1
|
Fortuna V, Oliveira GF, Xavier LM, Oliveira DV, Lima JG, Oliveira YS, Costa BS, Jesus GB, Yahouedehou SCMA, Zanchin EM, Meyer JR, Meneses JV, Gonçalves MS, Bagnato VS. Enhancing sickle cell leg ulcer healing with combined photodynamic and photobiomodulation therapies: A pilot experience. J Tissue Viability 2025; 34:100879. [PMID: 40073514 DOI: 10.1016/j.jtv.2025.100879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 02/06/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025]
Abstract
AIM This study aimed to evaluate the safety and efficacy of combined photodynamic therapy (PDT) and photobiomodulation (PBM) in treating sickle cell leg ulcers (SCLUs), with a focus on pain reduction and enhanced healing. MATERIALS AND METHODS In this prospective, open-label, uncontrolled pilot study, ten SCD patients with 17 chronic leg ulcers received PDT and PBM treatments. Ulcer severity, pain levels, and microbiome changes were monitored, and clinical data were analyzed using appropriate statistical methods. RESULTS Among the treated ulcers, 64.7 % (11 out of 17) showed significant healing, with 9 ulcers achieving complete closure. The average reduction in ulcer size was significant, with a median healing time of 123 days. Pain levels decreased significantly in 82.3 % of treated ulcers (p < 0.001), and a 75.4 % reduction in bacterial load was observed, alongside increased microbiome diversity (p < 0.05). Elevated levels of IL-6 and PSGL-1 were associated with non-healing ulcers, indicating their potential as prognostic biomarkers. CONCLUSION The combined PDT and PBM therapy proved to be effective and safe for SCLUs, offering significant improvements in healing and pain reduction. These findings suggest that integrating PDT and PBM into standard care protocols could enhance the management of SCLUs.
Collapse
Affiliation(s)
- Vitor Fortuna
- Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Brazil; Laboratory of Immunology and Molecular Biology, Institute of Health Sciences, Federal University of Bahia, Brazil.
| | - Gabriel F Oliveira
- Laboratory of Immunology and Molecular Biology, Institute of Health Sciences, Federal University of Bahia, Brazil
| | - Livia M Xavier
- Prof Edgar Santos Hospital Complex, Federal University of Bahia, Brazil
| | | | - Jaqueline G Lima
- Laboratory of Immunology and Molecular Biology, Institute of Health Sciences, Federal University of Bahia, Brazil
| | - Yasmin S Oliveira
- Laboratory of Immunology and Molecular Biology, Institute of Health Sciences, Federal University of Bahia, Brazil
| | - Beatriz S Costa
- Laboratory of Immunology and Molecular Biology, Institute of Health Sciences, Federal University of Bahia, Brazil
| | - Giselle B Jesus
- Laboratory of Immunology and Molecular Biology, Institute of Health Sciences, Federal University of Bahia, Brazil
| | | | - Elissandra M Zanchin
- Laboratory of Environmental Biophotonics, São Carlos Institute of Physics, University of São Paulo, São Carlos, SP, Brazil
| | - José Roberto Meyer
- Laboratory of Immunology and Molecular Biology, Institute of Health Sciences, Federal University of Bahia, Brazil
| | - José V Meneses
- Prof Edgar Santos Hospital Complex, Federal University of Bahia, Brazil
| | - Marilda Souza Gonçalves
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, BA, Brazil; Department of Clinical Analysis, Faculty of Pharmacy, Federal University of Bahia, Salvador, BA, Brazil
| | - Vanderlei S Bagnato
- Laboratory of Environmental Biophotonics, São Carlos Institute of Physics, University of São Paulo, São Carlos, SP, Brazil; Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| |
Collapse
|
2
|
Kardumyan VV, Kuryanova AS, Chernyak AV, Aksenova NA, Biryukov MV, Glagolev NN, Solovieva AB. Effect of Hyaluronic Acid on the Activity of Methylene Blue in Photogeneration of 1O 2. Molecules 2024; 29:5336. [PMID: 39598725 PMCID: PMC11596684 DOI: 10.3390/molecules29225336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/31/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024] Open
Abstract
The effect of a natural polysaccharide (hyaluronic acid (HA)) on the photocatalytic activity of methylene blue (MB) was studied both under model conditions (a tryptophan photooxidation reaction in water) and with in vitro experiments on P. aeruginosa and S. aureus bacterial cultures. It was shown spectrophotometrically that, in the presence of HA, an increase in the optical density of the absorption bands λ = 665 nm and 620 nm-which correspond to the monomeric and dimeric forms of the dye, respectively-was observed in the EAS of the dye, while the ratio of the optical density of these bands remained practically unchanged. When adding HA to MB, the intensity of singlet oxygen 1O2 photoluminescence and the degree of fluorescence polarization of MB increase. The observed effects are associated with the disaggregation of molecular associates of the dye in the presence of HA. The maximum increase in the photocatalytic activity of MB (by 1.6 times) was observed in the presence of HA, with concentrations in a range between 0.0015 wt.% and 0.005 wt.%.
Collapse
Affiliation(s)
- Valeriya V. Kardumyan
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygin St. 4, 119991 Moscow, Russia; (A.S.K.); (N.A.A.); (N.N.G.); (A.B.S.)
| | - Anastasia S. Kuryanova
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygin St. 4, 119991 Moscow, Russia; (A.S.K.); (N.A.A.); (N.N.G.); (A.B.S.)
| | - Aleksandr V. Chernyak
- Federal Research Center of Problem of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Ac. Semenov Ave. 1, 142432 Chernogolovka, Russia;
- Scientific Center in Chernogolovka of the Institute of Solid State Physics Named Yu. A. Osipyan, Russian Academy of Sciences, Ac. Semenov Ave. 1, 142432 Chernogolovka, Russia
| | - Nadezhda A. Aksenova
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygin St. 4, 119991 Moscow, Russia; (A.S.K.); (N.A.A.); (N.N.G.); (A.B.S.)
| | - Mikhail V. Biryukov
- Translational Medicine Research Center, Sirius University of Science and Technology, Olympic Ave. 1, 354340 Sochi, Russia;
- Faculty of Biology, Lomonosov Moscow State University, Leninskie Gori St. 1/12, 119234 Moscow, Russia
| | - Nicolay N. Glagolev
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygin St. 4, 119991 Moscow, Russia; (A.S.K.); (N.A.A.); (N.N.G.); (A.B.S.)
| | - Anna B. Solovieva
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygin St. 4, 119991 Moscow, Russia; (A.S.K.); (N.A.A.); (N.N.G.); (A.B.S.)
| |
Collapse
|
3
|
Cardoza JV, Ali Z, Simon S, Thakkar D, George SS, Isaac SP. The Role of Nanoparticles in Accelerating Tissue Recovery and Inflammation Control in Physiotherapy Practices. Cureus 2024; 16:e73540. [PMID: 39669817 PMCID: PMC11636964 DOI: 10.7759/cureus.73540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2024] [Indexed: 12/14/2024] Open
Abstract
Physiotherapy has significantly evolved since its inception in the late 19th century, expanding into various specializations such as sports, neurology, and wound care. Its primary goal is to restore or enhance bodily functions through therapeutic interventions, aiding in conditions ranging from injuries to chronic pain. Tissue recovery, which involves repair and regeneration, is a critical aspect of physiotherapy. This natural process is influenced by factors like inflammation and injury severity. Nanotechnology, a relatively recent advancement, has transformed medicine, including wound care, through innovations in drug delivery, diagnostics, and anti-inflammatory treatments. Nanoparticles, owing to their small size and enhanced bioavailability, play a crucial role in improving drug delivery, increasing the efficacy of treatments, and promoting faster recovery. In the context of tissue healing, nanoparticles aid in cell proliferation, inflammation control, and scar reduction, among other therapeutic benefits. They are increasingly used in physiotherapy applications, to support tissue regeneration and inflammation management. This review examines the role of nanoparticles in physiotherapy, with a focus on their application in wound healing, muscle recovery, and inflammation control. It discusses various in-vitro and in-vivo studies that have explored the therapeutic potential of nanoparticles in these domains, providing insights into their mechanisms of action and effectiveness in promoting tissue regeneration and managing inflammation in physiotherapy settings.
Collapse
Affiliation(s)
| | - Zeeshan Ali
- Physiology, Krupanidhi College of Physiotherapy, Bengaluru, IND
| | - Simi Simon
- Biochemistry, Krupanidhi College of Physiotherapy, Bengaluru, IND
| | - Darshni Thakkar
- Physiotherapy, Krupanidhi college of physiotherapy, Bengaluru, IND
| | - Sudhan S George
- Physiotherapy, Krupanidhi College of Physiotherapy, Bengaluru, IND
| | | |
Collapse
|
4
|
Peng Q, Yang Q, Yan Z, Wang X, Zhang Y, Ye M, Zhou S, Jiao G, Chen W. Nanofiber-reinforced chitosan/gelatine hydrogel with photothermal, antioxidant and conductive capabilities promotes healing of infected wounds. Int J Biol Macromol 2024; 279:134625. [PMID: 39163962 DOI: 10.1016/j.ijbiomac.2024.134625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 08/01/2024] [Accepted: 08/08/2024] [Indexed: 08/22/2024]
Abstract
The wound healing process was often accompanied by bacterial infection and inflammation. The combination of electrically conductive nanomaterials and wound dressings could accelerate cell proliferation through endogenous electrical signaling, effectively promoting wound healing. In this study, polypyrrole was modified with dopamine hydrochloride by an in situ polymerization to form dopamine-polypyrrole (DA-Ppy) conductive nanofibers which successfully enhanced the water dispersibility and biocompatibility of polypyrrole. The DA-Ppy nanofibers were dispersed in an aqueous solution for >48 h and still maintained good stability. In addition, the DA-Ppy nanofibers showed good photothermal properties, and the temperature could reach 59.7 °C by 1.5 W/cm2 near-infrared light irradiation (NIR) for 10 min. DA-Ppy conductive nanofibres could be well dispersed in 3,4-dihydroxyphenylpropionic acid modified chitosan-carboxymethylated β-cyclodextrin modified gelatin (CG) hydrogel due to the presence of DA, which endowed CG/DA-Ppy hydrogel with good adhesion properties, and the hydrogel adhered to the pigskin would not be dislodged by washing with running water. Under NIR, the CG/DA-Ppy hydrogel showed significant antimicrobial properties. Moreover, the CG/DA-Ppy hydrogel had excellent biocompatibility. In addition, CG/DA-Ppy hydrogel was effective in scavenging ROS, inducing macrophage polarization towards the M2 phenotype, and modulating the level of wound inflammation in vitro. Finally, it was confirmed in rat-infected wounds that the tissue regeneration effect and collagen deposition in the CG/DA-Ppy + NIR group were significantly better than the other groups in the repair of infected wounds, indicating better repair of infected wounds. The results suggested that the photothermal, antioxidant DA-Ppy conductive nanofiber had great potential for application in infected wound healing.
Collapse
Affiliation(s)
- Qing Peng
- Central Laboratory of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen 518172, PR China
| | - Qi Yang
- Department of Orthopedic Surgery, The Sixth Affiliated Hospital of Jinan University (Dongguan Eastern Central Hospital), Dongguan 523573, PR China
| | - Zheng Yan
- The Second Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Xiaofei Wang
- Department of Orthopedics, 302 Hospital of China Guizhou Aviation Industry Group, Anshun, Guizhou 561000, PR China
| | - Ying Zhang
- Central Laboratory of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen 518172, PR China
| | - Mao Ye
- Department of Orthopedics, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510000, PR China
| | - Shuqin Zhou
- Department of Anesthesiology of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen 518172, PR China
| | - Genlong Jiao
- Department of Orthopedic Surgery, The Sixth Affiliated Hospital of Jinan University (Dongguan Eastern Central Hospital), Dongguan 523573, PR China.
| | - Weijian Chen
- Department of Orthopedics, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510000, PR China; Department of Orthopedics, 302 Hospital of China Guizhou Aviation Industry Group, Anshun, Guizhou 561000, PR China.
| |
Collapse
|
5
|
Lu X, Zhou L, Song W. Recent Progress of Electrospun Nanofiber Dressing in the Promotion of Wound Healing. Polymers (Basel) 2024; 16:2596. [PMID: 39339060 PMCID: PMC11435701 DOI: 10.3390/polym16182596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
The nanofiber materials of three-dimensional spatial structure synthesized by electrospun have the characteristics of high porosity, high specific surface area, and high similarity to the natural extracellular matrix (ECM) of the human body. These are beneficial for absorbing wound exudate, effectively blocking the invasion of external bacteria, and promoting cell respiration and proliferation, which provides an ideal microenvironment for wound healing. Moreover, electrospun nanofiber dressings can flexibly load drugs according to the condition of the wound, further promoting wound healing. Recently, electrospun nanofiber materials have shown promising application prospects as medical dressings in clinical. Based on current research, this article reviewed the development history of wound dressings and the principles of electrospun technology. Subsequently, based on the types of base material, polymer-based electrospun nanofiber dressing and electrospun nanofiber dressing containing drug-releasing factors were discussed. Furthermore, the application of electrospun nanofiber dressing on skin tissue is highlighted. This review aims to provide a detailed overview of the current research on electrospun nanomaterials for wound healing, addressing challenges and suggesting future research directions to advance the field of electrospun dressings in wound healing.
Collapse
Affiliation(s)
- Xiaoqi Lu
- School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Libo Zhou
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Weiye Song
- School of Mechanical Engineering, Shandong University, Jinan 250061, China
| |
Collapse
|
6
|
Guo N, Chen J, Kong F, Gao Y, Bian J, Liu T, Hong G, Zhao Z. 5-aminolevulinic acid photodynamic therapy for chronic wound infection in rats with diabetes. Biomed Pharmacother 2024; 178:117132. [PMID: 39047418 DOI: 10.1016/j.biopha.2024.117132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/27/2024] Open
Abstract
Recent research indicated that ulcers and peripheral vascular disease resulting from drug-resistant bacterial infections are the main causes of delayed healing in chronic diabetic wounds. 5-Aminolevulinic acid (ALA) is a second-generation endogenous photosensitizer. The therapeutic effect and mechanism of ALA-mediated photodynamic therapy (ALA-PDT) on methicillin-resistant Staphylococcus aureus (MRSA)-infected wounds in diabetic rats were investigated in this study. The results revealed the promising antibacterial effects of ALA-PDT MRSA in vitro, with a minimum inhibitory concentration and minimum bactericidal concentration of 250 and 500 μM, respectively. ALA-PDT also changed the permeability and structural integrity of bacterial cell membranes by producing reactive oxygen species. Meanwhile, ALA-PDT accelerated wound healing in MRSA-infected diabetic rats, with 5 % ALA-PDT achieving complete sterilization in 14 days and wound closure in 21 days. Treatment with 5 % ALA-PDT additionally improved the histopathological appearance of skin tissue, as well as fibrosis, inflammatory cytokine release, and angiogenesis-related protein expression. These findings indicated that ALA-PDT significantly promoted the healing of MRSA-infected wounds in diabetic rats by eliminating bacteria, inhibiting inflammation, generating granulation tissues, promoting neovascularization, and restoring damaged nerves. In addition, the healing mechanism was related to the activation of inflammatory and angiogenesis pathways through the regulation of tumor necrosis factor-alpha and interleukin-6 expression and upregulation of CD206, CD31, and VEGF. These findings underscored the potential role of ALA-PDT in promoting the healing of chronic diabetic wounds.
Collapse
Affiliation(s)
- Ning Guo
- School of Basic Medical Sciences, Hebei University, China; Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, China.
| | - Jingyu Chen
- Tianjin University of Traditional Chinese Medicine, China.
| | - Feiyan Kong
- School of Basic Medical Sciences, Hebei University, China.
| | | | | | - Tianjun Liu
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, China.
| | - Ge Hong
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, China.
| | - Zhanjuan Zhao
- School of Basic Medical Sciences, Hebei University, China.
| |
Collapse
|
7
|
Huang J, Fan Q, Shi L, Shen J, Wang H. A novel chlorin derivative Shengtaibufen (STBF) mediated photodynamic therapy combined with iodophor for the treatment of chronic superficial leg wounds infected with methicillin-resistant Staphylococcus aureus: A retrospective clinical study. Photodiagnosis Photodyn Ther 2024; 48:104300. [PMID: 39097252 DOI: 10.1016/j.pdpdt.2024.104300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 07/27/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
OBJECTIVE Chronic wounds are costly and difficult to treat, resulting in morbidity and even mortality in some cases due to a high methicillin-resistant Staphylococcus aureus (MRSA) burden contributing to chronicity. We aimed to observe the antimicrobial activity and healing-promoting effect of a novel photosensitizer Shengtaibufen (STBF)-mediated antibacterial photodynamic therapy (PDT) on MRSA-infected chronic leg ulcers. PATIENTS AND METHODS This was a retrospective, comparative, single-center clinical study. A total of 32 patients with chronic lower limb wounds infected with MRSA from January 2022 to December 2023 were finally included in this study by searching the electronic medical records of the dermatology department of Huadong Hospital, including a group of red light combined with iodophor (control+iodophor, n=16, receiving red light once a week for 8 weeks and routine dressing change with iodophor once a day) and a group of STBF-mediated PDT (STBF-PDT) combined with iodophor (STBF-PDT+iodophor, n=16, receiving STBF-PDT and routine dressing change with iodophor once a day). STBF-PDT was performed once a week (1 mg/ml STBF, 1 h incubation, 630 nm red light, 80 J/cm2) for 8 weeks. The primary endpoints included wound clinical signs, wound size, wound-related pain, re-epithelialization score, MRSA load and wound-related quality of life (wound-QoL). Any adverse events were also recorded. RESULTS We found that STBF-PDT+iodophor could effectively alleviate clinical infection symptoms, accelerate wound closure, reduce average biological burden and improve wound-QoL without severe adverse events in comparison to the control+iodophor group. The STBF-PDT+iodophor group obtained a mean percentage reduction of 65.22% in wound size (from 18.96±11.18 cm2 to 6.59±7.94 cm2) and excellent re-epithelialization scores, as compared with a decrease of 30.17% (from 19.23±9.80 cm2 to 13.43±9.32 cm2) for the control+iodophor group. Significant differences in wound area were observed at week 6 (p=0.028*) and week 8 (p=0.002**). The bacterial load decreased by 99.86% (from 6.45 × 107±2.69 × 107 to 8.94 × 104±1.92 × 105 CFU/cm2, p<0.0001) in the STBF-PDT+iodophor group and 1.82% (from 6.61 × 107±2.13 × 107 to 6.49 × 107±2.01 × 107 CFU/cm2, p=0.029) in the control+iodophor group. The wound-QoL in STBF-PDT+iodophor group had a 51.62% decrease in overall score (from 29.65±9.33 at the initial to 14.34±5.17 at week 8, p<0.0001) compared to those receiving red light and routine wound care (from 30.73±17.16 to 29.32±15.89 at week 8, p=0.003). Moreover, patients undergoing STBF-PDT+iodophor exhibited great improvements in all domains of wound-QoL (physical, psychological and everyday-life), whereas the control+iodophor group ameliorated in only one field (everyday-life). CONCLUSION Our data confirmed that a novel photosensitizer, STBF-mediated PDT, when combined with iodophor, served as a potential modality for MRSA infection and a possible therapy for other drug-resistant microorganisms, and as a promising alternative for chronic cutaneous infectious diseases.
Collapse
Affiliation(s)
- Jianhua Huang
- Department of Dermatology, Huadong Hospital, Fudan University, Shanghai 200040, PR China
| | - Qing Fan
- Department of Dermatology, Shanghai Fengxian District Hospital, Shanghai 201499, PR China
| | - Lei Shi
- Department of Dermatology, Huadong Hospital, Fudan University, Shanghai 200040, PR China
| | - Jie Shen
- Department of Dermatology, Huadong Hospital, Fudan University, Shanghai 200040, PR China
| | - Hongwei Wang
- Department of Dermatology, Huadong Hospital, Fudan University, Shanghai 200040, PR China.
| |
Collapse
|
8
|
Giannakopoulos E, Katopodi A, Rallis M, Politopoulos K, Alexandratou E. The effect of low-dose photodynamic therapy using the photosensitizer chloroaluminum phthalocyanine on a scratch wound model in skin fibroblasts. JOURNAL OF BIOPHOTONICS 2024:e202400033. [PMID: 38962832 DOI: 10.1002/jbio.202400033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 07/05/2024]
Abstract
Different approaches on wound healing have been developed over the years but they suffer from high costs and adverse effects for the patients. The current paper was designed to study low dose PDT, a novel healing approach, in an in vitro fibroblasts wound healing model. Chloroaluminum phthalocyanine (AlClPc) was used as photosensitizer and was activated by a red diode laser at 661 nm. After PDT optimization, wound closure rate and reactive oxygen species were quantified by image processing and analysis. Our results revealed that wound healing rates were significantly higher in PDT treated groups than in the control. Additionally, the study revealed that a prolonged ROS increase did not promote wound closure, while a small increase acted as a trigger, resulting in faster wound closure. Concluding, low dose PDT using AlClPc enhances wound healing in vitro in a ROS dependent manner, allowing the assumption of similar positive effects in vivo.
Collapse
Affiliation(s)
- Efstathios Giannakopoulos
- Laboratory of Biomedical Optics and Applied Biophysics, School of Electrical and Computer Engineering, National Technical University of Athens, Athens, Greece
- Division of Pharmaceutical Technology, School of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Annita Katopodi
- Laboratory of Organic Chemistry, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Michail Rallis
- Division of Pharmaceutical Technology, School of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Politopoulos
- Laboratory of Biomedical Optics and Applied Biophysics, School of Electrical and Computer Engineering, National Technical University of Athens, Athens, Greece
| | - Eleni Alexandratou
- Laboratory of Biomedical Optics and Applied Biophysics, School of Electrical and Computer Engineering, National Technical University of Athens, Athens, Greece
| |
Collapse
|
9
|
Zhao Z, Pang J, Zhao D, Guo N, Guo Y, Kong F, Yang H, Zhao J. Exploring the efficacy of photodynamic antimicrobial chemotherapy on diabetic foot ulcers in rats. JOURNAL OF BIOPHOTONICS 2024; 17:e202300568. [PMID: 38651324 DOI: 10.1002/jbio.202300568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/19/2024] [Accepted: 03/13/2024] [Indexed: 04/25/2024]
Abstract
We investigate the efficacy of photodynamic antimicrobial chemotherapy (PACT) and its combination with an antibiotic in the treatment of diabetic foot ulcers (DFUs) in rats using a novel cationic amino acid porphyrin-based photosensitizer. The research findings demonstrate that the combination of novel cationic photosensitizer-mediated PACT and an antibiotic exhibits significant therapeutic efficacy in treating deep ulcers in a rat model of DFUs. Moreover, the PACT + Antibiotic group displays enhanced angiogenesis, improved tissue maturation, and superior wound healing effect. Micro-computed tomography examination showed that the periosteal reaction was most obvious in the PACT + Antibiotic group. The cortical bone volume ratio (BV/TV), the bone mineral density, and trabecular thickness were significantly higher in the PACT + Antibiotic group than in the model group (p < 0.05). The combination of PACT and antibiotic plays a sensitizing therapeutic role, which provides a new idea for the clinical treatment of DFUs.
Collapse
Affiliation(s)
- Zhanjuan Zhao
- College of Basic Medicine, Hebei University, Baoding, China
| | - Jinwen Pang
- Department of Medical Imaging, Cangzhou Hospital of Integrated TCM-WM Hebei, Cangzhou, China
| | - Di Zhao
- School of Foreign Languages, Tianjin University of Commerce, Tianjin, China
| | - Ning Guo
- College of Basic Medicine, Hebei University, Baoding, China
| | - Yiman Guo
- College of Clinical Medicine, Hebei University, Baoding, China
| | - Feiyan Kong
- College of Basic Medicine, Hebei University, Baoding, China
| | - Huizhong Yang
- College of Clinical Medicine, Hebei University, Baoding, China
| | - Jianxi Zhao
- Department of Radiology, Affiliated Hospital of Hebei University, Baoding, China
| |
Collapse
|
10
|
Li Z, Ren J, Sui X, Yang N, Li S, Qi L, Li S, Fan Y, Liu Z. A win-win platform: Stabilized black phosphorous nanosheets loading gallium ions for enhancing the healing of bacterial-infected wounds through synergistic antibacterial approaches. Int Wound J 2024; 21:e14940. [PMID: 38888416 PMCID: PMC11184645 DOI: 10.1111/iwj.14940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/16/2024] [Accepted: 05/19/2024] [Indexed: 06/20/2024] Open
Abstract
Bacterial infection is the most common complication in wound healing, highlighting an urgent need for the development of innovative antibacterial technologies and treatments to address the growing threats posed by bacterial infections. Black phosphorus nanosheets (BPNSs), as a promising two-dimensional nanomaterial, have been utilized in treating infected wounds. However, BP's limited stability restricts its application. In this study, we enhance BP's stability and its antibacterial properties by anchoring gallium ions (Ga3+) onto BP's surface, creating a novel antibacterial platform. This modification reduces BP's electron density and enhances its antibacterial capabilities through a synergistic effect. Under near-infrared (NIR) irradiation, the BP/Ga3+ combination exerts antibacterial effects via photothermal therapy (PTT) and photodynamic therapy (PDT), while also releasing Ga3+. The Ga3+ employ a 'Trojan horse strategy' to disrupt iron metabolism, significantly boosting the antibacterial efficacy of the complex. This innovative material offers a viable alternative to antibiotics and holds significant promise for treating infected wounds and aiding skin reconstruction.
Collapse
Affiliation(s)
- Zhiwei Li
- Department of Prosthodontics, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School of StomatologyJilin UniversityChangchunChina
| | - Jiwei Ren
- Department of Prosthodontics, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School of StomatologyJilin UniversityChangchunChina
| | - Xin Sui
- Department of Prosthodontics, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School of StomatologyJilin UniversityChangchunChina
| | - Nan Yang
- Department of Prosthodontics, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School of StomatologyJilin UniversityChangchunChina
| | - Sijia Li
- Department of Prosthodontics, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School of StomatologyJilin UniversityChangchunChina
| | - Le Qi
- Department of Prosthodontics, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School of StomatologyJilin UniversityChangchunChina
| | - Sining Li
- Department of Prosthodontics, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School of StomatologyJilin UniversityChangchunChina
| | - Yixin Fan
- Department of Prosthodontics, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School of StomatologyJilin UniversityChangchunChina
| | - Zhihui Liu
- Department of Prosthodontics, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School of StomatologyJilin UniversityChangchunChina
| |
Collapse
|
11
|
Husakova M, Orlandi VT, Bolognese F, Branska B, Patakova P. Screening Antibacterial Photodynamic Effect of Monascus Red Yeast Rice (Hong-Qu) and Mycelium Extracts. Curr Microbiol 2024; 81:183. [PMID: 38771359 PMCID: PMC11108928 DOI: 10.1007/s00284-024-03725-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/29/2024] [Indexed: 05/22/2024]
Abstract
The fungus Monascus is a well-known source of secondary metabolites with interesting pharmaceutical and nutraceutical applications. In particular, Monascus pigments possess a wide range of biological activities (e.g. antimicrobial, antioxidant, anti-inflammatory or antitumoral). To broaden the scope of their possible application, this study focused on testing Monascus pigment extracts as potential photosensitizing agents efficient in antimicrobial photodynamic therapy (aPDT) against bacteria. For this purpose, eight different extracts of secondary metabolites from the liquid- and solid-state fermentation of Monascus purpureus DBM 4360 and Monascus sp. DBM 4361 were tested against Gram-positive and Gram-negative model bacteria, Bacillus subtilis and Escherichia coli and further screened for ESKAPE pathogens, Staphylococcus aureus and Pseudomonas aeruginosa. To the bacterial culture, increasing concentration of extracts was added and it was found that all extracts showed varying antimicrobial activity against Gram-positive bacteria in dark, which was further increased after irradiation. Gram-negative bacteria were tolerant to the extracts' exposure in the dark but sensitivity to almost all extracts that occurred after irradiation. The Monascus sp. DBM 4361 extracts seemed to be the best potential candidate for aPDT against Gram-positive bacteria, being efficient at low doses, i.e. the lowest total concentration of Monascus pigments exhibiting aPDT effect was 3.92 ± 1.36 mg/L for E. coli. Our results indicate that Monascus spp., forming monascuspiloin as the major yellow pigment and not-forming mycotoxin citrinin, is a promising source of antimicrobials and photoantimicrobials.
Collapse
Affiliation(s)
- Marketa Husakova
- Department of Biotechnology, University of Chemistry and Technology Prague, Technicka 5, 160 00, Prague, Czech Republic
| | - Viviana Teresa Orlandi
- Department of Biotechnologies and Life Sciences, University of Insubria, Via JH Dunant 3, 21100, Varese, Italy
| | - Fabrizio Bolognese
- Department of Biotechnologies and Life Sciences, University of Insubria, Via JH Dunant 3, 21100, Varese, Italy
| | - Barbora Branska
- Department of Biotechnology, University of Chemistry and Technology Prague, Technicka 5, 160 00, Prague, Czech Republic
| | - Petra Patakova
- Department of Biotechnology, University of Chemistry and Technology Prague, Technicka 5, 160 00, Prague, Czech Republic.
| |
Collapse
|
12
|
Islam R, Bilal H, Wang X, Zhang L. Tripeptides Ghk and GhkCu-modified silver nanoparticles for enhanced antibacterial and wound healing activities. Colloids Surf B Biointerfaces 2024; 236:113785. [PMID: 38387323 DOI: 10.1016/j.colsurfb.2024.113785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/21/2024] [Accepted: 02/02/2024] [Indexed: 02/24/2024]
Abstract
Bacterial skin infections represent a major healthcare concern that can delay healing and threaten human health. Silver nanoparticles (AgNPs) have been widely used for antimicrobial purposes; however, their high toxicity limits their applications. Therefore, there is an urgent need to develop simple and efficient therapeutic approaches for treating bacterial infections and promoting wound healing. Here, novel tripeptide (Ghk and GhkCu)-modified AgNPs were developed and subsequently evaluated their antibacterial efficacy against four pathogenic bacterial isolates, cytotoxic properties, and therapeutic effects as a topical treatment for infected wounds. Spherical GhkAgNPs and GhkCuAgNPs with average sizes of 45.92 nm and 56.82 nm exhibited potential antibacterial activity, with a MIC concentration of 8 μg/ml against S. aureus and E. coli. Both AgNPs showed superior bactericidal effects against S. aureus, with complete inhibition after 7 days of treatment. Cytotoxicity assays revealed IC50 (half maximal inhibitory concentrations) values ranging from 6.75 to 6.99 µg/ml in L929 cells. GhkAgNPs displayed accelerated cell migration and facilitated healing up to 92% after 12 h. Furthermore, topical applications of GhkAgNPs and GhkCuAgNPs to S. aureus-infected wounds demonstrated enhanced in vivo wound healing efficacy compared to control groups, as evidenced by increased regenerated epidermal thickness, improved collagen deposition, and downregulation of TNF-α expression. Hence concluded that these novel tripeptides Ghk and GhkCu-modified AgNPs exhibited potent antibacterial effects and significantly promoted wound healing properties.
Collapse
Affiliation(s)
- Rehmat Islam
- Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Hazrat Bilal
- Department of Dermatology, Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Xuejing Wang
- Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.
| | - Lianbing Zhang
- Department of Dermatology, Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| |
Collapse
|
13
|
Abdel Khalek MA, Abdelhameed AM, Abdel Gaber SA. The Use of Photoactive Polymeric Nanoparticles and Nanofibers to Generate a Photodynamic-Mediated Antimicrobial Effect, with a Special Emphasis on Chronic Wounds. Pharmaceutics 2024; 16:229. [PMID: 38399283 PMCID: PMC10893342 DOI: 10.3390/pharmaceutics16020229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/28/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
This review is concerned with chronic wounds, with an emphasis on biofilm and its complicated management process. The basics of antimicrobial photodynamic therapy (PDT) and its underlying mechanisms for microbial eradication are presented. Intrinsically active nanocarriers (polydopamine NPs, chitosan NPs, and polymeric micelles) that can further potentiate the antimicrobial photodynamic effect are discussed. This review also delves into the role of photoactive electrospun nanofibers, either in their eluting or non-eluting mode of action, in microbial eradication and accelerating the healing of wounds. Synergic strategies to augment the PDT-mediated effect of photoactive nanofibers are reviewed.
Collapse
Affiliation(s)
- Mohamed A. Abdel Khalek
- Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Amr M. Abdelhameed
- Institute of Global Health and Human Ecology, School of Sciences & Engineering, The American University in Cairo, Cairo 11385, Egypt
- Bioscience Research Laboratories Department, MARC for Medical Services and Scientific Research, Giza 11716, Egypt
| | - Sara A. Abdel Gaber
- Nanomedicine Department, Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| |
Collapse
|
14
|
Cui Z, Li Y, Qin Y, Li J, Shi L, Wan M, Hu M, Chen Y, Ji Y, Hou Y, Ye F, Liu C. Polymyxin B-targeted liposomal photosensitizer cures MDR A. baumannii burn infections and accelerates wound healing via M 1/M 2 macrophage polarization. J Control Release 2024; 366:297-311. [PMID: 38161034 DOI: 10.1016/j.jconrel.2023.12.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/27/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Multidrug-resistant (MDR) Acinetobacter baumannii infections pose a significant challenge in burn wound management, necessitating the development of innovative therapeutic strategies. In this work, we introduced a novel polymyxin B (PMB)-targeted liposomal photosensitizer, HMME@Lipo-PMB, for precise and potent antimicrobial photodynamic therapy (aPDT) against burn infections induced by MDR A. baumanni. HMME@Lipo-PMB-mediated aPDT exhibited enhanced antibacterial efficacy by specifically targeting and disrupting bacterial cell membranes, and generating increased intracellular ROS. Remarkably, even at low concentrations, this targeted approach significantly reduced bacterial viability in vitro and completely eradicated burn infections induced by MDR A. baumannii in vivo. Additionally, HMME@Lipo-PMB-mediated aPDT facilitated burn infection wound healing by modulating M1/M2 macrophage polarization. It also effectively promoted acute inflammation in the early stage, while attenuated chronic inflammation in the later stage of wound healing. This dynamic modulation promoted the formation of granulation tissue, angiogenesis, and collagen regeneration. These findings demonstrate the tremendous potential of HMME@Lipo-PMB-mediated aPDT as a promising alternative for the treatment of burn infections caused by MDR A. baumannii.
Collapse
Affiliation(s)
- Zixin Cui
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an 710061, PR China; Department of Infection, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, PR China
| | - Yiyang Li
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an 710061, PR China; Department of Infection, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, PR China
| | - Yannan Qin
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an 710061, PR China
| | - Jianzhou Li
- Department of Infection, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, PR China
| | - Lei Shi
- Department of Infection, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, PR China
| | - Meijuan Wan
- Department of Infection, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, PR China
| | - Min Hu
- Department of Chemistry, School of Chemistry, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an 710049, PR China
| | - Yunru Chen
- Department of Infection, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, PR China
| | - Yanhong Ji
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an 710061, PR China
| | - Yuzhu Hou
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an 710061, PR China
| | - Feng Ye
- Department of Infection, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, PR China.
| | - Chengcheng Liu
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an 710061, PR China.
| |
Collapse
|
15
|
Ding J, Chen D, Hu J, Zhang D, Gou Y, Wu Y. Roxithromycin and rhEGF Co-loaded Reactive Oxygen Species Responsive Nanoparticles for Accelerating Wound Healing. Curr Drug Deliv 2024; 21:753-762. [PMID: 37183469 DOI: 10.2174/1567201820666230512103750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/19/2023] [Accepted: 02/06/2023] [Indexed: 05/16/2023]
Abstract
BACKGROUND Bacterial infection can delay wound healing and is therefore a major threat to public health. Although various strategies have been developed to treat bacterial infections, antibiotics remain the best option to combat infections. The inclusion of growth factors in the treatment approach can also accelerate wound healing. The co-delivery of antibiotics and growth factors for the combined treatment of wounds needs further investigation. OBJECTIVE Here we aimed to develop antibiotic and growth factor co-loaded nanoparticles (NPs) to treat Staphylococcus aureus-infected wounds. METHODS By using our previously prepared reactive oxygen species-responsive material (Oxi-αCD), roxithromycin (ROX)-loaded NPs (ROX/Oxi-αCD NPs) and recombinant human epidermal growth factor (rhEGF)/ROX co-loaded NPs (rhEGF/ROX/Oxi-αCD NPs) were successfully fabricated. The in vivo efficacy of this prepared nanomedicine was evaluated in mice with S. aureus-infected wounds. RESULTS ROX/Oxi-αCD NPs and rhEGF/ROX/Oxi-αCD NPs had a spherical structure and their particle sizes were 164 ± 5 nm and 190 ± 8 nm, respectively. The in vitro antibacterial experiments showed that ROX/Oxi-αCD NPs had a lower minimum inhibitory concentration than ROX. The in vivo animal experiments demonstrated that rhEGF/ROX/Oxi-αCD NPs could significantly accelerate the healing of S. aureus-infected wounds as compared to the free ROX drug and ROX/Oxi-αCD NPs (P < 0.05). CONCLUSION ROX and rhEGF co-loaded NPs can effectively eliminate bacteria in wounds and accelerate wound healing. Our present work could provide a new strategy to combat bacteria-infected wounds.
Collapse
Affiliation(s)
- Jun Ding
- Department of Ultrasound, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Dan Chen
- Department of Dermatology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Jun Hu
- Department of Neurology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Dinglin Zhang
- Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Yajun Gou
- Department of Orthopedics, Shapingba District People's Hospital, Chongqing, Chongqing 400030, China
| | - Yaguang Wu
- Department of Dermatology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| |
Collapse
|
16
|
Su R, Su W, Cai J, Cen L, Huang S, Wang Y, Li P. Photodynamic antibacterial application of TiO 2/curcumin/hydroxypropyl-cyclodextrin and its konjac glucomannan composite films. Int J Biol Macromol 2024; 254:127716. [PMID: 37924903 DOI: 10.1016/j.ijbiomac.2023.127716] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 10/09/2023] [Accepted: 10/25/2023] [Indexed: 11/06/2023]
Abstract
Although photodynamic therapy (PDT) has great advantages for the treatment of bacterial infections, photosensitizers (PSs) often have many disadvantages that limit their application. Improving the shortcomings of PSs and developing efficient PDT antimicrobial materials remain serious challenges. In this study, a nanocomposite drug (TiO2/curcumin/hydroxypropyl-cyclodextrin, TiO2/Cur/HPCD) was constructed and combined with konjac glucomannan to form composite films (TiO2/Cur/HPCD films, KTCHD films). The stabilities of TiO2 and Cur were improved in the presence of HPCD. The particle size of TiO2/Cur/HPCD was approximately 33.9 nm, and the addition of TiO2/Cur/HPCD enhanced the mechanical properties of the films. Furthermore, TiO2/Cur/HPCD and KTCHD films exhibited good biocompatibility and PDT antibacterial effects. The antibacterial rate of TiO2/Cur/HPCD was 74.46 % against MRSA at 500 μg/mL and 99.998 % against E. coli at 400 μg/mL, while it was adsorbed on the surface of bacteria to improve the effectiveness of the treatment. In addition, studies in mice confirmed that TiO2/Cur/HPCD and KTCHD films can treat bacterial infections and promote wound healing, with a highest wound healing rate of 84.6 % in the KTCHD-10 films + Light group on day 12. Overall, TiO2/Cur/HPCD is a promising nano-antibacterial agent and KTCHD films have the potential to be employed as antibacterial and environment-friendly trauma dressings.
Collapse
Affiliation(s)
- Rixiang Su
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, China; Guangxi University of Chinese Medicine, Nanning, China
| | - Wei Su
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, China.
| | - Jinyun Cai
- Guangxi University of Chinese Medicine, Nanning, China
| | - Lei Cen
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, China
| | | | - Yu Wang
- Guangxi University of Chinese Medicine, Nanning, China
| | - Peiyuan Li
- Guangxi University of Chinese Medicine, Nanning, China.
| |
Collapse
|
17
|
Jana Neto FC, Martimbianco ALC, de Medeiros DV, Felix FC, Mesquita-Ferrari RA, Bussadori SK, Duran CCG, Motta LJ, Barbosa EC, Fernandes KPS. Cost analysis of photobiomodulation in tibia fracture in the Brazilian public health system. PLoS One 2023; 18:e0294290. [PMID: 38064443 PMCID: PMC10707925 DOI: 10.1371/journal.pone.0294290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/28/2023] [Indexed: 12/18/2023] Open
Abstract
Managing tibial fractures requires substantial health resources, which costs the health system. This study aimed to describe the costs of photobiomodulation (PBM) with LEDs in the healing process of soft tissue lesions associated with tibial fracture compared to a placebo. Economic analysis was performed based on a randomized controlled clinical trial, with a simulation of the cost-effectiveness and incremental cost model. Adults (n = 27) hospitalized with tibia fracture awaiting definitive surgery were randomized into two distinct groups: the PBM Group (n = 13) and the Control Group with simulated phototherapy (n = 14). To simulate the cost-effectiveness and incremental cost model, the outcome was the evolution of wound resolution by the BATES-JENSEN scale and time of wound resolution in days. The total cost of treatment for the Control group was R$21,164.56, and a difference of R$7,527.10 more was observed when compared to the treatment of the PBM group. The proposed intervention did not present incremental cost since the difference in the costs to reduce measures between the groups was smaller for the PBM group. When analyzing the ICER (Incremental cost-effectiveness ratio), it would be possible to save R$3,500.98 with PBM and decrease by 2.15 points in the daily average on the BATES-JENSEN scale. It is concluded, therefore, that PBM can be a supportive therapy of clinical and economic interest in a hospital setting.
Collapse
Affiliation(s)
- Frederico Carlos Jana Neto
- Postgraduate Program in Biophotonics Applied to Health Sciences, Universidade Nove de Julho (UNINOVE), São Paulo, SP, Brazil
- Orthopedics and Traumatology Group Conjunto Hospitalar do Mandaqui, São Paulo, SP, Brazil
- Medicine School Universidade Nove de Julho (UNINOVE), São Paulo, SP, Brazil
| | - Ana Luiza Cabrera Martimbianco
- Postgraduate Program in Health and Environment. Universidade Metropolitana de Santos (UNIMES), Santos, SP, Brazil
- Health Technology Assessment Center, Hospital Sírio-Libanês (NATS-HSL), São Paulo, SP, Brazil
| | | | | | - Raquel Agnelli Mesquita-Ferrari
- Postgraduate Program in Biophotonics Applied to Health Sciences, Universidade Nove de Julho (UNINOVE), São Paulo, SP, Brazil
- Postgraduate Program in Rehabilitation Sciences, Universidade Nove de Julho (UNINOVE), São Paulo, SP, Brazil
| | - Sandra Kalil Bussadori
- Postgraduate Program in Biophotonics Applied to Health Sciences, Universidade Nove de Julho (UNINOVE), São Paulo, SP, Brazil
- Postgraduate Program in Rehabilitation Sciences, Universidade Nove de Julho (UNINOVE), São Paulo, SP, Brazil
| | - Cinthya Cosme Gutierrez Duran
- Postgraduate Program in Biophotonics Applied to Health Sciences, Universidade Nove de Julho (UNINOVE), São Paulo, SP, Brazil
- Postgraduate Program in Medicine, Universidade Nove de Julho (UNINOVE), São Paulo, SP, Brazil
| | - Lara Jansiski Motta
- Postgraduate Program in Biophotonics Applied to Health Sciences, Universidade Nove de Julho (UNINOVE), São Paulo, SP, Brazil
| | - Estela Capelas Barbosa
- Population Health Sciences, Bristol Medical School, Bristol University, Bristol, United Kingdom
| | - Kristianne Porta Santos Fernandes
- Postgraduate Program in Biophotonics Applied to Health Sciences, Universidade Nove de Julho (UNINOVE), São Paulo, SP, Brazil
- Postgraduate Program in Medicine, Universidade Nove de Julho (UNINOVE), São Paulo, SP, Brazil
| |
Collapse
|
18
|
Xie C, Luo J, Luo Y, Zhou J, Guo X, Lu X. Electroactive Hydrogels with Photothermal/Photodynamic Effects for Effective Wound Healing Assisted by Polydopamine-Modified Graphene Oxide. ACS APPLIED MATERIALS & INTERFACES 2023; 15:42329-42340. [PMID: 37646460 DOI: 10.1021/acsami.3c09860] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Antibacterial hydrogel wound dressings have attracted considerable attention in recent years. However, bacterial infections can occur at any point during the wound-healing process. There is a demand for hydrogels that possess on-demand antibacterial and excellent wound repair properties. Herein, we report a near-infrared (NIR)-light-responsive indocyanine green (ICG)-loaded polydopamine (PDA)-mediated graphene oxide (PGO) and amorphous calcium phosphate (CaP)-incorporated poly(vinyl alcohol) (PVA) hydrogel using a mussel-inspired approach. PGO was reduced by PDA, which endowed the hydrogel with electroactivity and provided abundant sites for loading ICG. Amorphous CaP was formed in situ in the PVA hydrogel to enhance its mechanical properties and biocompatibility. Taking advantage of the high photothermal and photodynamic efficiency of ICG-PGO, the ICG-PGO-CaP-PVA hydrogel exhibited fascinating on-demand antibacterial activity through NIR light irradiation. Moreover, the thermally induced gel-sol conversion of PVA accelerated the release of Ca ions and allowed the hydrogel to adapt to irregular wounds. Meanwhile, PGO endows the hydrogel with conductivity and cell affinity, which facilitate endogenous electrical signal transfer to control cell behavior. In vitro and in vivo studies demonstrated that the ICG-PGO-CaP-PVA hydrogel exhibited a strong tissue repair activity under NIR light irradiation. This mussel-inspired strategy offers a novel way to design hydrogel dressings for wound healing.
Collapse
Affiliation(s)
- Chaoming Xie
- The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Jiaqing Luo
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Yongjie Luo
- The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Jie Zhou
- The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Xiaochuan Guo
- The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Xiong Lu
- The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| |
Collapse
|
19
|
Songca SP. Combinations of Photodynamic Therapy with Other Minimally Invasive Therapeutic Technologies against Cancer and Microbial Infections. Int J Mol Sci 2023; 24:10875. [PMID: 37446050 DOI: 10.3390/ijms241310875] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
The rapid rise in research and development following the discovery of photodynamic therapy to establish novel photosensitizers and overcome the limitations of the technology soon after its clinical translation has given rise to a few significant milestones. These include several novel generations of photosensitizers, the widening of the scope of applications, leveraging of the offerings of nanotechnology for greater efficacy, selectivity for the disease over host tissue and cells, the advent of combination therapies with other similarly minimally invasive therapeutic technologies, the use of stimulus-responsive delivery and disease targeting, and greater penetration depth of the activation energy. Brought together, all these milestones have contributed to the significant enhancement of what is still arguably a novel technology. Yet the major applications of photodynamic therapy still remain firmly located in neoplasms, from where most of the new innovations appear to launch to other areas, such as microbial, fungal, viral, acne, wet age-related macular degeneration, atherosclerosis, psoriasis, environmental sanitization, pest control, and dermatology. Three main value propositions of combinations of photodynamic therapy include the synergistic and additive enhancement of efficacy, the relatively low emergence of resistance and its rapid development as a targeted and high-precision therapy. Combinations with established methods such as chemotherapy and radiotherapy and demonstrated applications in mop-up surgery promise to enhance these top three clinical tools. From published in vitro and preclinical studies, clinical trials and applications, and postclinical case studies, seven combinations with photodynamic therapy have become prominent research interests because they are potentially easily applied, showing enhanced efficacy, and are rapidly translating to the clinic. These include combinations with chemotherapy, photothermal therapy, magnetic hyperthermia, cold plasma therapy, sonodynamic therapy, immunotherapy, and radiotherapy. Photochemical internalization is a critical mechanism for some combinations.
Collapse
Affiliation(s)
- Sandile Phinda Songca
- School of Chemistry and Physics, College of Agriculture Engineering and Science, Pietermaritzburg Campus, University of KwaZulu-Natal, Pietermaritzburg 3209, South Africa
| |
Collapse
|
20
|
Brandão MGSA, Ximenes MAM, de Sousa DF, Veras VS, Barros LM, Rabeh SAN, Costa IG, de Araújo TM. Photodynamic therapy for infected foot ulcers in people with diabetes mellitus: a systematic review. SAO PAULO MED J 2023; 141:e2022476. [PMID: 37194764 PMCID: PMC10181837 DOI: 10.1590/1516-3180.2022.0476.27022023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 08/28/2022] [Accepted: 02/27/2023] [Indexed: 05/18/2023] Open
Abstract
BACKGROUND Ulceration of the feet in patients with diabetes is a frequent complication that increases morbidity, mortality, hospitalization, treatment costs, and non-traumatic amputations. OBJECTIVE To present a systematic review of the treatment of patients with diabetes mellitus and infected foot ulcers using photodynamic therapy. DESIGN AND SETTING A systematic review was performed in the postgraduate program in nursing at the Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Ceará, Brazil. METHODS PubMed, CINAHL, Web of Science, EMBASE, Cochrane Library, Scopus, and LILACS databases were screened. The methodological quality, risk of bias, and quality of evidence of each study were assessed. Review Manager was used for the meta-analysis. RESULTS Four studies were included. They highlighted significantly better outcomes in patient groups treated with photodynamic therapy than those in the control groups that were treated with topical collagenase and chloramphenicol (P = 0.036), absorbent (P < 0.001), or dry covers (P = 0.002). Significant improvements were noted in terms of the microbial load in the ulcers and tissue repair, with a reported reduction in the need for amputation by up to 35 times. Photodynamic therapy resulted in significantly better outcomes between the experimental and control groups (P = 0.04). CONCLUSION Photodynamic therapy is significantly more effective in treating infected foot ulcers than standard therapies. SYSTEMATIC REVIEW REGISTRATION International Prospective Register of Systematic Reviews (PROSPERO) - CRD42020214187, https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=214187.
Collapse
Affiliation(s)
| | | | - Danilo Ferreira de Sousa
- Doctoral Student, Department of Nursing, Universidade Federal do Ceará (UFC), Fortaleza (CE), Brazil
| | - Vivian Saraiva Veras
- PhD. Professor, Department of Nursing, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Redenção (CE), Brazil
| | - Lívia Moreira Barros
- PhD. Professor, Department of Nursing, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Redenção (CE), Brazil
| | | | | | - Thiago Moura de Araújo
- PhD. Professor, Department of Nursing, Health Sciences Institute, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Redenção (CE), Brazil
| |
Collapse
|
21
|
Morris D, Flores M, Harris L, Gammon J, Nigam Y. Larval Therapy and Larval Excretions/Secretions: A Potential Treatment for Biofilm in Chronic Wounds? A Systematic Review. Microorganisms 2023; 11:microorganisms11020457. [PMID: 36838422 PMCID: PMC9965881 DOI: 10.3390/microorganisms11020457] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/24/2023] [Accepted: 02/01/2023] [Indexed: 02/16/2023] Open
Abstract
Chronic wounds present a global healthcare challenge and are increasing in prevalence, with bacterial biofilms being the primary roadblock to healing in most cases. A systematic review of the to-date knowledge on larval therapy's interaction with chronic-wound biofilm is presented here. The findings detail how larval therapy-the controlled application of necrophagous blowfly larvae-acts on biofilms produced by chronic-wound-relevant bacteria through their principle pharmacological mode of action: the secretion and excretion of biologically active substances into the wound bed. A total of 12 inclusion-criteria-meeting publications were identified following the application of a PRISMA-guided methodology for a systematic review. The findings of these publications were qualitatively analyzed to provide a summary of the prevailing understanding of larval therapy's effects on bacterial biofilm. A further review assessed the quality of the existing evidence to identify knowledge gaps and suggest ways these may be bridged. In summary, larval therapy has a seemingly unarguable ability to inhibit and degrade bacterial biofilms associated with impaired wound healing. However, further research is needed to clarify and standardize the methodological approach in this area of investigation. Such research may lead to the clinical application of larval therapy or derivative treatments for the management of chronic-wound biofilms and improve patient healing outcomes at a time when alternative therapies are desperately needed.
Collapse
Affiliation(s)
- Daniel Morris
- Faculty of Medicine, Health, and Life Science, Swansea University, Swansea SA2 8PP, UK
- BioMonde, Bridgend CF31 3BG, UK
| | | | - Llinos Harris
- Faculty of Medicine, Health, and Life Science, Swansea University, Swansea SA2 8PP, UK
| | - John Gammon
- Faculty of Medicine, Health, and Life Science, Swansea University, Swansea SA2 8PP, UK
| | - Yamni Nigam
- Faculty of Medicine, Health, and Life Science, Swansea University, Swansea SA2 8PP, UK
- Correspondence:
| |
Collapse
|
22
|
Lipid Liquid Crystal Nanoparticles: Promising Photosensitizer Carriers for the Treatment of Infected Cutaneous Wounds. Pharmaceutics 2023; 15:pharmaceutics15020305. [PMID: 36839628 PMCID: PMC9964009 DOI: 10.3390/pharmaceutics15020305] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/12/2023] [Accepted: 01/14/2023] [Indexed: 01/18/2023] Open
Abstract
Cutaneous chronic wounds impose a silent pandemic that affects the lives of millions worldwide. The delayed healing process is usually complicated by opportunistic bacteria that infect wounds. Staphylococcus aureus is one of the most prevalent bacteria in infected cutaneous wounds, with the ability to form antibiotic-resistant biofilms. Recently, we have demonstrated the potential of gallium protoporphyrin lipid liquid crystalline nanoparticles (GaPP-LCNP) as a photosensitizer against S. aureus biofilms in vitro. Herein, we investigate the potential of GaPP-LCNP using a pre-clinical model of infected cutaneous wounds. GaPP-LCNP showed superior antibacterial activity compared to unformulated GaPP, reducing biofilm bacterial viability by 5.5 log10 compared to 2.5 log10 in an ex vivo model, and reducing bacterial viability by 1 log10 in vivo, while unformulated GaPP failed to reduce bacterial burden. Furthermore, GaPP-LCNP significantly promoted wound healing through reduction in the bacterial burden and improved early collagen deposition. These findings pave the way for future pre-clinical investigation and treatment optimizations to translate GaPP-LCNP towards clinical application.
Collapse
|
23
|
Wang L, Zhang W, Cen R, Yue C, Xiao T, Deng Y, Li L, Sun K, Lei X. ALA-PDT regulates macrophage M1 polarization via ERK/MAPK-NLRP3 pathway to promote the early inflammatory response. Lasers Surg Med 2022; 54:1309-1320. [PMID: 36403288 DOI: 10.1002/lsm.23618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 07/20/2022] [Accepted: 11/02/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND Photodynamic therapy (PDT) is a promising new approach to promote wound healing and its effectiveness has been demonstrated in both clinical and animal studies. Macrophages are the key cells in wound healing and inflammatory response. However, the mechanism of action of PDT on macrophages in promoting wound healing is still unclear. METHODS In this study, RAW264.7 cells were used. We analyzed the expression levels of macrophage markers arginase 1 (Arg-1), CD206, iNOS, CD86, and inflammatory factors IL-6, TNF-α, and IL-1β by reverse transcription-polymerase chain reaction and Western blot, Milliplex microtubule-associated protein multiplex assay was performed to analyze the expression of inflammatory factors in the supernatant. Live cell Imaging System to observe the dynamic process of macrophage phagocytosis. Western blot was performed to observe the activation of extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) and NOD-like receptor protein 3 (NLRP3) inflammasome. RESULTS 5-Aminolevulinic acid (ALA)-PDT increased the expression of M1 marker iNOS/CD86 and decreased the expression of Arg-1/CD206 in RAW264.7 cells, while, proinflammatory factors IL-6, TNF-α, and IL-1β expression was enhanced and macrophage phagocytosis was increased. We also found that these phenomena were associated with activation of the ERK/MAPK-NLRP3 pathway. CONCLUSION ALA-PDT promotes early inflammatory responses by regulating macrophage M1 polarization through the ERK/MAPK-NLRP3 pathway. It also promotes macrophage phagocytosis.
Collapse
Affiliation(s)
- Liqun Wang
- Department of Dermatology, Daping Hospital, The Army Medical University, Chongqing, China
| | - Wentao Zhang
- Department of Dermatology, Daping Hospital, The Army Medical University, Chongqing, China
| | - Ruiyan Cen
- Department of Dermatology, Daping Hospital, The Army Medical University, Chongqing, China
| | - Chenda Yue
- Department of Dermatology, Daping Hospital, The Army Medical University, Chongqing, China
| | - Tianzhen Xiao
- Department of Dermatology, Daping Hospital, The Army Medical University, Chongqing, China
| | - Yumeng Deng
- Department of Dermatology, Daping Hospital, The Army Medical University, Chongqing, China
| | - Lingfei Li
- Department of Dermatology, Daping Hospital, The Army Medical University, Chongqing, China
| | - Kedai Sun
- Department of Dermatology, Daping Hospital, The Army Medical University, Chongqing, China
| | - Xia Lei
- Department of Dermatology, Daping Hospital, The Army Medical University, Chongqing, China
| |
Collapse
|
24
|
Boldin BV, Turkin PY, Oettinger AP, Bogachev VY, Somov NO, Kuzmin SG, Loschenov VB, Mikhaleva LM, Midiber KY. Efficacy of photodynamic therapy in the treatment of venous trophic ulcers: results from the experiment. AMBULATORNAYA KHIRURGIYA = AMBULATORY SURGERY (RUSSIA) 2022. [DOI: 10.21518/1995-1477-2022-19-2-82-94] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Introduction. Today, antimicrobial photodynamic therapy (a-PDT) becomes more and more popular, because of it pronounced bactericidal activity, anti-inflammatory effect. At the same time, no animal model studies have been conducted on morphological changes in cells after exposure to PDT on venous ulcers (VU) when using different types of photosensitizers (PS). The problem of comparing morphological changes in tissues when using a-PDT vs conventional PDT have not yet been resolved.Aim. Evaluation of the effectiveness of PDT and APDT in a comprehensive examination of trophic ulcers in an in vivo experiment and compare them with standard methods for the treatment of VLU.Materials and мethods. A series of experiments was conducted on 21 rabbits, separated into 3 equal groups of 7 rabbits each. Venous trophic ulcer was originally modeled for all rabbits. To obtain a VU, we performed an additional ligation of v. femoralis. The control group received standard therapy for VU. The PDT group had PDT with Photosens. The a-PDT group underwent a-PDT using Cholosens. Every 3 days, picture of local inflammation, regeneration rate and ulcer volume were determined. A morphological study of VLU was carried out on the first, 9th and 15th days.Results. The a-PDT group, day 15: 100% wound epithelization. Control group, day 21st: The volume of wounds decreased on average by 50%. The PDT group: 100% wound epithelization. The morphological study indicated a positive trend in the a-PDT group compared with PDT and control groups, which resulted in a decrease in the total mass of necrotic detritus, a change in the quantitative and qualitative composition of inflammatory infiltrate.Conclusion. The data obtained indicate that the use of a-PDT is recommended in treatment of VLU. Both PDT and a-PDT methods showed better results in comparison with standard therapy.
Collapse
Affiliation(s)
- B. V. Boldin
- Pirogov Russian National Research Medical University
| | - P. Yu. Turkin
- Pirogov Russian National Research Medical University
| | | | | | - N. O. Somov
- Pirogov Russian National Research Medical University
| | - S. G. Kuzmin
- International Research and Clinical Center ‘Intermedbiophiskhim’; Research Institute of Organic Intermediates and Dyes
| | - V. B. Loschenov
- Prokhorov General Physics Institute of the Russian Academy of Sciences
| | - L. M. Mikhaleva
- Avtsyn Research Institute of Human Morphology of Petrovsky National Research Centre of Surgery
| | - K. Yu. Midiber
- Avtsyn Research Institute of Human Morphology of Petrovsky National Research Centre of Surgery; City Clinical Hospital No. 31; Peoples’ Friendship University of Russia
| |
Collapse
|
25
|
Akbarizare M, Department of Biotechnology, Iranian Research Organization for Science and Technology, Tehran, Iran. Photodynamic Inactivation Property of Saffron (Crocus sativus) as a Natural Photosensitizer in Combination with Blue Light in Microbial Strains. IRANIAN JOURNAL OF MEDICAL MICROBIOLOGY 2022. [DOI: 10.30699/ijmm.16.6.587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
26
|
Cellular Mechanisms in Acute and Chronic Wounds after PDT Therapy: An Update. Biomedicines 2022; 10:biomedicines10071624. [PMID: 35884929 PMCID: PMC9313247 DOI: 10.3390/biomedicines10071624] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 12/17/2022] Open
Abstract
PDT is a two-stage treatment that combines light energy with a photosensitizer designed to destroy cancerous and precancerous cells after light activation. Photosensitizers are activated by a specific wavelength of light energy, usually from a laser. The photosensitizer is nontoxic until it is activated by light. However, after light activation, the photosensitizer becomes toxic to the targeted tissue. Among sensitizers, the topical use of ALA, a natural precursor of protoporphyrin IX, a precursor of the heme group, and a powerful photosensitizing agent, represents a turning point for PDT in the dermatological field, as it easily absorbable by the skin. Wound healing requires a complex interaction and coordination of different cells and molecules. Any alteration in these highly coordinated events can lead to either delayed or excessive healing. The goal of this review is to elucidate the cellular mechanisms involved, upon treatment with ALA-PDT, in chronic wounds, which are often associated with social isolation and high costs in terms of care.
Collapse
|
27
|
Pourhajibagher M, Pourakbari B, Bahador A. Contribution of antimicrobial photo-sonodynamic therapy in wound healing: an in vivo effect of curcumin-nisin-based poly (L-lactic acid) nanoparticle on Acinetobacter baumannii biofilms. BMC Microbiol 2022; 22:28. [PMID: 35039005 PMCID: PMC8762960 DOI: 10.1186/s12866-022-02438-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 01/07/2022] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The biofilm-forming ability of Acinetobacter baumannii in the burn wound is clinically problematic due to the development of antibiotic-resistant characteristics, leading to new approaches for treatment being needed. In this study, antimicrobial photo-sonodynamic therapy (aPSDT) was used to assess the anti-biofilm efficacy and wound healing activity in mice with established A. baumannii infections. METHODS Following synthesis and confirmation of Curcumin-Nisin-based poly (L-lactic acid) nanoparticle (CurNisNp), its cytotoxic and release times were evaluated. After determination of the sub-significant reduction (SSR) doses of CurNisNp, irradiation time of light, and ultrasound intensity against A. baumannii, anti-biofilm activity and the intracellular reactive oxygen species (ROS) generation were evaluated. The antibacterial and anti-virulence effects, as well as, histopathological examination of the burn wound sites of treated mice by CurNisNp-mediated aPSDTSSR were assessed and compared with silver sulfadiazine (SSD) as the standard treatment group. RESULTS The results showed that non-cytotoxic CurNisNp has a homogeneous surface and a sphere-shaped vesicle with continuous release until the 14th day. The dose-dependent reduction in cell viability of A. baumannii was achieved by increasing the concentrations of CurNisNp, irradiation time of light, and ultrasound intensity. There was a time-dependent reduction in biofilm growth, changes in gene expression, and promotion in wound healing by the acceleration of skin re-epithelialization in mice. Not only there was no significant difference between aPSDTSSR and SSD groups in antibacterial and anti-virulence activities, but also wound healing and re-epithelialization occurred more efficiently in aPSDTSSR than in the SSD group. CONCLUSIONS In conclusion, CurNisNp-mediated aPSDT might be a promising complementary approach to treat burn wound infections.
Collapse
Affiliation(s)
- Maryam Pourhajibagher
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Pourakbari
- Pediatric Infectious Disease Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Bahador
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Fellowship in Clinical Laboratory Sciences, BioHealth Lab, Tehran, Iran.
| |
Collapse
|
28
|
Songsantiphap C, Vanichanan J, Chatsuwan T, Asawanonda P, Boontaveeyuwat E. Methylene Blue-Mediated Antimicrobial Photodynamic Therapy Against Clinical Isolates of Extensively Drug Resistant Gram-Negative Bacteria Causing Nosocomial Infections in Thailand, An In Vitro Study. Front Cell Infect Microbiol 2022; 12:929242. [PMID: 35846758 PMCID: PMC9283779 DOI: 10.3389/fcimb.2022.929242] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/31/2022] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND/PURPOSE Some multidrug-resistant gram-negative bacteria as a global threat have been recently prioritized for research and development of new treatments. We studied the efficacy of methylene blue-mediated antimicrobial photodynamic therapy (MB-aPDT) for the reduction of extensively drug-resistant Acinetobacter baumannii (XDR-AB) and Pseudomonas aeruginosa (XDR-PS) and multidrug-resistant Klebsiella pneumoniae (MDR-KP) isolated in a university hospital setting in Thailand. METHOD Two isolates of each selected bacterium were collected, XDR-AB1 and AB2, XDR- PS1 and PS2, and MDR-KP1 and KP2. Three triplicate experiments using various MB concentrations alone, various red light fluences alone, as well as the selected non-toxic doses of MB and fluences of red light combined as MB-aPDT were applied on each selected isolate. The colonies were counted [colony forming units (CFU)/ml]. Estimation of the lethal treatment dose defined as reduction of > 2 log10 in CFU/ml compared with untreated bacteria. RESULT There were generally negligible changes in the viable counts of the bacterial suspensions treated with all the MB concentrations (p > 0.05). In the second experiment with the only red light treatments, at fluences higher than 2 J/cm, reduction trend in viable counts across all the isolates was observed. Only for MDR-KP1, however, the lethal dose was achieved with the highest fluence of red light (80 J/cm). With the concentration of MB, 50 and 150 mg/L in the third experiment (MB-aPDT), the greater bacterial reduction was observed in all clinical isolates leading to their lethal viable cell reduction when escalating the light fluence to 80 J/cm. CONCLUSIONS MB-aPDT evidently killed the selected XDR and MDR-gram negative bacteria. In highly drug-resistant crisis era, MB-aPDT could be a promising option, particularly for local infections and infection complicating chronic wounds.
Collapse
Affiliation(s)
- Chankiat Songsantiphap
- Photodermatology Unit, Division of Dermatology, Department of Medicine, King Chulalongkorn Memorial Hospital and Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Jakapat Vanichanan
- Division of Infectious Diseases, Department of Medicine, King Chulalongkorn Memorial Hospital and Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Tanittha Chatsuwan
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Antimicrobial Resistance and Stewardship Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Pravit Asawanonda
- Photodermatology Unit, Division of Dermatology, Department of Medicine, King Chulalongkorn Memorial Hospital and Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Einapak Boontaveeyuwat
- Photodermatology Unit, Division of Dermatology, Department of Medicine, King Chulalongkorn Memorial Hospital and Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- *Correspondence: Einapak Boontaveeyuwat,
| |
Collapse
|
29
|
Scotti F, Mou L, Huang C, Booker A, Weckerle C, Maake C, Heinrich M. Treating Chronic Wounds Using Photoactive Metabolites: Data Mining the Chinese Pharmacopoeia for Potential Lead Species. PLANTA MEDICA 2021; 87:1206-1218. [PMID: 34528222 PMCID: PMC8585569 DOI: 10.1055/a-1578-8778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Efficient wound treatment that addresses associated infections and inflammation remains one of the big unmet needs, especially in low- and middle-income countries. One strategy for securing better healthcare can be using medicinal plants if sufficient evidence on their safety and therapeutic benefits can be ascertained. A unique novel opportunity could be photo-enhanced wound treatment with a combination of light-sensitive plant preparations and local exposure to daylight. Data mining strategies using existing resources offer an excellent basis for developing such an approach with many potential plant candidates. In the present analysis, we researched the 535 botanical drugs included in the Chinese pharmacopeia and identified 183 medicinal plant species, 82 for treating open wounds caused by trauma and 101 for inflammatory skin conditions. After further screening for reports on the presence of known photoactive compounds, we determined a core group of 10 scientifically lesser-known botanical species that may potentially be developed into more widely used topical preparations for photodynamic treatment of infected wounds. Our predictive approach may contribute to developing a more evidence-based use of herbal medicines.
Collapse
Affiliation(s)
- Francesca Scotti
- Research Group “Pharmacognosy and Phytotherapy”, UCL School of Pharmacy, London, UK
| | - Linru Mou
- Research Group “Pharmacognosy and Phytotherapy”, UCL School of Pharmacy, London, UK
| | - Chen Huang
- Research Group “Pharmacognosy and Phytotherapy”, UCL School of Pharmacy, London, UK
| | - Anthony Booker
- Research Group “Pharmacognosy and Phytotherapy”, UCL School of Pharmacy, London, UK
- Research Centre for Optimal Health, School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster. London, UK
| | - Caroline Weckerle
- Institute of Systematic and Evolutionary Botany, University of Zürich, Zürich, Switzerland
| | - Caroline Maake
- Institute of Anatomy, University of Zürich, Zürich, Switzerland
| | - Michael Heinrich
- Research Group “Pharmacognosy and Phytotherapy”, UCL School of Pharmacy, London, UK
| |
Collapse
|
30
|
Xu L, Li X, Zhao C, Zhang X, Kou H, Yang Y, Zhu F, Zhang W, Lu Y. A combination of preoperative or intraoperative MB-PDT and surgery in the treatment of giant cutaneous squamous cell carcinoma with infection. Photodiagnosis Photodyn Ther 2021; 36:102545. [PMID: 34551325 DOI: 10.1016/j.pdpdt.2021.102545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/13/2021] [Accepted: 09/17/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND Giant cutaneous squamous cell carcinoma (cSCC) with infection is a major clinical issue, as the infection not only promotes the progress of tumor, but also effects the success of surgery. Traditional antibiotic treatment is not always sufficient to clear the infection, especially for cSCC infected with multidrug-resistant bacteria. Photodynamic therapy (PDT) has broad-spectral antibacterial activity and non-selective pressure, which makes it difficult to induce antibiotic resistance. Here, we aim to evaluate the safety and efficacy of PDT, along with photosensitizers MB (Methylene blue) - in the treatment of cSCC infected with multidrug-resistant bacteria. METHODS In our study, 6 patients with giant csCC accompanied infection were diagnosed by pathological examination and the depth of tumor tissues was examined by X-Ray or MRI. All patients' tumor wounds were firstly irradiated with MB-PDT (635 nm, 120 J/cm2, 100 mW/cm2) using the red LED to control the infection. After the control of infection was confirmed by the culture of secretion, tumor underwent expanded resection. Multi-point pathological monitoring was performed during the operation to assure that there was no residual tumor tissue on the wound, and the primary or secondary repair was performed according to the condition of the wound. If the wound requires the tissue flaps transplation in secondary stage, the wound was irradiated again with intraoperative MB-PDT to remove the possible residual tumor cells, as well as to prevent wound infection. All patients were followed up for 0.8-3 years after flap transplation. RESULTS In 6 patients, the cSCC infection was completely controlled by MB-PDT, and the flap survival was 100%. There was no recurrence of cSCC in the follow-up of 1.6 years (range, 0.8-3 years) after the comminated treatment with MB-PDT and surgery. CONCLUSIONS Multi-drug resistant bacteria could efficiently be killed by MB-PDT, and the combination of surgery with MB-PDT is a safe and effective approach for treating giant cSCC with infection.
Collapse
Affiliation(s)
- Luming Xu
- First School Of Clinical Medicine, Chongqing Medical University, Chongqing 400046, PR China
| | - Xinying Li
- Department of Plastic & Cosmetic Surgery, Daping Hospital, Army Medical University, Chongqing 400042, PR China
| | - Chuanqi Zhao
- Department of Plastic & Cosmetic Surgery, Daping Hospital, Army Medical University, Chongqing 400042, PR China
| | - Xincun Zhang
- Department of Plastic & Cosmetic Surgery, Daping Hospital, Army Medical University, Chongqing 400042, PR China
| | - Huiling Kou
- Department of Plastic & Cosmetic Surgery, Daping Hospital, Army Medical University, Chongqing 400042, PR China
| | - Yunchuan Yang
- Department of Plastic & Cosmetic Surgery, Daping Hospital, Army Medical University, Chongqing 400042, PR China
| | - Fengjun Zhu
- Department of Plastic & Cosmetic Surgery, Daping Hospital, Army Medical University, Chongqing 400042, PR China
| | - Wanqi Zhang
- Department of Plastic & Cosmetic Surgery, Daping Hospital, Army Medical University, Chongqing 400042, PR China
| | - Yuangang Lu
- Department of Plastic & Cosmetic Surgery, Daping Hospital, Army Medical University, Chongqing 400042, PR China.
| |
Collapse
|
31
|
Shiratori M, Ozawa T, Ito N, Awazu K, Tsuruta D. Open study of photodynamic therapy for skin ulcers infected with MRSA and Pseudomonas aeruginosa. Photodiagnosis Photodyn Ther 2021; 36:102484. [PMID: 34403825 DOI: 10.1016/j.pdpdt.2021.102484] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Drug-resistant bacterial infections are a global problem. Novel treatment methods that simultaneously control infection and promote wound healing without leading to new resistant bacteria are needed. Photodynamic therapy (PDT) is a useful antibiotic-free treatment approach. Our previous studies have shown that PDT for skin ulcers infected with methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa (PA) can achieve infection control and promoting wound healing in vitro and in vivo murine model. Here, we investigated the safety and effectiveness of PDT with 5-aminolevulinic acid (ALA-PDT) for human skin ulcers infected with MRSA and PA. METHODS ALA-PDT with macrogol ointment containing 0.5% ALA-HCl and 0.005% EDTA-2Na (wavelength 410 nm, 10 J/cm2) was performed on consecutive days in patients aged ≥20 years who had skin ulcers infected with MRSA and PA. RESULTS Six of our seven patients showed a clear tendency for ulcer area reduction to ≤60% of that measured at baseline. ALA-PDT was judged to be completely safe in all patients; only one patient had an increase in bacterial count. CONCLUSIONS ALA-PDT is safe and effective for MRSA and PA infected skin ulcers to control and heal wound.
Collapse
Affiliation(s)
- Miyu Shiratori
- Department of Dermatology, Osaka City University Graduate School of Medicine, Osaka, Japan: 1-4-3 Asahimachi, Abeno-ku, Osaka, Japan
| | - Toshiyuki Ozawa
- Department of Dermatology, Osaka City University Graduate School of Medicine, Osaka, Japan: 1-4-3 Asahimachi, Abeno-ku, Osaka, Japan; Research Center for Infectious Disease Sciences, Osaka City University Graduate School of Medicine, Osaka, Japan: 1-4-3 Asahimachi, Abeno-ku, Osaka, Japan.
| | - Nobuhisa Ito
- Medical Beam Physics Laboratory, Osaka University Graduate School of Engineering, Osaka, Japan: 2-1 Yamadaoka, Suita, Osaka, Japan
| | - Kunio Awazu
- Medical Beam Physics Laboratory, Osaka University Graduate School of Engineering, Osaka, Japan: 2-1 Yamadaoka, Suita, Osaka, Japan
| | - Daisuke Tsuruta
- Department of Dermatology, Osaka City University Graduate School of Medicine, Osaka, Japan: 1-4-3 Asahimachi, Abeno-ku, Osaka, Japan; Research Center for Infectious Disease Sciences, Osaka City University Graduate School of Medicine, Osaka, Japan: 1-4-3 Asahimachi, Abeno-ku, Osaka, Japan
| |
Collapse
|
32
|
Huang J, Wu S, Wu M, Zeng Q, Wang X, Wang H. Efficacy of the therapy of 5-aminolevulinic acid photodynamic therapy combined with human umbilical cord mesenchymal stem cells on methicillin-resistant Staphylococcus aureus-infected wound in a diabetic mouse model. Photodiagnosis Photodyn Ther 2021; 36:102480. [PMID: 34375775 DOI: 10.1016/j.pdpdt.2021.102480] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/02/2021] [Accepted: 08/05/2021] [Indexed: 01/08/2023]
Abstract
BACKGROUND A distressing issue of diabetic ulcer (DU) is its poor healing feature with limited clinical solutions. We have previously shown that 5-aminolevulinic acid photodynamic therapy (ALA-PDT) is a promising alternative to the currently limited measures for DU. Mesenchymal stem cells (MSCs) transplantation has been believed to impose certain therapeutic effect on restoration of injury. Thus, this study aims to explore whether the combination of MSCs and ALA-PDT will exert a more advanced curative effect on DU. METHODS Diabetic mice were induced by intraperitoneal injection of streptozotocin (STZ, 60 mg/kg/d) for consecutive 5 days. A full-thickness skin injury (diameter 6 mm) was created in the center of the back of each mouse, and then 10 μl of methicillin-resistant Staphylococcus aureus (MRSA) suspension was added to establish an infected DU model. All DU models were randomly divided into four groups: Untreated group, MSCs group, ALA-PDT group, and ALA-PDT combined with human umbilical cord mesenchymal stem cells (hUC-MSCs) (ALA-PDT + MSCs) group. The wound sizes were recorded by a digital camera, and the healing rates were calculated using Image J software. Bacterial loads on wounds were measured using CFU (Colony forming units) analysis. The epithelialization, inflammatory cells infiltration and granulation tissue formation were monitored by Haematoxylin and eosin (H&E) staining, and the corresponding semi-quantitative score was matched. Growth and pro-inflammatory cytokines were detected by enzyme-linked immunosorbent assay (ELISA). RESULTS Either ALA-PDT or injection of hUC-MSCs resulted in a rapid wound closure compared with the untreated, while their combination brought about the most prominent healing. On day 12, healing rates of the untreated, MSCs, ALA-PDT and ALA-PDT + MSCs were 40.56% ± 7.06%, 74.23 ± 4.83%, 84.03 ± 3.53%, 99.67 ± 0.49%, respectively. The bacterial burden reductions were approximately 1.58 logs (97.36%, P < 0.05), 2.34 logs (99.54%, P < 0.01), 4.50 logs (nearly 100%, P < 0.001) for MSCs, ALA-PDT and ALA-PDT + MSCs, respectively. Histology revealed reduced inflammatory cells and improved collagen precipitation and angiogenesis after hUC-MSCs and ALA-PDT treatment compared to the untreated. The combined therapy leaded to a more intact epithelium, similar to the healthy. Finally, ELISA revealed that the property of ALA-PDT to stimulate transforming growth factor-β1 (TGF-β1) and vascular endothelial growth factor (VEGF) and inhibit IL (interleukin) -1β and IL-6 outweighed that of hUC-MSCs, and this function of the combination overwhelmed that of any single therapy. CONCLUSIONS Our findings indicated that the strategy of combining ALA-PDT with hUC-MSCs possessed a significantly enhanced therapeutic effect over either single therapy, providing a promising innovative therapeutic candidate for refractory wounds.
Collapse
Affiliation(s)
- Jianhua Huang
- Department of Dermatology, Huadong Hospital, Fudan University, Shanghai 200040, PR China.
| | - Shutian Wu
- Department of Dermatology, Huadong Hospital, Fudan University, Shanghai 200040, PR China.
| | - Minfeng Wu
- Department of Dermatology, Huadong Hospital, Fudan University, Shanghai 200040, PR China.
| | - Qingyu Zeng
- Shanghai Skin Disease Hospital, Institute of Photomedicine, Tongji University School of Medicine, Shanghai, PR China.
| | - Xiuli Wang
- Shanghai Skin Disease Hospital, Institute of Photomedicine, Tongji University School of Medicine, Shanghai, PR China.
| | - Hongwei Wang
- Department of Dermatology, Huadong Hospital, Fudan University, Shanghai 200040, PR China.
| |
Collapse
|
33
|
Eckl DB, Eben SS, Schottenhaml L, Eichner A, Vasold R, Späth A, Bäumler W, Huber H. Interplay of phosphate and carbonate ions with flavin photosensitizers in photodynamic inactivation of bacteria. PLoS One 2021; 16:e0253212. [PMID: 34115813 PMCID: PMC8195418 DOI: 10.1371/journal.pone.0253212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 05/29/2021] [Indexed: 12/17/2022] Open
Abstract
Photodynamic inactivation (PDI) of pathogenic bacteria is a promising technology in different applications. Thereby, a photosensitizer (PS) absorbs visible light and transfers the energy to oxygen yielding reactive oxygen species (ROS). The produced ROS are then capable of killing microorganisms via oxidative damage of cellular constituents. Among other PS, some flavins are capable of producing ROS and cationic flavins are already successfully applied in PDI. When PDI is used for example on tap water, PS like flavins will encounter various ions and other small organic molecules which might hamper the efficacy of PDI. Thus, the impact of carbonate and phosphate ions on PDI using two different cationic flavins (FLASH-02a, FLASH-06a) was investigated using Staphylococcus aureus and Pseudomonas aeruginosa as model organisms. Both were inactivated in vitro at a low light exposure of 0.72 J cm-2. Upon irradiation, FLASH-02a reacts to single substances in the presence of carbonate or phosphate, whereas the photochemical reaction for FLASH-06a was more unspecific. DPBF-assays indicated that carbonate and phosphate ions decreased the generation of singlet oxygen of both flavins. Both microorganisms could be easily inactivated by at least one PS with up to 6 log10 steps of cell counts in low ion concentrations. Using the constant radiation exposure of 0.72 J cm-2, the inactivation efficacy decreased somewhat at medium ion concentrations but reached almost zero for high ion concentrations. Depending on the application of PDI, the presence of carbonate and phosphate ions is unavoidable. Only upon light irradiation such ions may attack the PS molecule and reduce the efficacy of PDI. Our results indicate concentrations for carbonate and phosphate, in which PDI can still lead to efficient reduction of bacterial cells when using flavin based PS.
Collapse
Affiliation(s)
| | | | - Laura Schottenhaml
- Department of Microbiology, University of Regensburg, Regensburg, Germany
| | - Anja Eichner
- Clinic and Polyclinic of Dermatology, University Hospital Regensburg, Regensburg, Germany
| | - Rudolf Vasold
- Department of Organic Chemistry, University of Regensburg, Regensburg, Germany
| | | | - Wolfgang Bäumler
- Clinic and Polyclinic of Dermatology, University Hospital Regensburg, Regensburg, Germany
| | - Harald Huber
- Department of Microbiology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
34
|
Pérez M, Robres P, Moreno B, Bolea R, Verde MT, Pérez-Laguna V, Aspiroz C, Gilaberte Y, Rezusta A. Comparison of Antibacterial Activity and Wound Healing in a Superficial Abrasion Mouse Model of Staphylococcus aureus Skin Infection Using Photodynamic Therapy Based on Methylene Blue or Mupirocin or Both. Front Med (Lausanne) 2021; 8:673408. [PMID: 34113639 PMCID: PMC8185160 DOI: 10.3389/fmed.2021.673408] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/28/2021] [Indexed: 12/11/2022] Open
Abstract
Background: Antibiotic resistance and impaired wound healing are major concerns in S. aureus superficial skin infections, and new therapies are needed. Antimicrobial photodynamic therapy (aPDT) is a new therapeutic approach for infections, but it also improves healing in many wound models. Objective: To compare the antimicrobial activity and the effects on wound healing of aPDT based on Methylene Blue (MB-aPDT) with mupirocin treatment, either alone or in combination, in superficial skin wounds of S. aureus-infected mice. Additionally, to evaluate the clinical, microbiological, and cosmetic effects on wound healing. Materials and Methods: A superficial skin infection model of S. aureus was established in SKH-1 mice. Infected wounds were treated with MB-aPDT, MB-aPDT with a daily topical mupirocin or only with mupirocin. No treatment was carried out in control animals. Daily clinical and microbiological examinations were performed until complete clinical wound healing. Histopathological studies and statistical analysis were performed at the end of the study. Results: MB-aPDT treatment induced the best wound healing compared to mupirocin alone or to mupirocin plus MB-aPDT. Superficial contraction at 24 h and a greater reduction in size at 48 h, quicker detachment of the crust, less scaling, and absence of scars were observed. Histopathological studies correlated with clinical and gross findings. By contrast, mupirocin showed the highest logaritmic reduction of S. aureus. Conclusions: MB-aPDT and mupirocin treatments are effective in a murine superficial skin infection model of S. aureus. One session of MB-aPDT was the best option for clinical wound healing and cosmetic results. The addition of mupirocin to MB-aPDT treatment improved antimicrobial activity; however, it did not enhance wound healing. No synergistic antibacterial effects were detected.
Collapse
Affiliation(s)
- Montserrat Pérez
- Animal Pathology Department, Veterinary Faculty, Zaragoza University, Zaragoza, Spain
| | - Pilar Robres
- Department of Microbiology, Hospital de Barbastro, Huesca, Spain
| | - Bernardino Moreno
- Animal Pathology Department, Veterinary Faculty, Zaragoza University, Zaragoza, Spain
| | - Rosa Bolea
- Animal Pathology Department, Veterinary Faculty, Zaragoza University, Zaragoza, Spain
| | - Maria T. Verde
- Animal Pathology Department, Veterinary Faculty, Zaragoza University, Zaragoza, Spain
| | - Vanesa Pérez-Laguna
- Department of Microbiology, Hospital Universitario Miguel Servet, IIS Aragón, Zaragoza, Spain
| | - Carmen Aspiroz
- Department of Microbiology, Hospital Royo Villanova, IIS Aragón, Zaragoza, Spain
| | - Yolanda Gilaberte
- Department of Dermatology, Hospital Universitario Miguel Servet, IIS Aragón, Zaragoza, Spain
| | - Antonio Rezusta
- Department of Microbiology, Hospital Universitario Miguel Servet, IIS Aragón, Zaragoza, Spain
| |
Collapse
|
35
|
Abstract
The healing power of light has attracted interest for thousands of years. Scientific discoveries and technological advancements in the field have eventually led to the emergence of photodynamic therapy, which soon became a promising approach in treating a broad range of diseases. Based on the interaction between light, molecular oxygen, and various photosensitizers, photodynamic therapy represents a non-invasive, non-toxic, repeatable procedure for tumor treatment, wound healing, and pathogens inactivation. However, classic photosensitizing compounds impose limitations on their clinical applications. Aiming to overcome these drawbacks, nanotechnology came as a solution for improving targeting efficiency, release control, and solubility of traditional photosensitizers. This paper proposes a comprehensive path, starting with the photodynamic therapy mechanism, evolution over the years, integration of nanotechnology, and ending with a detailed review of the most important applications of this therapeutic approach.
Collapse
|
36
|
Paolillo FR, Rodrigues PGS, Bagnato VS, Alves F, Pires L, Corazza AV. The effect of combined curcumin-mediated photodynamic therapy and artificial skin on Staphylococcus aureus-infected wounds in rats. Lasers Med Sci 2020; 36:1219-1226. [PMID: 33064262 DOI: 10.1007/s10103-020-03160-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 10/12/2020] [Indexed: 10/23/2022]
Abstract
Healing wounds represent a major public health problem, mainly when it is infected. Besides that, the antibiotics misuse and overuse favor the development of bacterial resistance. This study evaluated the effects of antimicrobial photodynamic therapy (aPDT) combined with artificial skin on disinfection of infected skin wound in rats. Twenty-four Wistar rats were randomly distributed into 4 groups (n = 6): (i) control-untreated; (ii) aPDT-treated with curcumin-mediated aPDT (blue light); (iii) artificial skin-treated with artificial skin alcohol-based; and (iv) aPDT plus artificial skin-treated with aPDT associated with artificial skin alcohol-based. For the in vivo model, a full-thickness biopsy with 0.80 cm was performed in order to inoculate the microorganism Staphylococcus aureus (ATCC 25923). The aPDT was performed with a curcumin gel and a blue LED light (450 nm, 80 mW/cm2) at the dose of 60 J/cm2 and the treatment with alcohol-based artificial skin was done with the topical application of 250 μL. Additional animals were submitted to aPDT combined with the artificial skin. After treatments, the number of colony-forming units (CFU) and the damage area were determined. Data were analyzed by two-way repeated measures ANOVA and Tukey tests. The highest reduction of the bacterial viability was observed in the PDT plus artificial skin group (4.14 log10), followed by artificial skin (2.38 log10) and PDT (2.22 log10) groups. In addition, all treated groups showed higher relative area of wound contraction (36.21% for the PDT, 38.41% for artificial skin, and 35.02% for PDT plus artificial) in comparison with the control group. These findings provide evidence for the positive benefits of aPDT with blue light and curcumin associated with artificial skin to decontaminate and accelerate the wound contraction.
Collapse
Affiliation(s)
- Fernanda Rossi Paolillo
- School of Physical Education, State University of Minas Gerais (UEMG), R. Colorado, 700 - Bairro São Francisco, Passos, MG, CEP 37902-092, Brazil. .,Motricity Science Institute, Rehabilitation Science Program from Federal University of Alfenas (UNIFAL), Av. Jovino Fernandes Sales, 2600 - Santa Clara, Alfenas, MG, CEP: 37133-840, Brazil. .,Optics Group from Physics Institute of São Carlos (IFSC), University of São Paulo (USP), Av. Trabalhador Sãocarlense, 400 - Centro, São Carlos, SP, CEP 13560-970, Brazil.
| | - Phamilla Gracielli Sousa Rodrigues
- Optics Group from Physics Institute of São Carlos (IFSC), University of São Paulo (USP), Av. Trabalhador Sãocarlense, 400 - Centro, São Carlos, SP, CEP 13560-970, Brazil
| | - Vanderlei Salvador Bagnato
- Optics Group from Physics Institute of São Carlos (IFSC), University of São Paulo (USP), Av. Trabalhador Sãocarlense, 400 - Centro, São Carlos, SP, CEP 13560-970, Brazil
| | - Fernanda Alves
- Optics Group from Physics Institute of São Carlos (IFSC), University of São Paulo (USP), Av. Trabalhador Sãocarlense, 400 - Centro, São Carlos, SP, CEP 13560-970, Brazil
| | - Layla Pires
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network, Toronto, ON, M5G 2C4, Canada
| | - Adalberto Vieira Corazza
- Medical School, Federal University of Mato Grosso do Sul, Cap. Olinto Mancini Avenue, 1662 - Colinos, Três Lagoas, MS, CEP 79600-080, Brazil
| |
Collapse
|
37
|
Shen X, Dong L, He X, Zhao C, Zhang W, Li X, Lu Y. Treatment of infected wounds with methylene blue photodynamic therapy: An effective and safe treatment method. Photodiagnosis Photodyn Ther 2020; 32:102051. [PMID: 33059110 DOI: 10.1016/j.pdpdt.2020.102051] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/02/2020] [Accepted: 10/05/2020] [Indexed: 01/25/2023]
Abstract
BACKGROUND Bacterial resistance is a problem during the process of healing of infected wounds. As a therapy, photodynamic therapy (PDT) has broad-spectral antibacterial activity and non-selective action, which makes it possible to deal with antibiotic resistance.. Methylene blue is a commonly used medicine, but it is rarely used in clinical practice as a photosensitizer. The effect of methylene blue photodynamic therapy (MB-PDT) on infected wounds remains unclear. Our study aims to evaluate the safety and efficacy of MB-PDT on infected wounds. METHODS In this study, 5 patients with infected wounds were included, all of them were treated with MB-PDT by using the red LED which irradiated the wounds directly (635 nm, 120 J/cm2, 100 mW/cm2). The frequency and course of treatment were determined by the severity of the wound. RESULTS After an average of 4 PDT session, infected wounds of all the patients healed.. The treatment also showed an excellent cosmetic effect. According to the follow-up periods of patients ranged from 3 to 12 months, there were no recurrences and side effects. CONCLUSIONS MB-PDT has a great healing effect on infected wounds, and it is a safe, cheap and active clinical therapy.
Collapse
Affiliation(s)
- Xiaoxiao Shen
- Department of Plastic & Cosmetic Surgery, Daping Hospital, Amy Medical University, Chongqing 400042, PR China
| | - Liwen Dong
- Department of Plastic & Cosmetic Surgery, Daping Hospital, Amy Medical University, Chongqing 400042, PR China
| | - Xuan He
- Department of Plastic & Cosmetic Surgery, Daping Hospital, Amy Medical University, Chongqing 400042, PR China
| | - Chuanqi Zhao
- Department of Plastic & Cosmetic Surgery, Daping Hospital, Amy Medical University, Chongqing 400042, PR China
| | - Wanqi Zhang
- Department of Plastic & Cosmetic Surgery, Daping Hospital, Amy Medical University, Chongqing 400042, PR China
| | - Xinying Li
- Department of Plastic & Cosmetic Surgery, Daping Hospital, Amy Medical University, Chongqing 400042, PR China
| | - Yuangang Lu
- Department of Plastic & Cosmetic Surgery, Daping Hospital, Amy Medical University, Chongqing 400042, PR China.
| |
Collapse
|
38
|
Metal center ion effects on photoinactivating rapidly growing mycobacteria using water-soluble tetra-cationic porphyrins. Biometals 2020; 33:269-282. [PMID: 32980947 DOI: 10.1007/s10534-020-00251-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/16/2020] [Indexed: 12/18/2022]
Abstract
Rapidly growing mycobacteria (RGM) are pathogens that belong to the mycobacteriaceae family and responsible for causing mycobacterioses, which are infections of opportunistic nature and with increasing incidence rates in the world population. This work evaluated the use of six water-soluble cationic porphyrins as photosensitizers for the antimicrobial photodynamic therapy (aPDT) of four RGM strains: Mycolicibacterium fortuitum, Mycolicibacterium smeagmatis, Mycobacteroides abscessus subs. Abscessus, and Mycobacteroides abscessus subsp. massiliense. Experiments were conducted with an adequate concentration of photosensitizer under white-light irradiation conditions over 90 min and the results showed that porphyrins 1 and 2 (M = 2H or ZnII ion) were the most effective and significantly reduced the concentration of viable mycobacteria. The present work shows the result is dependent on the metal-center ion coordinated in the cationic porphyrin core. Moreover, we showed by atomic force microscopy (AFM) the possible membrane photodamage caused by reactive oxygen species and analyzed the morphology and adhesive force properties. Tetra-positively charged and water-soluble metalloporphyrins may be promising antimycobacterial aPDT agents with potential applications in medical clinical cases and bioremediation.
Collapse
|
39
|
The effect of Ganoderma lucidum spore oil in early skin wound healing: interactions of skin microbiota and inflammation. Aging (Albany NY) 2020; 12:14125-14140. [PMID: 32692722 PMCID: PMC7425473 DOI: 10.18632/aging.103412] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 05/01/2020] [Indexed: 12/27/2022]
Abstract
The mushroom Ganoderma lucidum (G. lucidum Leyss. ex Fr.) Karst has been a traditional Chinese medicine for millennia. In this study, we isolated the Ganoderma lucidum spore oil (GLSO) and evaluated the effect of GLSO on skin burn wound healing and the underlying mechanisms. Mice were used to perform skin wound healing assay. Wound analysis was performed by photography, hematoxylin/eosin staining, Masson’s Trichrome staining and immunohistochemical analysis. Microbiota on the wounds were analyzed using the 16s rRNA sequence and quantitative statistics. The lipopolysaccharide (LPS) content was examined in skin wounds and serum using an enzyme-linked immunosorbent assay (ELISA). The expression of Toll-like receptor 4 (TLR4) and the relative levels of inflammatory cytokines were determined by qPCR and immunofluorescence assay. A pseudo-germfree mouse model treated with antibiotics was used to investigate whether GLSO accelerated skin burn wound healing through the skin microbiota. We found that GLSO significantly accelerated the process of skin wound healing and regulated the levels of gram-negative and gram-positive bacteria. Furthermore, GLSO reduced LPS and TLR4, and levels of some other related inflammatory cytokines. The assay with the pseudo-germfree mice model showed that GLSO had a significant acceleration on skin wound healing in comparison with antibiotic treatment. Thus, GLSO downregulated the inflammation by regulating skin microbiota to accelerate skin wound healing. These findings provide a scientific rationale for the potential therapeutic use of GLSO in skin burn injury.
Collapse
|
40
|
Sun Y, Ogawa R, Xiao BH, Feng YX, Wu Y, Chen LH, Gao XH, Chen HD. Antimicrobial photodynamic therapy in skin wound healing: A systematic review of animal studies. Int Wound J 2019; 17:285-299. [PMID: 31724831 DOI: 10.1111/iwj.13269] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/24/2019] [Accepted: 10/28/2019] [Indexed: 01/08/2023] Open
Abstract
Bacterial infection is a common wound complication that can significantly delay healing. Classical local therapies for infected wounds are expensive and are frequently ineffective. One alternative therapy is photodynamic therapy (PDT). We conducted a systematic review to clarify whether PDT is useful for bacteria-infected wounds in animal models. PubMed and Medline were searched for articles on PDT in infected skin wounds in animals. The language was limited to English. Nineteen articles met the inclusion criteria. The overall study methodological quality was moderate, with a low-moderate risk of bias. The animal models were mice and rats. The wounds were excisional, burn, and abrasion wounds. Wound size ranged from 6 mm in diameter to 1.5 × 1.5 cm2 . Most studies inoculated the wounds with Pseudomonas aeruginosa or methicillin-resistant Staphylococcus aureus. Eleven and 17 studies showed that the PDT of infected wounds significantly decreased wound size and bacterial counts, respectively. Six, four, and two studies examined the effect of PDT on infected wound-cytokine levels, wound-healing time, and body weight, respectively. Most indicated that PDT had beneficial effects on these variables. PDT accelerated bacteria-infected wound healing in animals by promoting wound closure and killing bacteria.
Collapse
Affiliation(s)
- Yan Sun
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China
| | - Rei Ogawa
- Department of Plastic, Reconstructive and Aesthetic Surgery, Nippon Medical School, Tokyo, Japan
| | - Bi-Huan Xiao
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China
| | - Yu-Xin Feng
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China
| | - Yan Wu
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China
| | - Liang-Hong Chen
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xing-Hua Gao
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China
| | - Hong-Duo Chen
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|