M.)
| | - Tomohiko Ishibashi
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan (T. Inagaki, R.A., M.O., H.M., T. Masaki, Y.M., T. Ishibashi, Y. Nakaoka)
| | - Alexis Vandenbon
- Laboratory of Systems Virology, Department of Biosystems Science, Institute for Frontier Life and Medical Sciences (A.V.), Kyoto University, Japan
| | - Yoshinari Nakatsuka
- Department of Medical Chemistry (A.Y., F.H., Y. Nakatsuka, K.A., M.Y., T.U., T. Mino, O.T.), Graduate School of Medicine, Kyoto University, Japan
| | - Kotaro Akaki
- Department of Medical Chemistry (A.Y., F.H., Y. Nakatsuka, K.A., M.Y., T.U., T. Mino, O.T.), Graduate School of Medicine, Kyoto University, Japan
| | - Masanori Yoshinaga
- Department of Medical Chemistry (A.Y., F.H., Y. Nakatsuka, K.A., M.Y., T.U., T. Mino, O.T.), Graduate School of Medicine, Kyoto University, Japan
| | - Takuya Uehata
- Department of Medical Chemistry (A.Y., F.H., Y. Nakatsuka, K.A., M.Y., T.U., T. Mino, O.T.), Graduate School of Medicine, Kyoto University, Japan
| | - Takashi Mino
- Department of Medical Chemistry (A.Y., F.H., Y. Nakatsuka, K.A., M.Y., T.U., T. Mino, O.T.), Graduate School of Medicine, Kyoto University, Japan
| | - Satoshi Morita
- Department of Biomedical Statistics and Bioinformatics, Graduate School of Medicine (S.M.), Kyoto University, Japan
| | - Hatsue Ishibashi-Ueda
- Department of Pathology (H.I.-U.), National Cerebral and Cardiovascular Center, Suita, Japan
| | - Akio Morinobu
- Department of Rheumatology and Clinical Immunology (A.Y., A.M.), Graduate School of Medicine, Kyoto University, Japan
| | - Tohru Tsujimura
- Department of Pathology, Hyogo College of Medicine, Nishinomiya, Japan (A.S., T.T.)
| | - Takeshi Ogo
- Department of Advanced Medical Research for Pulmonary Hypertension (R.A., T.O.), National Cerebral and Cardiovascular Center, Suita, Japan
- Department of Cardiovascular Medicine (R.A., T.O.), National Cerebral and Cardiovascular Center, Suita, Japan
| | - Yoshikazu Nakaoka
- Department of Medical Chemistry (A.Y., F.H., Y. Nakatsuka, K.A., M.Y., T.U., T. Mino, O.T.), Graduate School of Medicine, Kyoto University, Japan
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan (T. Inagaki, R.A., M.O., H.M., T. Masaki, Y.M., T. Ishibashi, Y. Nakaoka)
- Department of Cardiovascular Medicine (Y. Nakaoka), Osaka University Graduate School of Medicine, Suita, Japan
- Department of Molecular Imaging in Cardiovascular Medicine (Y. Nakaoka), Osaka University Graduate School of Medicine, Suita, Japan
| | - Osamu Takeuchi
- Department of Medical Chemistry (A.Y., F.H., Y. Nakatsuka, K.A., M.Y., T.U., T. Mino, O.T.), Graduate School of Medicine, Kyoto University, Japan
| |
Collapse
|
13
|
Post-Transcriptional Control of mRNA Metabolism and Protein Secretion: The Third Level of Regulation within the NF-κB System. Biomedicines 2022; 10:biomedicines10092108. [PMID: 36140209 PMCID: PMC9495616 DOI: 10.3390/biomedicines10092108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/12/2022] [Accepted: 08/21/2022] [Indexed: 11/17/2022] Open
Abstract
The NF-κB system is a key transcriptional pathway that regulates innate and adaptive immunity because it triggers the activation and differentiation processes of lymphocytes and myeloid cells during immune responses. In most instances, binding to cytoplasmic inhibitory IκB proteins sequesters NF-κB into an inactive state, while a plethora of external triggers activate three complex signaling cascades that mediate the release and nuclear translocation of the NF-κB DNA-binding subunits. In addition to these cytosolic steps (level 1 of NF-κB regulation), NF-κB activity is also controlled in the nucleus by signaling events, cofactors and the chromatin environment to precisely determine chromatin recruitment and the specificity and timing of target gene transcription (level 2 of NF-κB regulation). Here, we discuss an additional layer of the NF-κB system that manifests in various steps of post-transcriptional gene expression and protein secretion. This less-studied regulatory level allows reduction of (transcriptional) noise and signal integration and endows time-shifted control of the secretion of inflammatory mediators. Detailed knowledge of these steps is important, as dysregulated post-transcriptional NF-κB signaling circuits are likely to foster chronic inflammation and contribute to the formation and maintenance of a tumor-promoting microenvironment.
Collapse
|
14
|
Krueger A, Łyszkiewicz M, Heissmeyer V. Post-transcriptional control of T-cell development in the thymus. Immunol Lett 2022; 247:1-12. [DOI: 10.1016/j.imlet.2022.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/18/2022] [Accepted: 04/26/2022] [Indexed: 11/05/2022]
|
15
|
Gu H, Zheng S, Han G, Yang H, Deng Z, Liu Z, He F. Porcine Reproductive and Respiratory Syndrome Virus Adapts Antiviral Innate Immunity via Manipulating MALT1. mBio 2022; 13:e0066422. [PMID: 35467421 PMCID: PMC9239189 DOI: 10.1128/mbio.00664-22] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 03/24/2022] [Indexed: 11/20/2022] Open
Abstract
To fulfill virus replication and persistent infection in hosts, viruses have to find ways to compromise innate immunity, including timely impedance on antiviral RNases and inflammatory responses. Porcine reproductive and respiratory syndrome virus (PRRSV) is a major swine pathogen causing immune suppression. MALT1 is a central immune regulator in both innate and adaptive immunity. In this study, MALT1 was confirmed to be induced rapidly upon PRRSV infection and mediate the degradation of two anti-PRRSV RNases, MCPIP1 and N4BP1, relying on its proteolytic activity, consequently facilitating PRRSV replication. Multiple PRRSV nsps, including nsp11, nsp7β, and nsp4, contributed to MALT1 elicitation. Interestingly, the elevated expression of MALT1 began to decrease once intracellular viral expression reached a high enough level. Higher infection dose brought earlier MALT1 inflection. Further, PRRSV nsp6 mediated significant MALT1 degradation via ubiquitination-proteasome pathway. Downregulation of MALT1 suppressed NF-κB signals, leading to the decrease in proinflammatory cytokine expression. In conclusion, MALT1 expression was manipulated by PRRSV in an elaborate manner to antagonize precisely the antiviral effects of host RNases without excessive and continuous activation of inflammatory responses. These findings throw light on the machinery of PRRSV to build homeostasis in infected immune system for viral settlement. IMPORTANCE PRRSV is a major swine pathogen, suppresses innate immunity, and causes persistent infection and coinfection with other pathogens. As a central immune mediator, MALT1 plays essential roles in regulating immunity and inflammation. Here, PRRSV was confirmed to manipulate MALT1 expression in an accurate way to moderate the antiviral immunity. Briefly, multiple PRRSV nsps induced MALT1 protease to antagonize anti-PRRSV RNases N4BP1 and MCPIP1 upon infection, thereby facilitating viral replication. In contrast, PRRSV nsp6 downregulated MALT1 expression via ubiquitination-proteasome pathway to suppress the inflammatory responses upon infection aggravation, contributing to immune defense alleviation and virus survival. These findings revealed the precise expression control on MALT1 by PRRSV for antagonizing antiviral RNases, along with recovering immune homeostasis. For the first time, this study enlightens a new mechanism of PRRSV adapting antiviral innate immunity by modulating MALT1 expression.
Collapse
Affiliation(s)
- Han Gu
- Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China
| | - Suya Zheng
- Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China
| | - Guangwei Han
- Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China
| | - Haotian Yang
- Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China
| | - Zhuofan Deng
- Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China
| | - Zehui Liu
- Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China
| | - Fang He
- Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China
| |
Collapse
|